Advertisement

An Overview of Targeted Radiotherapy

  • Michal Grzmil
  • Alexander Meisel
  • Martin Behé
  • Roger SchibliEmail author
Chapter

Abstract

The field of nuclear medicine has had decades of experience in the use of radionuclides for the targeted therapy of disease. The routine use of iodine-131 for the treatment of thyroid diseases began in the 1940s. Unfortunately, however, more than four decades would pass until targeted radiotherapy was applied in other areas. In the 1990s, antibodies and peptides emerged that were capable of specifically binding proteins that are overexpressed on the surface of tumor cells. Several of these antibodies were radiolabeled with iodine-131 for radioimmunotherapy (RIT), whereas a handful of peptides were labeled with radiometals like yttrium-90 and lutetium-177 for peptide receptor radionuclide therapy (PRRT). Radiolabeled analogues of the somatostatin receptor-targeting peptide octreotide were used for the treatment of neuroendocrine tumors and were the first radiotherapeutics with widespread success in the clinic. This promise prompted the exploration of further compounds for targeted radiotherapy. Yet despite the excitement surrounding the field, several factors have limited the clinical success of targeted radiotherapy. For example, radiolabeled peptides often suffer from rapid blood clearance, high uptake in the kidneys, high metabolic instability, and/or low accumulation in tumor tissue. Radiolabeled antibodies, on the other hand, often produce high activity concentrations in tumor tissue but have the drawback of slow pharmacokinetic profiles and long serum half-lives, traits which result in high radiation doses to radiosensitive red bone marrow. In the last several years, engineered small proteins (15–60 kD) have emerged as promising alternatives to peptides and antibodies due to their appropriate blood clearance half-lives and favorable biological properties, including high affinity and specificity for their molecular targets. In this chapter, we describe the different components of radiopharmaceuticals for targeted radionuclide therapy as well as the biological background of these therapies. Furthermore, we will elaborate on the clinical potential of radiotherapy both as a stand-alone treatment option and in combination with chemotherapeutics or targeted therapeutics.

Keywords

Cancer therapy Therapeutic radionuclide Targeted radiotherapy Targeted radionuclide therapy Endoradiotherapy Radioimmunotherapy Peptide receptor radionuclide therapy Radiolabeled peptides Radiolabeled antibodies 

References

  1. 1.
    Begg AC, Stewart FA, Vens C. Strategies to improve radiotherapy with targeted drugs. Nat Rev Cancer. 2011;11(4):239–53.PubMedGoogle Scholar
  2. 2.
    Paoletti C, Hayes DF. Circulating tumor cells. Adv Exp Med Biol. 2016;882:235–58.PubMedGoogle Scholar
  3. 3.
    Adams DL, Adams DK, He J, Kalhor N, Zhang M, Xu T, et al. Sequential tracking of PD-L1 expression and RAD50 induction in circulating tumor and stromal cells of lung cancer patients undergoing radiotherapy. Clin Cancer Res. 2017;23(19):5948–58.PubMedGoogle Scholar
  4. 4.
    Verburg FA, de Keizer B, van Isselt JW. Use of radiopharmaceuticals for diagnosis, treatment, and follow-up of differentiated thyroid carcinoma. Anti Cancer Agents Med Chem. 2007;7(4):399–409.Google Scholar
  5. 5.
    Verburg FA, Brans B, Mottaghy FM. Molecular nuclear therapies for thyroid carcinoma. Methods. 2011;55(3):230–7.PubMedGoogle Scholar
  6. 6.
    Gudkov SV, Shilyagina NY, Vodeneev VA, Zvyagin AV. Targeted radionuclide therapy of human tumors. Int J Mol Sci. 2015;17(1):pii: E33.Google Scholar
  7. 7.
    Milenic DE, Brady ED, Brechbiel MW. Antibody-targeted radiation cancer therapy. Nat Rev Drug Discov. 2004;3(6):488–99.PubMedGoogle Scholar
  8. 8.
    Volkert WA, Goeckeler WF, Ehrhardt GJ, Ketring AR. Therapeutic radionuclides: production and decay property considerations. J Nucl Med. 1991;32(1):174–85.PubMedGoogle Scholar
  9. 9.
    Yeong CH, Cheng MH, Ng KH. Therapeutic radionuclides in nuclear medicine: current and future prospects. J Zhejiang Univ Sci B. 2014;15(10):845–63.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Pouget JP, Santoro L, Raymond L, Chouin N, Bardies M, Bascoul-Mollevi C, et al. Cell membrane is a more sensitive target than cytoplasm to dense ionization produced by auger electrons. Radiat Res. 2008;170(2):192–200.PubMedGoogle Scholar
  11. 11.
    Denison TA, Bae YH. Tumor heterogeneity and its implication for drug delivery. J Control Release. 2012;164(2):187–91.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Dorso L, Bigot-Corbel E, Abadie J, Diab M, Gouard S, Bruchertseifer F, et al. Long-term toxicity of 213Bi-labelled BSA in mice. PLoS One. 2016;11(3):e0151330.Google Scholar
  13. 13.
    Khanna A. DNA damage in cancer therapeutics: a boon or a curse? Cancer Res. 2015;75(11):2133–8.PubMedGoogle Scholar
  14. 14.
    Pouget JP, Lozza C, Deshayes E, Boudousq V, Navarro-Teulon I. Introduction to radiobiology of targeted radionuclide therapy. Front Med (Lausanne). 2015;2:12.Google Scholar
  15. 15.
    Szumiel I. Ionizing radiation-induced oxidative stress, epigenetic changes and genomic instability: the pivotal role of mitochondria. Int J Radiat Biol. 2015;91(1):1–12.PubMedGoogle Scholar
  16. 16.
    Eriksson D, Stigbrand T. Radiation-induced cell death mechanisms. Tumour Biol. 2010;31(4):363–72.PubMedGoogle Scholar
  17. 17.
    Vakifahmetoglu H, Olsson M, Zhivotovsky B. Death through a tragedy: mitotic catastrophe. Cell Death Differ. 2008;15(7):1153–62.PubMedGoogle Scholar
  18. 18.
    Hill RP, Bristow RG, Fyles A, Koritzinsky M, Milosevic M, Wouters BG. Hypoxia and predicting radiation response. Semin Radiat Oncol. 2015;25(4):260–72.PubMedGoogle Scholar
  19. 19.
    O’Connor JP, Rose CJ, Waterton JC, Carano RA, Parker GJ, Jackson A. Imaging intratumor heterogeneity: role in therapy response, resistance, and clinical outcome. Clin Cancer Res. 2015;21(2):249–57.PubMedGoogle Scholar
  20. 20.
    Sala E, Mema E, Himoto Y, Veeraraghavan H, Brenton JD, Snyder A, et al. Unravelling tumour heterogeneity using next-generation imaging: radiomics, radiogenomics, and habitat imaging. Clin Radiol. 2017;72(1):3–10.PubMedGoogle Scholar
  21. 21.
    Kim BM, Hong Y, Lee S, Liu P, Lim JH, Lee YH, et al. Therapeutic implications for overcoming radiation resistance in cancer therapy. Int J Mol Sci. 2015;16(11):26880–913.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Jette N, Lees-Miller SP. The DNA-dependent protein kinase: a multifunctional protein kinase with roles in DNA double strand break repair and mitosis. Prog Biophys Mol Biol. 2015;117(2–3):194–205.PubMedGoogle Scholar
  23. 23.
    Yan S, Sorrell M, Berman Z. Functional interplay between ATM/ATR-mediated DNA damage response and DNA repair pathways in oxidative stress. Cell Mol Life Sci. 2014;71(20):3951–67.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Zhan M, Han ZC. Phosphatidylinositide 3-kinase/AKT in radiation responses. Histol Histopathol. 2004;19(3):915–23.PubMedGoogle Scholar
  25. 25.
    Bieging KT, Mello SS, Attardi LD. Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer. 2014;14(5):359–70.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Santivasi WL, Xia F. Ionizing radiation-induced DNA damage, response, and repair. Antioxid Redox Signal. 2014;21(2):251–9.PubMedGoogle Scholar
  27. 27.
    Hein AL, Ouellette MM, Yan Y. Radiation-induced signaling pathways that promote cancer cell survival (review). Int J Oncol. 2014;45(5):1813–9.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Guerra Liberal FDC, Tavares AAS, Tavares J. Palliative treatment of metastatic bone pain with radiopharmaceuticals: a perspective beyond Strontium-89 and Samarium-153. Appl Radiat Isot. 2016;110:87–99.PubMedGoogle Scholar
  29. 29.
    Vogelzang NJ. Radium-223 dichloride for the treatment of castration-resistant prostate cancer with symptomatic bone metastases. Expert Rev Clin Pharmacol. 2017;10(8):809–19.PubMedGoogle Scholar
  30. 30.
    Memon K, Lewandowski RJ, Kulik L, Riaz A, Mulcahy MF, Salem R. Radioembolization for primary and metastatic liver cancer. Semin Radiat Oncol. 2011;21(4):294–302.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Favelier S, Germain T, Genson PY, Cercueil JP, Denys A, Krause D, et al. Anatomy of liver arteries for interventional radiology. Diagn Interv Imaging. 2015;96(6):537–46.PubMedGoogle Scholar
  32. 32.
    Chinn P, Braslawsky G, White C, Hanna N. Antibody therapy of non-Hodgkin’s B-cell lymphoma. Cancer Immunol Immunother. 2003;52(5):257–80.PubMedGoogle Scholar
  33. 33.
    Norenberg JP, Krenning BJ, Konings IR, Kusewitt DF, Nayak TK, Anderson TL, et al. 213Bi-[DOTA0, Tyr3]octreotide peptide receptor radionuclide therapy of pancreatic tumors in a preclinical animal model. Clin Cancer Res. 2006;12(3 Pt 1):897–903.Google Scholar
  34. 34.
    Brechbiel MW. Bifunctional chelates for metal nuclides. Q J Nucl Med Mol Imaging. 2008;52(2):166–73.PubMedGoogle Scholar
  35. 35.
    Sosabowski JK, Mather SJ. Conjugation of DOTA-like chelating agents to peptides and radiolabeling with trivalent metallic isotopes. Nat Protoc. 2006;1(2):972–6.PubMedGoogle Scholar
  36. 36.
    Dorsam RT, Gutkind JS. G-protein-coupled receptors and cancer. Nat Rev Cancer. 2007;7(2):79–94.PubMedGoogle Scholar
  37. 37.
    Lappano R, Maggiolini M. G protein-coupled receptors: novel targets for drug discovery in cancer. Nat Rev Drug Discov. 2011;10(1):47–60.PubMedGoogle Scholar
  38. 38.
    O’Hayre M, Degese MS, Gutkind JS. Novel insights into G protein and G protein-coupled receptor signaling in cancer. Curr Opin Cell Biol. 2014;27:126–35.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Wild D, Fani M, Behe M, Brink I, Rivier JE, Reubi JC, et al. First clinical evidence that imaging with somatostatin receptor antagonists is feasible. J Nucl Med. 2011;52(9):1412–7.PubMedGoogle Scholar
  40. 40.
    Reubi JC, Waser B, Schaer JC, Laissue JA. Somatostatin receptor sst1-sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands. Eur J Nucl Med. 2001;28(7):836–46.PubMedGoogle Scholar
  41. 41.
    Ambrosini V, Campana D, Tomassetti P, Fanti S. 68Ga-labelled peptides for diagnosis of gastroenteropancreatic NET. Eur J Nucl Med Mol Imaging. 2012;39(Suppl 1):S52–60.Google Scholar
  42. 42.
    Kwekkeboom DJ, Kam BL, van Essen M, Teunissen JJ, van Eijck CH, Valkema R, et al. Somatostatin-receptor-based imaging and therapy of gastroenteropancreatic neuroendocrine tumors. Endocr Relat Cancer. 2010;17(1):R53–73.PubMedGoogle Scholar
  43. 43.
    van Essen M, Krenning EP, Kam BL, de Jong M, Valkema R, Kwekkeboom DJ. Peptide-receptor radionuclide therapy for endocrine tumors. Nat Rev Endocrinol. 2009;5(7):382–93.PubMedGoogle Scholar
  44. 44.
    Kam BL, Teunissen JJ, Krenning EP, de Herder WW, Khan S, van Vliet EI, et al. Lutetium-labelled peptides for therapy of neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2012;39(Suppl 1):S103–12.PubMedGoogle Scholar
  45. 45.
    Mansi R, Wang X, Forrer F, Kneifel S, Tamma ML, Waser B, et al. Evaluation of a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-conjugated bombesin-based radioantagonist for the labeling with single-photon emission computed tomography, positron emission tomography, and therapeutic radionuclides. Clin Cancer Res. 2009;15(16):5240–9.PubMedGoogle Scholar
  46. 46.
    Behr TM, Behe MP. Cholecystokinin-B/Gastrin receptor-targeting peptides for staging and therapy of medullary thyroid cancer and other cholecystokinin-B receptor-expressing malignancies. Semin Nucl Med. 2002;32(2):97–109.PubMedGoogle Scholar
  47. 47.
    Fani M, Peitl PK, Velikyan I. Current status of radiopharmaceuticals for the theranostics of neuroendocrine neoplasms. Pharmaceuticals (Basel). 2017;10(1):pii: E30.Google Scholar
  48. 48.
    Kratochwil C, Giesel FL, Stefanova M, Benesova M, Bronzel M, Afshar-Oromieh A, et al. PSMA-targeted radionuclide therapy of metastatic castration-resistant prostate cancer with 177Lu-labeled PSMA-617. J Nucl Med. 2016;57(8):1170–6.Google Scholar
  49. 49.
    Kratochwil C, Bruchertseifer F, Giesel FL, Weis M, Verburg FA, Mottaghy F, et al. 225Ac-PSMA-617 for PSMA-targeted alpha-radiation therapy of metastatic castration-resistant prostate cancer. J Nucl Med.2016;57(12):1941–4.Google Scholar
  50. 50.
    Cheung A, Bax HJ, Josephs DH, Ilieva KM, Pellizzari G, Opzoomer J, et al. Targeting folate receptor alpha for cancer treatment. Oncotarget. 2016;7(32):52553–74.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Streby KA, Shah N, Ranalli MA, Kunkler A, Cripe TP. Nothing but NET: a review of norepinephrine transporter expression and efficacy of 131I-mIBG therapy. Pediatr Blood Cancer. 2015;62(1):5–11.Google Scholar
  52. 52.
    Sharp SE, Trout AT, Weiss BD, Gelfand MJ. MIBG in neuroblastoma diagnostic imaging and therapy. Radiographics. 2016;36(1):258–78.PubMedGoogle Scholar
  53. 53.
    Maloney DG. Anti-CD20 antibody therapy for B-cell lymphomas. N Engl J Med. 2012;366(21):2008–16.PubMedGoogle Scholar
  54. 54.
    Morschhauser F, Radford J, Van Hoof A, Botto B, Rohatiner AZ, Salles G, et al. 90Yttrium-ibritumomab tiuxetan consolidation of first remission in advanced-stage follicular non-Hodgkin lymphoma: updated results after a median follow-up of 7.3 years from the International, Randomized, Phase III First-Line Indolent trial. J Clin Oncol. 2013;31(16):1977–83.Google Scholar
  55. 55.
    Goldsmith SJ. Radioimmunotherapy of lymphoma: Bexxar and Zevalin. Semin Nucl Med. 2010;40(2):122–35.PubMedGoogle Scholar
  56. 56.
    Hdeib A, Sloan A. Targeted radioimmunotherapy: the role of 131I-chTNT-1/B mAb (Cotara) for treatment of high-grade gliomas. Future Oncol. 2012;8(6):659–69.Google Scholar
  57. 57.
    Chen ZN, Mi L, Xu J, Song F, Zhang Q, Zhang Z, et al. Targeting radioimmunotherapy of hepatocellular carcinoma with iodine (131I) metuximab injection: clinical phase I/II trials. Int J Radiat Oncol Biol Phys. 2006;65(2):435–44.Google Scholar
  58. 58.
    Xu J, Xu HY, Zhang Q, Song F, Jiang JL, Yang XM, et al. HAb18G/CD147 functions in invasion and metastasis of hepatocellular carcinoma. Mol Cancer Res. 2007;5(6):605–14.PubMedGoogle Scholar
  59. 59.
    Erba PA, Sollini M, Orciuolo E, Traino C, Petrini M, Paganelli G, et al. Radioimmunotherapy with radretumab in patients with relapsed hematologic malignancies. J Nucl Med. 2012;53(6):922–7.PubMedGoogle Scholar
  60. 60.
    Werle M, Bernkop-Schnurch A. Strategies to improve plasma half life time of peptide and protein drugs. Amino Acids. 2006;30(4):351–67.PubMedGoogle Scholar
  61. 61.
    Kaloudi A, Nock BA, Krenning EP, Maina T, De Jong M. Radiolabeled gastrin/CCK analogs in tumor diagnosis: towards higher stability and improved tumor targeting. Q J Nucl Med Mol Imaging. 2015;59(3):287–302.PubMedGoogle Scholar
  62. 62.
    Chae SY, Chun YG, Lee S, Jin CH, Lee ES, Lee KC, et al. Pharmacokinetic and pharmacodynamic evaluation of site-specific PEGylated glucagon-like peptide-1 analogs as flexible postprandial-glucose controllers. J Pharm Sci. 2009;98(4):1556–67.PubMedGoogle Scholar
  63. 63.
    Chen H, Wang G, Lang L, Jacobson O, Kiesewetter DO, Liu Y, et al. Chemical conjugation of Evans blue derivative: a strategy to develop long-acting therapeutics through albumin binding. Theranostics. 2016;6(2):243–53.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Vegt E, van Eerd JE, Eek A, Oyen WJ, Wetzels JF, de Jong M, et al. Reducing renal uptake of radiolabeled peptides using albumin fragments. J Nucl Med. 2008;49(9):1506–11.PubMedGoogle Scholar
  65. 65.
    Veronese FM, Pasut G. PEGylation, successful approach to drug delivery. Drug Discov Today. 2005;10(21):1451–8.PubMedGoogle Scholar
  66. 66.
    Haller S, Reber J, Brandt S, Bernhardt P, Groehn V, Schibli R, et al. Folate receptor-targeted radionuclide therapy: preclinical investigation of anti-tumor effects and potential radionephropathy. Nucl Med Biol. 2015;42(10):770–9.PubMedGoogle Scholar
  67. 67.
    Muller C, Struthers H, Winiger C, Zhernosekov K, Schibli R. DOTA conjugate with an albumin-binding entity enables the first folic acid-targeted 177Lu-radionuclide tumor therapy in mice. J Nucl Med. 2013;54(1):124–31.Google Scholar
  68. 68.
    Siwowska K, Haller S, Bortoli F, Benesova M, Groehn V, Bernhardt P, et al. Preclinical comparison of albumin-binding radiofolates: impact of linker entities on the in vitro and in vivo properties. Mol Pharm. 2017;14(2):523–32.PubMedGoogle Scholar
  69. 69.
    Gaberc-Porekar V, Zore I, Podobnik B, Menart V. Obstacles and pitfalls in the PEGylation of therapeutic proteins. Curr Opin Drug Discov Devel. 2008;11(2):242–50.PubMedGoogle Scholar
  70. 70.
    Kraeber-Bodere F, Rousseau C, Bodet-Milin C, Frampas E, Faivre-Chauvet A, Rauscher A, et al. A pretargeting system for tumor PET imaging and radioimmunotherapy. Front Pharmacol. 2015;6:54.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Hendrickson WA, Pahler A, Smith JL, Satow Y, Merritt EA, Phizackerley RP. Crystal structure of core streptavidin determined from multiwavelength anomalous diffraction of synchrotron radiation. Proc Natl Acad Sci U S A. 1989;86(7):2190–4.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Weber PC, Ohlendorf DH, Wendoloski JJ, Salemme FR. Structural origins of high-affinity biotin binding to streptavidin. Science. 1989;243(4887):85–8.PubMedGoogle Scholar
  73. 73.
    Paganelli G, Bartolomei M, Ferrari M, Cremonesi M, Broggi G, Maira G, et al. Pre-targeted locoregional radioimmunotherapy with Y-biotin in glioma patients: phase I study and preliminary therapeutic results. Cancer Biother Radiopharm. 2001;16(3):227–35.Google Scholar
  74. 74.
    Forero A, Weiden PL, Vose JM, Knox SJ, LoBuglio AF, Hankins J, et al. Phase 1 trial of a novel anti-CD20 fusion protein in pretargeted radioimmunotherapy for B-cell non-Hodgkin lymphoma. Blood. 2004;104(1):227–36.PubMedGoogle Scholar
  75. 75.
    Bos ES, Kuijpers WH, Meesters-Winters M, Pham DT, de Haan AS, van Doornmalen AM, et al. In vitro evaluation of DNA-DNA hybridization as a two-step approach in radioimmunotherapy of cancer. Cancer Res. 1994;54(13):3479–86.Google Scholar
  76. 76.
    Rossin R, Lappchen T, van den Bosch SM, Laforest R, Robillard MS. Diels-Alder reaction for tumor pretargeting: in vivo chemistry can boost tumor radiation dose compared with directly labeled antibody. J Nucl Med. 2013;54(11):1989–95.PubMedGoogle Scholar
  77. 77.
    Rossin R, Verkerk PR, van den Bosch SM, Vulders RC, Verel I, Lub J, et al. In vivo chemistry for pretargeted tumor imaging in live mice. Angew Chem Int Ed Engl. 2010;49(19):3375–8.PubMedGoogle Scholar
  78. 78.
    Boerman OC, Kranenborg MH, Oosterwijk E, Griffiths GL, McBride WJ, Oyen WJ, et al. Pretargeting of renal cell carcinoma: improved tumor targeting with a bivalent chelate. Cancer Res. 1999;59(17):4400–5.PubMedGoogle Scholar
  79. 79.
    Goodwin DA, Meares CF, McTigue M, Chaovapong W, Diamanti CI, Ransone CH, et al. Pretargeted immunoscintigraphy: effect of hapten valency on murine tumor uptake. J Nucl Med. 1992;33(11):2006–13.PubMedGoogle Scholar
  80. 80.
    Le Doussal JM, Gruaz-Guyon A, Martin M, Gautherot E, Delaage M, Barbet J. Targeting of indium-111 labeled bivalent hapten to human melanoma mediated by bispecific monoclonal antibody conjugates: imaging of tumors hosted in nude mice. Cancer Res. 1990;50(11):3445–52.Google Scholar
  81. 81.
    Kraeber-Bodere F, Rousseau C, Bodet-Milin C, Ferrer L, Faivre-Chauvet A, Campion L, et al. Targeting, toxicity, and efficacy of 2-step, pretargeted radioimmunotherapy using a chimeric bispecific antibody and 131Ilabeled bivalent hapten in a phase I optimization clinical trial. J Nucl Med. 2006;47(2):247–55.Google Scholar
  82. 82.
    Chatal JF, Campion L, Kraeber-Bodere F, Bardet S, Vuillez JP, Charbonnel B, et al. Survival improvement in patients with medullary thyroid carcinoma who undergo pretargeted anti-carcinoembryonic-antigen radioimmunotherapy: a collaborative study with the French Endocrine Tumor Group. J Clin Oncol. 2006;24(11):1705–11.PubMedGoogle Scholar
  83. 83.
    Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14:749.PubMedGoogle Scholar
  84. 84.
    Morschhauser F, Radford J, Hoof AV, Vitolo U, Soubeyran P, Tilly H, et al. Phase III trial of consolidation therapy with yttrium-90–ibritumomab tiuxetan compared with no additional therapy after first remission in advanced follicular lymphoma. J Clin Oncol. 2008;26(32):5156–64.PubMedGoogle Scholar
  85. 85.
    Parker C, Nilsson S, Heinrich D, Helle SI, O’Sullivan JM, Fosså SD, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med. 2013;369(3):213–23.PubMedGoogle Scholar
  86. 86.
    Oudard S, Courbon F. Controversies and consensus in the innovation access for cancer therapy in the European countries: on the subject of metastatic prostate cancer. Ann Oncol. 2017;28(2):421–6.PubMedGoogle Scholar
  87. 87.
    Sartor O, Coleman R, Nilsson S, Heinrich D, Helle SI, O’Sullivan JM, et al. Effect of radium-223 dichloride on symptomatic skeletal events in patients with castration-resistant prostate cancer and bone metastases: results from a phase 3, double-blind, randomised trial. Lancet Oncol. 2014;15(7):738–46.PubMedGoogle Scholar
  88. 88.
    Hazel GA, Heinemann V, Sharma NK, Findlay MPN, Ricke J, Peeters M, et al. SIRFLOX: randomized phase III trial comparing first-line mFOLFOX6 (plus or minus bevacizumab) versus mFOLFOX6 (plus or minus bevacizumab) plus selective internal radiation therapy in patients with metastatic colorectal cancer. J Clin Oncol. 2016;34(15):1723–31.PubMedGoogle Scholar
  89. 89.
    Wasan HS et al. First-line selective internal radiotherapy plus chemotherapy versus chemotherapy alone in patients with liver metastases from colorectal cancer (FOXFIRE, SIRFLOX, and FOXFIRE-Global): a combined analysis of three multicentre, randomised, phase 3 trials. Lancet Oncol. 2017; 1159–71.  https://doi.org/10.1016/S1470-2045(17)30457-6.
  90. 90.
    Wang EA, Broadwell SR, Bellavia RJ, Stein JP. Selective internal radiation therapy with SIR-Spheres in hepatocellular carcinoma and cholangiocarcinoma. J Gastrointest Oncol. 2016;8(2):266–78.Google Scholar
  91. 91.
    Wang EA, Stein JP, Bellavia RJ, Broadwell SR. Treatment options for unresectable HCC with a focus on SIRT with yttrium-90 resin microspheres. Int J Clin Pract. 2017;71(11):e12972–n/a.Google Scholar
  92. 92.
    Bouattour M, Assenat E, Guiu B, Ilonca Alina D, Pageaux G-P, Sibert A, et al. LBA-001Efficacy, tolerability and impact on quality of life of selective internal radiation therapy (with yttrium-90 resin microspheres) or sorafenib in patients with locally advanced hepatocellular carcinoma: The SARAH trial. Ann Oncol. 2017;28(Suppl_3):mdx302-mdx.Google Scholar
  93. 93.
    Strosberg J, El-Haddad G, Wolin E, Hendifar A, Yao J, Chasen B, et al. Phase 3 trial of 177Lu-dotatate for midgut neuroendocrine tumors. N Engl J Med. 2017;376(2):125–35.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Smit Duijzentkunst DA, Kwekkeboom DJ, Bodei L. Somatostatin receptor 2–targeting compounds. J Nucl Med. 2017;58(Suppl 2):54S–60S.PubMedGoogle Scholar
  95. 95.
    Sartor O, Hoskin P, Coleman RE, Nilsson S, Vogelzang NJ, Petrenciuc O, et al. Chemotherapy following radium-223 dichloride treatment in ALSYMPCA. Prostate. 2016;76(10):905–16.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Hoskin P, et al. Efficacy and safety of radium-223 dichloride in patients with castration-resistant prostate cancer and symptomatic bone metastases, with or without previous docetaxel use: a prespecified subgroup analysis from the randomised, double-blind, phase 3 ALSYMPC. Lancet Oncol. 2014;15:1397–406.PubMedGoogle Scholar
  97. 97.
    Saad F, et al. Radium-223 and concomitant therapies in patients with metastatic castration-resistant prostate cancer: an international, early access, open-label, singlearm phase 3b trial. Lancet Oncol. 2016;17:1306–16.PubMedGoogle Scholar
  98. 98.
    Sartor O, Heinrich D, Mariados N, Méndez Vidal MJ, Keizman D, Thellenberg Karlsson C, et al. Re-treatment with radium-223: first experience from an international, open-label, phase I/II study in patients with castration-resistant prostate cancer and bone metastases. Ann Oncol. 2017;28(10):2464–71.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Barbier CE, Garske-Román U, Sandström M, Nyman R, Granberg D. Selective internal radiation therapy in patients with progressive neuroendocrine liver metastases. Eur J Nucl Med Mol Imaging. 2016;43(8):1425–31.PubMedGoogle Scholar
  100. 100.
    Nelson K, Vause PEJ, Koropova P. Post-mortem considerations of yttrium-90 (90Y) microsphere therapy procedures. Health Phys. 2008;95(5):S156–61.Google Scholar
  101. 101.
    Marcus R, Davies A, Ando K, Klapper W, Opat S, Owen C, et al. Obinutuzumab for the first-line treatment of follicular lymphoma. N Engl J Med. 2017;377(14):1331–44.PubMedGoogle Scholar
  102. 102.
    Cheal SM, Fung EK, Patel M, Xu H, Guo H-F, Zanzonico PB, et al. Curative multicycle radioimmunotherapy monitored by quantitative SPECT/CT-based theranostics, using bispecific antibody pretargeting strategy in colorectal cancer. J Nucl Med. 2017;58(11):1735–42.Google Scholar
  103. 103.
    Grzmil M, Seebacher J, Hess D, Behe M, Schibli R, Moncayo G, et al. Inhibition of MNK pathways enhances cancer cell response to chemotherapy with temozolomide and targeted radionuclide therapy. Cell Signal. 2016;28(9):1412-21.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Michal Grzmil
    • 1
  • Alexander Meisel
    • 2
    • 3
    • 4
  • Martin Behé
    • 1
  • Roger Schibli
    • 1
    Email author
  1. 1.Center for Radiopharmaceutical Sciences ETH-PSI-USZPaul Scherrer InstituteVilligen-PSISwitzerland
  2. 2.Department of Nuclear MedicineUniversity Hospital of ZurichZurichSwitzerland
  3. 3.Department of Internal Medicine—Oncology & HematologyStadtspital WaidZurichSwitzerland
  4. 4.Institute of Pharmaceutical SciencesDepartment of Chemistry and Applied Biosciences ETH ZurichZurichSwitzerland

Personalised recommendations