Human Head Modelling Simulation Applied to Electroconvulsive Therapy

  • Marília Menezes de OliveiraEmail author
  • Bo Song
  • Tony Ahfock
  • Yan Li
  • Paul Wen


Transcranial electrical stimulation includes electrical stimulation techniques used to treat neurological conditions. Computational human head modelling has been used to investigate diverse cases of therapies and treatments. In this chapter, 3D realistic human head models constructed from magnetic resonance images are presented for applications in electroconvulsive therapy (ECT). This technique uses low frequency and applies high amplitude current for a short period. Due to the high currents used in ECT, electrical stimulation may generate heat as per the Joule effect. Therefore, the bio-heat transfer equation coupled to the Laplace equation is implemented in a computational head model to investigate the effect of temperature due to ECT electrical stimulation. Diverse thermophysical parameters and electrode configurations are considered. The results show that, from the thermal point of view, the brain is safe and no increase in temperature is detected. Temperature rises mainly in external layers of head, such as scalp and skull while the inclusion of fat layer will influence temperature behavior. Apart from that, the inclusion of thermal anisotropic conductivity does not significantly influence temperature rise; however, electrical conductivity is an important factor to consider.


ECT Temperature FEM Anisotropy Human head model 


  1. 1.
    A. Cancelli, C. Cottone, F. Tecchio, D.Q. Truong, J. Dmochowski, M. Bikson, A simple method for EEG guided transcranial electrical stimulation without models. J. Neural Eng. 13, 036022 (2016)CrossRefGoogle Scholar
  2. 2.
    S. Casarotto, P. Canali, M. Rosanova, A. Pigorini, M. Fecchio, M. Mariotti, A. Lucca, C. Colombo, F. Benedetti, M. Massimini, Assessing the effects of electroconvulsive therapy on cortical excitability by means of transcranial magnetic stimulation and electroencephalography. Brain Topogr. 26, 326–337 (2013)CrossRefGoogle Scholar
  3. 3.
    J.-J. Chen, L.-B. Zhao, Y.-Y. Liu, S.-H. Fan, P. Xie, Comparative efficacy and acceptability of electroconvulsive therapy versus repetitive transcranial magnetic stimulation for major depression: a systematic review and multiple-treatments meta-analysis. Behav. Brain Res. 320, 30–36 (2017)CrossRefGoogle Scholar
  4. 4.
    A. Datta, M. Elwassif, M. Bikson, Bio-heat transfer model of transcranial DC stimulation: comparison of conventional pad versus ring electrode. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009, 670–673 (2009)PubMedGoogle Scholar
  5. 5.
    M.M. Elwassif, A. Datta, A. Rahman, M. Bikson, Temperature control at DBS electrodes using a heat sink: experimentally validated FEM model of DBS lead architecture. J. Neural Eng. 9, 046009 (2012)CrossRefGoogle Scholar
  6. 6.
    M.M. Elwassif, Q. Kong, M. Vazquez, M. Bikson, Bio-heat transfer model of deep brain stimulation-induced temperature changes. J. Neural Eng. 3, 306–315 (2006)CrossRefGoogle Scholar
  7. 7.
    A. Fertonani, C. Miniussi, Transcranial electrical stimulation what we know and do not know about mechanisms. Neuroscientist (2016). pii:1073858416631966.Google Scholar
  8. 8.
    B. Guleyupoglu, P. Schestatsky, D. Edwards, F. Fregni, M. Bikson, Classification of methods in transcranial Electrical Stimulation (tES) and evolving strategy from historical approaches to contemporary innovations. J. Neurosci. Methods 219, 297–311 (2013)CrossRefGoogle Scholar
  9. 9.
    W.H. Lee, Z.-D. Deng, T.-S. Kim, A.F. Laine, S.H. Lisanby, A.V. Peterchev, Regional electric field induced by electroconvulsive therapy in a realistic finite element head model: influence of white matter anisotropic conductivity. Neuroimage 59, 2110–2123 (2012)CrossRefGoogle Scholar
  10. 10.
    A.V. Peterchev, T.A. Wagner, P.C. Miranda, M.A. Nitsche, W. Paulus, S.H. Lisanby, A. Pascual-Leone, M. Bikson, Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices. Brain Stimul. 5, 435–453 (2012)CrossRefGoogle Scholar
  11. 11.
    T. Wagner, A. Valero-Cabre, A. Pascual-Leone, Noninvasive human brain stimulation. Annu. Rev. Biomed. Eng. 9, 527–565 (2007)CrossRefGoogle Scholar
  12. 12.
    A. Datta, V. Bansal, J. Diaz, J. Patel, D. Reato, M. Bikson, Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimul. 2, 201–207 (2009)CrossRefGoogle Scholar
  13. 13.
    S. Shahid, P. Wen, T. Ahfock, Numerical investigation of white matter anisotropic conductivity in defining current distribution under tDCS. Comput. Meth. Prog. Biomed. 109, 48–64 (2013)CrossRefGoogle Scholar
  14. 14.
    R.D. Weiner, The Practice of Electroconvulsive Therapy: Recommendations for Treatment, Training, and Privileging: A Task Force Report of the American Psychiatric Association (Amer. Psych. Assoc., USA, 2002)Google Scholar
  15. 15.
    M.A. Rosa, S.H. Lisanby, Somatic treatments for mood disorders. Neuropsychopharmacol. 37, 102–116 (2012)CrossRefGoogle Scholar
  16. 16.
    H.A. Sackeim, J. Long, B. Luber, J.R. Moeller, I. Prohovnik, D. Devanand, M.S. Nobler, Physical properties and quantification of the ECT stimulus: I. Basic principles. J. ECT 10, 93–123 (1994)Google Scholar
  17. 17.
    D. Fiala, K.J. Lomas, M. Stohrer, A computer model of human thermoregulation for a wide range of environmental conditions: the passive system. J. Appl. Physiol. 87, 1957–1972 (1999)CrossRefGoogle Scholar
  18. 18.
    P.A. Boulby, F.J. Rugg, in Quantitative MRI of the Brain, ed. by P. Tofts. T2: The Transverse Relaxation Time (John Wiley & Sons Ltd., Chichester, 2003)Google Scholar
  19. 19.
    P.S. Tofts, in Quantitative MRI of the Brain: Measuring Changes Caused by Disease, ed. by P. Tofts. PD: Proton Density of Tissue Water (John Wiley & Sons Ltd., Chichester, 2003)CrossRefGoogle Scholar
  20. 20.
    P.A. Gowland, V.L. Stevenson, in Quantitative MRI of the Brain: Measuring Changes Caused by Disease, ed. by P. Tofts. T1: The Longitudinal Relaxation Time (John Wiley & Sons Ltd., Chichester, 2003)Google Scholar
  21. 21.
    S.M. Smith, M. Jenkinson, M.W. Woolrich, C.F. Beckmann, T.E. Behrens, H. Johansen-Berg, P.R. Bannister, M. DE Luca, I. Drobnjak, D.E. Flitney, Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23, S208–S219 (2004)CrossRefGoogle Scholar
  22. 22.
    V. Positano, in Advanced Image Processing in Magnetic Resonance Imaging, ed. by L. L. V. P. M. F. Santarelli. Image Registration in MRI (Taylor & Francis Group, LLC, Boca Raton, 2005)Google Scholar
  23. 23.
    P.J. Kostelec, S. Periaswamy, Image registration for MRI. Mod. Signal Process. 46, 161–184 (2003)Google Scholar
  24. 24.
    L.G. Brown, A survey of image registration techniques. ACM Comput. Surv. 24, 325–376 (1992)CrossRefGoogle Scholar
  25. 25.
    M. Jenkinson, P. Bannister, M. Brady, S. Smith, Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17, 825–841 (2002)CrossRefGoogle Scholar
  26. 26.
    I. Despotović, B. Goossens, W. Philips, MRI segmentation of the human brain: challenges, methods, and applications. Comput. Math. Methods Med. 2015, 1–23 (2015)CrossRefGoogle Scholar
  27. 27.
    M.N.I. Mcconnell Brain Imaging Center, McGill University. BrainWeb: Simulated brain database.
  28. 28.
    B. Aubert-Broche, A.C. Evans, L. Collins, A new improved version of the realistic digital brain phantom. Neuroimage 32, 138–145 (2006)CrossRefGoogle Scholar
  29. 29.
    S.M. Smith, Fast robust automated brain extraction. Hum. Brain Mapp. 17, 143–155 (2002)CrossRefGoogle Scholar
  30. 30.
    S. Bai, C. Loo, S. Dokos, A review of computational models of transcranial electrical stimulation. Crit. Rev. in Biomed. Eng. 41, 21–35 (2013)CrossRefGoogle Scholar
  31. 31.
    M. Ferdjallah, F. Bostick, R. Barr, Potential and current density distributions of cranial electrotherapy stimulation (CES) in a four-concentric-spheres model. IEEE Trans. Biomed. Eng. 43, 939–943 (1996)CrossRefGoogle Scholar
  32. 32.
    J. Malmivuo, R. Plonsey, Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields (Oxford University Press, Oxford, 1995)CrossRefGoogle Scholar
  33. 33.
    S.S. Shahid, Numerical Investigation of Transcranial Direct Current Stimulation on Cortical Modulation. PhD Thesis, University of Southern Queensland (2013).Google Scholar
  34. 34.
    H.H. Pennes, Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol. 1, 93–122 (1948)CrossRefGoogle Scholar
  35. 35.
    L. Bezerra, M.M. Oliveira, T. Rolim, A. Conci, F. Santos, P. Lyra, R. Lima, Estimation of breast tumor thermal properties using infrared images. Signal Process. 93, 2851–2863 (2013)CrossRefGoogle Scholar
  36. 36.
    K.M. Silay, C. Dehollain, M. Declercq, in Numerical Analysis of Temperature Elevation in the Head Due to Power Dissipation in a Cortical Implant. EMBC-IEEE Ann. Int. Conf. pp. 951–956 (2008)Google Scholar
  37. 37.
    S.A. Berger, W. Goldsmith, E.R. Lewis, Introduction to Bioengineering (Oxford University Press, USA, 1996)Google Scholar
  38. 38.
    M.M. Christian, S.L. Firebaugh, A.N. Smith, COMSOL thermal model for a heated neural micro-probe. Proc. COMSOL Conf. (2012).Google Scholar
  39. 39.
    P.A. Hasgall, E. Neufeld, M.C. Gosselin, A. Klingenböck, N. Kuster, IT’IS Database for thermal and electromagnetic parameters of biological tissues (2014)Google Scholar
  40. 40.
    M.M. Oliveira, P. Wen, T. Ahfock, Heat transfer due to electroconvulsive therapy: Influence of anisotropic thermal and electrical skull conductivity. Comput. Meth. Prog. Biomed. 133, 71–81 (2016)CrossRefGoogle Scholar
  41. 41.
    M.M. Oliveira, P. Wen, T. Ahfock, Bio-heat transfer model of electroconvulsive therapy: Effect of biological properties in induced temperature variation. EMBC-IEEE Ann. Int. Conf. IEEE (2016)Google Scholar
  42. 42.
    J. De Munck, The potential distribution in a layered anisotropic spheroidal volume conductor. J. Appl. Phys. 64, 464–470 (1988)CrossRefGoogle Scholar
  43. 43.
    G. Marin, C. Guerin, S. Baillet, L. Garnero, G. Meunier, Influence of skull anisotropy for the forward and inverse problem in EEG: simulation studies using FEM on realistic head models. Hum. Brain Mapp. 6, 250–269 (1998)CrossRefGoogle Scholar
  44. 44.
    S.P. van den Broek, F. Reinders, M. Donderwinkel, M. Peters, Volume conduction effects in EEG and MEG. Electroencephalogr. Clin. Neurophysiol. 106, 522–534 (1998)CrossRefGoogle Scholar
  45. 45.
    C. Wolters, A. Anwander, X. Tricoche, D. Weinstein, M. Koch, R. Macleod, Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high-resolution finite element modeling. Neuroimage 30, 813–826 (2006)CrossRefGoogle Scholar
  46. 46.
    B.S. Khundrakpam, V.K. Shukla, P.K. Roy, Thermal conduction tensor imaging and energy flow analysis of brain: A feasibility study usingMRI. Ann. Biomed. Eng. 38, 3070–3083 (2010)CrossRefGoogle Scholar
  47. 47.
    W.H. Lee, Z. Liu, B.A. Mueller, K. Lim, B. He, Influence of white matter anisotropic conductivity on EEG source localization: Comparison to fMRI in human primary visual cortex. Clin. Neurophysiol. 120, 2071–2081 (2009)CrossRefGoogle Scholar
  48. 48.
    M.M. Oliveira, P. Wen, T. Ahfock, S.S. Shahid, A preliminary study about the distribution of temperature due to electrical stimulation in ECT (Int. Conf. Complex Med. Eng., Taipei, Taiwan, 2014)Google Scholar
  49. 49.
    M.M. Oliveira, Human head temperature and electric field investigations under ECT, PhD Thesis, University of Southern Queensland, (2017)Google Scholar
  50. 50.
    S. Kim, P. Tathireddy, R. Normann, F. Solzbacher, Thermal impact of an active 3-D microelectrode array implanted in the brain. IEEE Trans. Neural Syst. Rehabil. Eng. 15, 493–501 (2007)CrossRefGoogle Scholar
  51. 51.
    S. Bai, C. Loo, A. Al Abed, S. Dokos, A computational model of direct brain excitation induced by electroconvulsive therapy: comparison among three conventional electrode placements. Brain Stimul. 5, 408–421 (2012)CrossRefGoogle Scholar
  52. 52.
    E.J. Berjano, J. Saiz, J.M. Ferrero, Radio-frequency heating of the cornea: Theoretical model and in vitro experiments. IEEE Trans. Biomed. Eng. 49, 196–205 (2002)CrossRefGoogle Scholar
  53. 53.
    H. Watanabe, N. Yamazaki, Y. Kobayashi, T. Miyashita, M. Hashizume, M.G. Fujie, in Temperature Dependence of Thermal Conductivity of Liver Based on Various Experiments and a Numerical Simulation for RF Ablation. EMBC-IEEE Ann. Int. Conf. IEEE 2010. pp. 3222–3228 (2010)Google Scholar
  54. 54.
    C.M. Swartz, Safety and ECT stimulus electrodes: I. Heat liberation at the electrode-skin interface. J. ECT 5, 171–175 (1989)Google Scholar
  55. 55.
    S. S. Shahid, P. Wen, T. Ahfock, in Effect of fat and muscle tissue conductivity on cortical currents—A tDCS study. 2011 IEEE/ICME Int. Conf. Complex Med. Eng. pp. 211–215 (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Marília Menezes de Oliveira
    • 1
    • 2
    Email author
  • Bo Song
    • 2
  • Tony Ahfock
    • 2
  • Yan Li
    • 2
  • Paul Wen
    • 2
  1. 1.The University of SydneySydneyAustralia
  2. 2.University of Southern Queensland, Darling HeightsQLDAustralia

Personalised recommendations