Photoplethysmography Imaging and Common Optical Hybrid Imaging Modalities

  • Vladimir BlazekEmail author
  • Stephan Dahlmanns
  • Carina Barbosa Pereira
  • Xinchi Yu
  • Nikolai Blanik
  • Steffen Leonhardt
  • Claudia Rosa Blazek


Due to their obvious advantages, active and passive optoelectronic sensor concepts for monitoring cardiorespiratory vital signs and detection of rhythmical phenomena in dermal blood perfusion are being investigated by various biomedical groups, particularly their camera-based variants. Such methods are noninvasive and contactless, and allow spatially resolved skin perfusion studies.

This chapter presents one of these medical imaging modalities (developed by and clinically tested at RWTH Aachen University), i.e., active photoplethysmography imaging (PPGI) for the mapping of dermal blood perfusion dynamics. PPGI is an enhancement of the classical photoplethysmography and pulse oximetry (SpO2) and describes the remote “opto-electronical measurement of arterial and/or venous blood volume changes”. Approved algorithms from these established methods, e.g., algorithms that extract the heart rate, heart rate variability, respiratory rate, and/or pulse wave form-related stress/pain signals, can easily be adapted to PPGI. This remote monitoring technique allows measurement of body signals without contact (unobtrusive) and with spatial resolution; moreover, it can be adapted to specific measurement scenarios, such as the monitoring of neonates and acquiring vital information from within the area of a wound.

Selected medical applications have been validated by our group using the PPGI technology in a stand-alone or hybrid camera configuration. Although these preliminary results are promising, additional research and development is necessary (especially for the detection and elimination of movement artifacts) before this novel technology can be transferred into a standardized clinical application.


Remote PPGI Signal analysis Medical applications Functional imaging Space-resolved mapping Skin perfusion Vital parameters Optical Hybrid Imaging 


  1. 1.
    C.H. Cartwright, J. Opt. Soc. Am. 20(2), 81 (1930)CrossRefGoogle Scholar
  2. 2.
    H. Haxthausen, Br. J. Dermatol. 45(12), 506 (1933)CrossRefGoogle Scholar
  3. 3.
    K. Matthes, Naunyn Schmiedebergs Arch. Exp. Pathol. Pharmakol. 179(6), 698 (1935)CrossRefGoogle Scholar
  4. 4.
    H. Molitor, M. Kniazuk, J. Pharmacol. Exp. Ther. 57(1), 6 (1936)Google Scholar
  5. 5.
    A.B. Hertzman, C.R. Spealman, Am. J. Physiol. 119, 334 (1937)Google Scholar
  6. 6.
    A.B. Hertzman, Am. J. Physiol. 124, 329 (1938)Google Scholar
  7. 7.
    V. Blazek, U. Schultz-Ehrenburg, in Frontiers in Computer-Aided Visualization of Vascular Functions. Proceedings 7th Int. Symposium CNVD ’97, ed. by V. Blazek, U. Schultz-Ehrenburg, chap. 1 (VDI Verlag, Düsseldorf, 1988), pp. 1–5Google Scholar
  8. 8.
    T. Wu, V. Blazek, H.J. Schmitt, in Proceedings of SPIE, vol. 4163, ed. by A.V. Priezzhev, P.A. Oberg (International Society for Optics and Photonics, Bellingham, 2000), p. 62Google Scholar
  9. 9.
    V. Blazek, T. Wu, D. Hoelscher, in Proceedings of SPIE, vol. 3923, ed. by A.V. Priezzhev, T. Asakura (International Society for Optics and Photonics, Bellingham, 2000), pp. 2–9Google Scholar
  10. 10.
    M.Z. Poh, D.J. McDuff, R.W. Picard, IEEE Trans. Biomed. Eng. 58(1), 7 (2011)CrossRefGoogle Scholar
  11. 11.
    L. Tarassenko, M. Villarroel, A. Guazzi, J. Jorge, D.A. Clifton, C. Pugh, Physiol. Meas. 35(5), 807 (2014)CrossRefGoogle Scholar
  12. 12.
    M. Kumar, A. Veeraraghavan, A. Sabharwal, Biomed. Opt. Express 6(5), 1565 (2015)CrossRefGoogle Scholar
  13. 13.
    M. van Gastel, S. Stuijk, G. de Haan, IEEE Trans. Biomed. Eng. 62(5), 1425 (2015)CrossRefGoogle Scholar
  14. 14.
    D.J. McDuff, J.R. Estepp, A.M. Piasecki, E.B. Blackford, in 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), vol. 2015 (IEEE, Piscataway, 2015), pp. 6398–6404Google Scholar
  15. 15.
    W. Wang, S. Stuijk, G. de Haan, IEEE Trans. Biomed. Eng. 62(2), 415 (2015)CrossRefGoogle Scholar
  16. 16.
    Y. Sun, N. Thakor, IEEE Trans. Biomed. Eng. 63(3), 463 (2016)CrossRefGoogle Scholar
  17. 17.
    A. Trumpp, J. Schell, H. Malberg, S. Zaunseder, Curr. Dir. Biomed. Eng. 2(1), 199 (2016)Google Scholar
  18. 18.
    A.K. Abbas, K. Heimann, V. Blazek, T. Orlikowsky, S. Leonhardt, Infrared Phys. Technol. 55(6), 538 (2012)CrossRefGoogle Scholar
  19. 19.
    C.B. Pereira, M. Czaplik, N. Blanik, R. Rossaint, V. Blazek, S. Leonhardt, Biomed. Opt. Express 5(4), 1075 (2014)CrossRefGoogle Scholar
  20. 20.
    N. Blanik, K.A. Abbas, B. Venema, V. Blazek, S. Leonhardt, in Innovations and Applications of Monitoring Perfusion, Oxygenation and Ventilation (Yale University, New Haven, 2012)Google Scholar
  21. 21.
    N. Blanik, A.K. Abbas, B. Venema, V. Blazek, S. Leonhardt, J. Biomed. Opt. 19(1), 016012 (2014)CrossRefGoogle Scholar
  22. 22.
    N. Blanik, M. Paul, V. Blazek, S. Leonhardt, in 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), vol. 2015 (IEEE, Piscataway, 2015), pp. 2383–2386Google Scholar
  23. 23.
    V. Blazek, U. Schultz-Ehrenburg, Quantitative Photoplethysmography: Basic Facts and Examination Tests for Evaluating Peripheral Vascular Functions (VDI-Verlag, Düsseldorf, 1996)Google Scholar
  24. 24.
    B. Venema, N. Blanik, V. Blazek, H. Gehring, A. Opp, S. Leonhardt, IEEE Trans. Biomed. Eng. 59(7), 2003 (2012)CrossRefGoogle Scholar
  25. 25.
    M. Huelsbusch, Ein bildgestütztes, funktionelles Verfahren zur optoelektreonischen Erfassung der Hautperfusion (An image-based and functional technik for the optoelectronical assessment of skin perfusion). Ph.D. thesis, RWTH Aachen University, Aachen, 2008Google Scholar
  26. 26.
    N. Blanik, in Studies in Skin Perfusion Dynamics – Photoplethysmography and Its Applications in Medical Diagnostics, ed. by V. Blazek, V.J. Kumar, S. Leonhardt, M.M. Rao (Springer, New Delhi, 2016)Google Scholar
  27. 27.
    V. Blazek, Communications 1, 5 (2011)Google Scholar
  28. 28.
    M.H. Yang, N. Ahuja, Face Detection and Gesture Recognition for Human-Computer Interaction (Springer US, New York, 2001)CrossRefGoogle Scholar
  29. 29.
    B. Jaehne, Digital Image Processing, 6th edn. (Springer, Berlin, 2015)Google Scholar
  30. 30.
    D. Forsyth, J. Ponce, Computer Vision: A Modern Approach, 2nd edn. (Prentice Hall, Upper Saddle River, 2012)Google Scholar
  31. 31.
    M. Paul, N. Blanik, V. Blazek, S. Leonhardt, in Proc. of SPIE, vol. 9534, ed. by F. Meriaudeau, O. Aubreton (International Society for Optics and Photonics, Bellingham, 2015), pp. 95340P1–95340P7Google Scholar
  32. 32.
    F. Massanes, M. Cadennes, J.G. Brankov, J. Electron. Imaging 20(3), 1 (2011)CrossRefGoogle Scholar
  33. 33.
    A. Gyaourova, C. Kamath, S.C. Cheung, Block matching for object tracking. Tech. rep., Lawrence Livermore National Laboratory, 2003Google Scholar
  34. 34.
    C. Mayntz, J.M. Frahm, T. Aach, G. Schmitz, in Mustererkennung 2000 (Pattern Recognition 2000), ed. by G. Sommer, N. Krueger, C. Perwass (Springer, Berlin, 2000), pp. 123–130CrossRefGoogle Scholar
  35. 35.
    G.A. Jones, Comput. Vis. Image Underst. 65(1), 57 (1997)CrossRefGoogle Scholar
  36. 36.
    B. Heisele, Objektdetektion in Straßenverkehrsszenen durch Auswertung von Farbbildfolgen (Analysis of video sequences for object detection in scenes of road traffic). Ph.D. thesis, University Stuttgart, VDI-Verlag, Düsseldorf, 1998Google Scholar
  37. 37.
    S.g. Wei, L. Yang, Z. Chen, Z.f. Liu, Procedia Eng. 15, 3471 (2011)Google Scholar
  38. 38.
    B.K.P. Horn, B.G. Schunck, Artif. Intell. 17(1–3), 185 (1981)CrossRefGoogle Scholar
  39. 39.
    B.D. Lucas, T. Kanade, in Proceedings of the 7th International Joint Conference on Artificial Intelligence - Volume 2 (Morgan Kaufmann Publishers, Burlington, 1981), pp. 674–679Google Scholar
  40. 40.
    C. Tomasi, T. Kanade, Detection and tracking of point features. Tech. rep., College of Engineering, Computing and Applied Sciences, Clemson University, Technical Report CMU-CS-91–132, Clemson, 1991Google Scholar
  41. 41.
    P. Viola, M. Jones, Int. J. Comput. Vis. 4, 51 (2001)Google Scholar
  42. 42.
    D.G. Lowe, Method and apparatus for identifying scale invariant features in an image and use of same for locating an object in an image (2000)Google Scholar
  43. 43.
    H. Bay, T. Tuytelaars, L. Van Gool, in ECCV 2006: Computer Vision – ECCV 2006, ed. by A. Leonardis, H. Bischof, A. Pinz. Lecture Notes in Computer Science (Springer, Berlin, 2006), pp. 404–417Google Scholar
  44. 44.
    G. Schwarzenberg, Objektverfolgung mit Partikel-Filter (Object tracking with a particle filter). Ph.D. thesis, University Karlsruhe, Karlsruhe, 2005Google Scholar
  45. 45.
    B. Ristic, S. Arulampalam, N. Gordon, Beyond the Kalman Filter: Particle Filters for Tracking Applications (Artech Print on Demand, Norwood, 2004)Google Scholar
  46. 46.
    R. Kalman, Trans. ASME J. Basic Eng. 82(Series D), 35 (1960)Google Scholar
  47. 47.
    E.V. Cuevas, D. Zaldivar, R. Rojas, Kalman filter for vision tracking. Tech. rep., Technical Report B 05-12 FU Berlin, 2005Google Scholar
  48. 48.
    Y. Cheng, IEEE Trans. Pattern Anal. Mach. Intell. 17(8), 790 (1995)CrossRefGoogle Scholar
  49. 49.
    O.P. Hornstein, G. Heyer, B. Langenstein, Acta Derm. Venereol. Suppl. 144, 146 (1989)Google Scholar
  50. 50.
    C. Blazek, V. Blazek, in Studies in Skin Perfusion Dynamics – Photoplethysmography and Its Applications in Medical Diagnostics, ed. by V. Blazek, V.J. Kumar, S. Leonhardt, M.M. Rao (Springer, New Delhi, 2016)Google Scholar
  51. 51.
    K. Wardell, A. Jakobsson, G. Nilsson, IEEE Trans. Biomed. Eng. 40(4), 309 (1993)CrossRefGoogle Scholar
  52. 52.
    K.J. Dierolf, Nichtinvasive Methoden zur Differenzierung dermaler melanozyterer Laesionen – klinische ABCD-Regel, Dermatoskopie, Laser-Doppler-Fluxmetrie (Noninvasive methods for differentiation of dermal melanocytic lesions – clinical ABCD rule, dermatoscopy, Laser Do. Ph.D. thesis, University Tuebingen, Tuebingen, 2007Google Scholar
  53. 53.
    M. Juenger, A. Steins, B. Schlagenhauff, G. Rassner, Hautarzt 50(12), 848 (1999)CrossRefGoogle Scholar
  54. 54.
    N. Blanik, K. Heimann, C. Pereira, M. Paul, V. Blazek, B. Venema, T. Orlikowsky, S. Leonhardt, Biomed. Eng./Biomed. Tech. 61(6), 631 (2016)Google Scholar
  55. 55.
    V. Blazek, N. Blanik, C.R. Blazek, M. Paul, C. Pereira, M. Koeny, B. Venema, S. Leonhardt, Anesth. Analg. 124(1), 104 (2017)CrossRefGoogle Scholar
  56. 56.
    J.W. Severinghaus, Anesth. Analg. 105(6), S1 (2007)CrossRefGoogle Scholar
  57. 57.
    V. Blazek, M. Hülsbusch, M. Herzog, Biomed. Tech. 52(B), 1 (2007)Google Scholar
  58. 58.
    N. Blanik, Konzept und Realisierung eines kontaktlosen Messsystems für die ortsaufgelöste Erfassung der Sauerstoffsättigung der Haut (Concept development and implementation of a contactless measurement system for the spatially resolved assessment of oxygen saturation). Ph.D. thesis, RWTH Aachen University, Aachen, 2010Google Scholar
  59. 59.
    N. Blanik, B. Venema, V. Blazek, S. Leonhardt, Clin. Technol. 44, 5 (2014)Google Scholar
  60. 60.
    C.H. Blackley, Hay Fever: Its Causes, Treatment and Effective Prevention: Experimental Researches, 2nd edn. (Baillière, Tindall & Cox, London, 1880)Google Scholar
  61. 61.
    B. Przybilla, K.C. Bergmann, J. Ring, Praktische allergologische Diagnostik (Allergy Diagnostic), 1st edn. (Steinkopff-Verlag, Darmstadt, 2000)Google Scholar
  62. 62.
    F. Ruëff, K.C. Bergmann, K. Brockow, T. Fuchs, A. Grübl, K. Jung, L. Klimek, H. Müsken, O. Pfaar, B. Przybilla, H. Sitter, W. Wehrmann, German Society for Allergology and Clinical Immunology. Pneumologie 65(08), 484 (2011)PubMedGoogle Scholar
  63. 63.
    H. Pijnenborg, L. Nilsson, S. Dreborg, Allergy 51(11), 782 (1996)CrossRefGoogle Scholar
  64. 64.
    A.M. Opazo Saez, F. Mosel, J. Nurnberger, U. Rushentsova, M. Gossl, A. Mitchell, R.F. Schafers, T. Philipp, R.R. Wenzel, Br. J. Clin. Pharmacol. 59(5), 511 (2005)CrossRefGoogle Scholar
  65. 65.
    C.F. Clough, A.R. Bennett, M.K. Church, Br. J. Dermatol. 138(5), 806 (1998)CrossRefGoogle Scholar
  66. 66.
    T.W. Ridler, S. Calvard, IEEE Trans. Syst. Man Cybern. 8, 630 (1978)CrossRefGoogle Scholar
  67. 67.
    C. Janus, Funktionelle Erkennung und Vermessung von Ulcera und allergischen Hautreaktionen in Einzelaufnahmen und PPGI Bildsequenzen (Functional detection and measurement of ulcers and allergic skin reactions in images and PPGI video sequences). Ph.D. thesis, RWTH Aachen University, Aachen, 2008Google Scholar
  68. 68.
    V. Blazek, in Studies in Skin Perfusion Dynamics – Photoplethysmography and Its Applications in Medical Diagnostics, ed. by V. Blazek, V.J. Kumar, S. Leonhardt, M.M. Rao (Springer, New Delhi, 2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Vladimir Blazek
    • 1
    • 2
    Email author
  • Stephan Dahlmanns
    • 1
  • Carina Barbosa Pereira
    • 1
  • Xinchi Yu
    • 1
  • Nikolai Blanik
    • 1
  • Steffen Leonhardt
    • 1
  • Claudia Rosa Blazek
    • 3
  1. 1.Chair for Medical Information Technology, Helmholtz-Institute for Biomedical EngineeringRWTH Aachen UniversityAachenGermany
  2. 2.Czech Institute of Informatics, Robotics and Cybernetics (CIIRC)Czech Technical University in PraguePragueCzech Republic
  3. 3.The Private Clinic of DermatologyHaut im ZentrumZurichSwitzerland

Personalised recommendations