Preclinical Experimentation in Neurology

  • Kristina HerfertEmail author
  • Sabina Marciano
  • Laura Kuebler
  • Sabrina Buss
  • Natalie Landeck
  • Julia G. Mannheim
  • Hanna Napieczynska


The development of radiopharmaceuticals for positron emission tomography (PET) is an emerging area of research in neuroscience that allows for the early and differential diagnosis of neurological disorders and enables the assessment of the effects of drugs on the central nervous system (CNS). A radiopharmaceutical must fulfill several requirements to be a successful PET tracer in the CNS. These criteria include high specificity and selectivity for the intended target, the efficient penetration of the blood-brain barrier (BBB), high target-to-background contrast ratios, fast clearance from the brain, and a lack of radiolabeled metabolites with the ability to enter the brain. Furthermore, several preclinical in vitro and in vivo experiments must be performed to check if these requirements are met before a tracer can be translated to the clinic. These procedures include binding assays using recombinant proteins and tissue homogenates, in vitro autoradiography experiments using human and animal brain slices, plasma protein binding assays, and in vivo PET studies in rats and mice. Since each of these experiments requires careful consideration, this chapter will give a detailed description of each method and provide practical protocols to ensure that the data can be collected, analyzed, and interpreted in an unbiased manner.


Central nervous system (CNS) radiotracers Binding assays Autoradiography Biodistribution Positron emission tomography (PET) imaging Blood sampling 


  1. 1.
    Zhang L, Villalobos A, Beck EM, Bocan T, Chappie TA, Chen L, et al. Design and selection parameters to accelerate the discovery of novel central nervous system positron emission tomography (PET) ligands and their application in the development of a novel phosphodiesterase 2A PET ligand. J Med Chem. 2013;56(11):4568–79.PubMedCrossRefGoogle Scholar
  2. 2.
    Cheng Y, Prusoff WH. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973;22(23):3099–108.PubMedCrossRefGoogle Scholar
  3. 3.
    Auld DS, Farmer MW, Kahl SD, Kriauciunas A, McKnight KL, Montrose C, et al. Receptor binding assays for HTS and drug discovery. In: Sittampalam GS, Coussens NP, Brimacombe K, editors. Assay guidance manual. Bethesda: Eli Lilly & Company and the National Center for Advancing Translational Sciences; 2012. p. 1–49.Google Scholar
  4. 4.
    Hulme EC, Trevethick MA. Ligand binding assays at equilibrium: validation and interpretation. Br J Pharmacol. 2010;161:1219–37.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Strome EM, Jivan S, Doudet DJ. Quantitative in vitro phosphor imaging using [3H] and [18F] radioligands: the effects of chronic desipramine treatment on serotonin 5-HT2 receptors. J Neurosci Methods. 2005;141(1):143–54.PubMedCrossRefGoogle Scholar
  6. 6.
    Sihver W, Sihver S, Bergstrom M, Murata T, Matsumura K, Onoe H, et al. Methodological aspects for in vitro characterization of receptor binding using 11C-labeled receptor ligands: a detailed study with the benzodiazepine receptor antagonist [11C]Ro 15-1788. Nucl Med Biol. 1997;24(8):723–31.PubMedCrossRefGoogle Scholar
  7. 7.
    Marsteller DA, Barbarich-Marsteller NC, Fowler JS, Schiffer WK, Alexoff DL, Rubins DJ, et al. Reproducibility of intraperitoneal 2-deoxy-2-[18F]-fluoro-D-glucose cerebral uptake in rodents through time. Nucl Med Biol. 2006;33(1):71–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Wong KP, Sha W, Zhang X, Huang SC. Effects of administration route, dietary condition, and blood glucose level on kinetics and uptake of 18F-FDG in mice. J Nucl Med. 2011;52(5):800–7.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Mizuma H, Shukuri M, Hayashi T, Watanabe Y, Onoe H. Establishment of in vivo brain imaging method in conscious mice. J Nucl Med. 2010;51(7):1068–75.PubMedCrossRefGoogle Scholar
  10. 10.
    Hosoi R, Matsumura A, Mizokawa S, Tanaka M, Nakamura F, Kobayashi K, et al. MicroPET detection of enhanced 18F-FDG utilization by PKA inhibitor in awake rat brain. Brain Res. 2005;1039(1–2):199–202.PubMedCrossRefGoogle Scholar
  11. 11.
    Momosaki S, Hatano K, Kawasumi Y, Kato T, Hosoi R, Kobayashi K, et al. Rat-PET study without anesthesia: anesthetics modify the dopamine D1 receptor binding in rat brain. Synapse. 2004;54(4):207–13.PubMedCrossRefGoogle Scholar
  12. 12.
    Matsumura A, Mizokawa S, Tanaka M, Wada Y, Nozaki S, Nakamura F, et al. Assessment of microPET performance in analyzing the rat brain under different types of anesthesia: comparison between quantitative data obtained with microPET and ex vivo autoradiography. NeuroImage. 2003;20(4):2040–50.PubMedCrossRefGoogle Scholar
  13. 13.
    Chatziioannou A, Qi J, Moore A, Annala A, Nguyen K, Leahy R, et al. Comparison of 3-D maximum a posteriori and filtered backprojection algorithms for high-resolution animal imaging with microPET. IEEE Trans Med Imaging. 2000;19(5):507–12.PubMedCrossRefGoogle Scholar
  14. 14.
    Cheng JC, Shoghi K, Laforest R. Quantitative accuracy of MAP reconstruction for dynamic PET imaging in small animals. Med Phys. 2012;39(2):1029–41.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Torrent E, Farre M, Abasolo I, Millan O, Llop J, Gispert JD, et al. Optimization of [(11)C]raclopride positron emission tomographic rat studies: comparison of methods for image quantification. Mol Imaging. 2013;12(4):257–62.PubMedCrossRefGoogle Scholar
  16. 16.
    Wallsten E, Axelsson J, Karlsson M, Riklund K, Larsson A. A study of dynamic PET frame-binning on the reference Logan binding potential. IEEE Trans Radiat Plasma Med Sci. 2017;1(2):128–35.CrossRefGoogle Scholar
  17. 17.
    Tahari AK, Chien D, Azadi JR, Wahl RL. Optimum lean body formulation for correction of standardized uptake value in PET imaging. J Nucl Med. 2014;55(9):1481–4.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Hinderling PH, Hartmann D. The pH dependency of the binding of drugs to plasma proteins in man. Ther Drug Monit. 2005;27(1):71–85.PubMedCrossRefGoogle Scholar
  19. 19.
    Patt M, Becker GA, Grossmann U, Habermann B, Schildan A, Wilke S, et al. Evaluation of metabolism, plasma protein binding and other biological parameters after administration of (-)-[18F]Flubatine in humans. Nucl Med Biol. 2014;41:489–94.PubMedCrossRefGoogle Scholar
  20. 20.
    Sorger D, Becker GA, Hauber K, Schildan A, Patt M, Birkenmeier G, et al. Binding properties of the cerebral α4β2 nicotinic acetylcholine receptor ligand 2-[18F]fluoro-A-85380 to plasma proteins. Nucl Med Biol. 2006;33:899–906.PubMedCrossRefGoogle Scholar
  21. 21.
    Tonietto M, Rizzo G, Veronese M, Fujita M, Zoghbi SS, Zanotti-Fregonara P, et al. Plasma radiometabolite correction in dynamic PET studies: insights on the available modeling approaches. J Cereb Blood Flow Metab. 2016;36(2):326–39.PubMedCrossRefGoogle Scholar
  22. 22.
    Napieczynska H, Kolb A, Katiyar P, Tonietto M, Ud-Dean M, Stumm R, et al. Impact of the Arterial Input Function Recording Method on Kinetic Parameters in Small-Animal PET. J Nucl Med. 2018;59(7):1159–64.Google Scholar
  23. 23.
    Convert L, Morin-Brassard G, Cadorette J, Archambault M, Bentourkia M, Lecomte R. A new tool for molecular imaging: the microvolumetric beta blood counter. J Nucl Med. 2007;48(7):1197–206.PubMedCrossRefGoogle Scholar
  24. 24.
    Pain F, Laniece P, Mastrippolito R, Gervais P, Hantraye P, Besret L. Arterial input function measurement without blood sampling using a beta-microprobe in rats. J Nucl Med. 2004;45(9):1577–82.PubMedGoogle Scholar
  25. 25.
    Fang YH, Muzic RF Jr. Spillover and partial-volume correction for image-derived input functions for small-animal 18F-FDG PET studies. J Nucl Med. 2008;49(4):606–14.PubMedCrossRefGoogle Scholar
  26. 26.
    Kimura Y, Seki C, Hashizume N, Yamada T, Wakizaka H, Nishimoto T, et al. Novel system using microliter order sample volume for measuring arterial radioactivity concentrations in whole blood and plasma for mouse PET dynamic study. Phys Med Biol. 2013;58(22):7889–903.PubMedCrossRefGoogle Scholar
  27. 27.
    Kellner E, Gall P, Gunther M, Reisert M, Mader I, Fleysher R, et al. Blood tracer kinetics in the arterial tree. PLoS One. 2014;9(10):e109230.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Iida H, Kanno I, Miura S, Murakami M, Takahashi K, Uemura K. Error analysis of a quantitative cerebral blood flow measurement using H2(15)O autoradiography and positron emission tomography, with respect to the dispersion of the input function. J Cereb Blood Flow Metab. 1986;6(5):536–45.PubMedCrossRefGoogle Scholar
  29. 29.
    Fischer K, Sossi V, Schmid A, Thunemann M, Maier FC, Judenhofer MS, et al. Noninvasive nuclear imaging enables the in vivo quantification of striatal dopamine receptor expression and raclopride affinity in mice. J Nucl Med. 2011;52(7):1133–41.PubMedCrossRefGoogle Scholar
  30. 30.
    McGonigle P. Animal models of CNS disorders. Biochem Pharmacol. 2014;87(1):140–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Vingill S, Connor-Robson N, Wade-Martins R. Are rodent models of Parkinson’s disease behaving as they should? Behav Brain Res. 2017;352:133–41.Google Scholar
  32. 32.
    Blesa J, Phani S, Jackson-Lewis V, Przedborski S. Classic and new animal models of Parkinson’s disease. J Biomed Biotechnol. 2012;2012:845618.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Duty S, Jenner P. Animal models of Parkinson’s disease: a source of novel treatments and clues to the cause of the disease. Br J Pharmacol. 2011;164(4):1357–91.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Francardo V. Modeling Parkinson’s disease and treatment complications in rodents: potentials and pitfalls of the current options. Behav Brain Res. 2017;352:142–50.Google Scholar
  35. 35.
    Tronci E, Francardo V. Animal models of L-DOPA-induced dyskinesia: the 6-OHDA-lesioned rat and mouse. J Neural Transm (Vienna). 2017;125(8):1137–44.Google Scholar
  36. 36.
    Chesselet MF. In vivo alpha-synuclein overexpression in rodents: a useful model of Parkinson’s disease? Exp Neurol. 2008;209(1):22–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Bury A, Pienaar IS. Behavioral testing regimens in genetic-based animal models of Parkinson’s disease: cogencies and caveats. Neurosci Biobehav Rev. 2013;37(5):846–59.PubMedCrossRefGoogle Scholar
  38. 38.
    Kirik D, Rosenblad C, Burger C, Lundberg C, Johansen TE, Muzyczka N, et al. Parkinson-like neurodegeneration induced by targeted overexpression of alpha-synuclein in the nigrostriatal system. J Neurosci. 2002;22(7):2780–91.PubMedCrossRefGoogle Scholar
  39. 39.
    Lo Bianco C, Ridet JL, Schneider BL, Deglon N, Aebischer P. Alpha -Synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson’s disease. Proc Natl Acad Sci U S A. 2002;99(16):10813–8.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Klein RL, King MA, Hamby ME, Meyer EM. Dopaminergic cell loss induced by human A30P alpha-synuclein gene transfer to the rat substantia nigra. Hum Gene Ther. 2002;13(5):605–12.PubMedCrossRefGoogle Scholar
  41. 41.
    Volpicelli-Daley LA, Kirik D, Stoyka LE, Standaert DG, Harms AS. How can rAAV-alpha-synuclein and the fibril alpha-synuclein models advance our understanding of Parkinson’s disease? J Neurochem. 2016;139(Suppl 1):131–55.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24(2):197–211.PubMedCrossRefGoogle Scholar
  43. 43.
    Chu Y, Kordower JH. The prion hypothesis of Parkinson’s disease. Curr Neurol Neurosci Rep. 2015;15(5):28.PubMedCrossRefGoogle Scholar
  44. 44.
    Luk KC, Kehm V, Carroll J, Zhang B, O’Brien P, Trojanowski JQ, et al. Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science. 2012;338(6109):949–53.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Volpicelli-Daley LA, Kirik D, Stoyka LE, Standaert DG, Harms AS. How can rAAV-alpha-synuclein and the fibril alpha-synuclein models advance our understanding of Parkinson disease? J Neurochem. 2016;139(Suppl 1):131–55.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Guo JL, Covell DJ, Daniels JP, Iba M, Stieber A, Zhang B, et al. Distinct alpha-synuclein strains differentially promote tau inclusions in neurons. Cell. 2013;154(1):103–17.PubMedCrossRefGoogle Scholar
  47. 47.
    Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, et al. Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. Ann Neurol. 2004;55(3):306–19.PubMedCrossRefGoogle Scholar
  48. 48.
    Mathis CA, Mason NS, Lopresti BJ, Klunk WE. Development of positron emission tomography beta-amyloid plaque imaging agents. Semin Nucl Med. 2012;42(6):423–32.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Klunk WE, Wang Y, Huang GF, Debnath ML, Holt DP, Shao L, et al. The binding of 2-(4′-methylaminophenyl)benzothiazole to postmortem brain homogenates is dominated by the amyloid component. J Neurosci. 2003;23(6):2086–92.PubMedCrossRefGoogle Scholar
  50. 50.
    Mathis CA, Wang Y, Holt DP, Huang GF, Debnath ML, Klunk WE. Synthesis and evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as amyloid imaging agents. J Med Chem. 2003;46(13):2740–54.PubMedCrossRefGoogle Scholar
  51. 51.
    Vandenberghe R, Van Laere K, Ivanoiu A, Salmon E, Bastin C, Triau E, et al. 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial. Ann Neurol. 2010;68(3):319–29.PubMedCrossRefGoogle Scholar
  52. 52.
    Rowe CC, Ackerman U, Browne W, Mulligan R, Pike KL, O'Keefe G, et al. Imaging of amyloid beta in Alzheimer’s disease with 18F-BAY94-9172, a novel PET tracer: proof of mechanism. Lancet Neurol. 2008;7(2):129–35.PubMedCrossRefGoogle Scholar
  53. 53.
    Wong DF, Rosenberg PB, Zhou Y, Kumar A, Raymont V, Ravert HT, et al. In vivo imaging of amyloid deposition in Alzheimer disease using the radioligand 18F-AV-45 (florbetapir [corrected] F 18). J Nucl Med. 2010;51(6):913–20.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Okamura N, Suemoto T, Furumoto S, Suzuki M, Shimadzu H, Akatsu H, et al. Quinoline and benzimidazole derivatives: candidate probes for in vivo imaging of tau pathology in Alzheimer's disease. J Neurosci. 2005;25(47):10857–62.PubMedCrossRefGoogle Scholar
  55. 55.
    Fodero-Tavoletti MT, Okamura N, Furumoto S, Mulligan RS, Connor AR, McLean CA, et al. 18F-THK523: a novel in vivo tau imaging ligand for Alzheimer’s disease. Brain. 2011;134(Pt 4):1089–100.PubMedCrossRefGoogle Scholar
  56. 56.
    Lockhart SN, Baker SL, Okamura N, Furukawa K, Ishiki A, Furumoto S, et al. Dynamic PET measures of tau accumulation in cognitively normal older adults and Alzheimer’s disease patients measured using [18F] THK-5351. PLoS One. 2016;11(6):e0158460.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Holt DP, Ravert HT, Dannals RF. Synthesis and quality control of [(18) F]T807 for tau PET imaging. J Labelled Comp Radiopharm. 2016;59(10):411–5.PubMedCrossRefGoogle Scholar
  58. 58.
    Xia CF, Arteaga J, Chen G, Gangadharmath U, Gomez LF, Kasi D, et al. [(18)F]T807, a novel tau positron emission tomography imaging agent for Alzheimer's disease. Alzheimers Dement. 2013;9(6):666–76.PubMedCrossRefGoogle Scholar
  59. 59.
    Wang M, Gao M, Xu Z, Zheng QH. Synthesis of a PET tau tracer [(11)C]PBB3 for imaging of Alzheimer's disease. Bioorg Med Chem Lett. 2015;25(20):4587–92.PubMedCrossRefGoogle Scholar
  60. 60.
    Hashimoto H, Kawamura K, Igarashi N, Takei M, Fujishiro T, Aihara Y, et al. Radiosynthesis, photoisomerization, biodistribution, and metabolite analysis of 11C-PBB3 as a clinically useful PET probe for imaging of tau pathology. J Nucl Med. 2014;55(9):1532–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Kikuchi A, Takeda A, Okamura N, Tashiro M, Hasegawa T, Furumoto S, et al. In vivo visualization of alpha-synuclein deposition by carbon-11-labelled 2-[2-(2-dimethylaminothiazol-5-yl)ethenyl]-6-[2-(fluoro)ethoxy]benzoxazole positron emission tomography in multiple system atrophy. Brain. 2010;133(Pt 6):1772–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Bagchi DP, Yu L, Perlmutter JS, Xu J, Mach RH, Tu Z, et al. Binding of the radioligand SIL23 to alpha-synuclein fibrils in Parkinson disease brain tissue establishes feasibility and screening approaches for developing a Parkinson disease imaging agent. PLoS One. 2013;8(2):e55031.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Zhang X, Jin H, Padakanti PK, Li J, Yang H, Fan J, et al. Radiosynthesis and in Vivo evaluation of two PET Radioligands for imaging alpha-Synuclein. Appl Sci (Basel). 2014;4(1):66–78.CrossRefGoogle Scholar
  64. 64.
    Chu W, Zhou D, Gaba V, Liu J, Li S, Peng X, et al. Design, synthesis, and characterization of 3-(benzylidene)indolin-2-one derivatives as ligands for alpha-synuclein fibrils. J Med Chem. 2015;58(15):6002–17.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Guo Q, Brady M, Gunn RN. A biomathematical modeling approach to central nervous system radioligand discovery and development. J Nucl Med. 2009;50(10):1715–23.PubMedCrossRefGoogle Scholar
  66. 66.
    Guo Q, Owen DR, Rabiner EA, Turkheimer FE, Gunn RN. Identifying improved TSPO PET imaging probes through biomathematics: the impact of multiple TSPO binding sites in vivo. NeuroImage. 2012;60(2):902–10.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Jiang Z, Reilly J, Everatt B, Briard E. A rapid vesicle electrokinetic chromatography method for the in vitro prediction of non-specific binding for potential PET ligands. J Pharm Biomed Anal. 2011;54(4):722–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Friden M, Wennerberg M, Antonsson M, Sandberg-Stall M, Farde L, Schou M. Identification of positron emission tomography (PET) tracer candidates by prediction of the target-bound fraction in the brain. EJNMMI Res. 2014;4(1):50.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kristina Herfert
    • 1
    Email author
  • Sabina Marciano
    • 1
  • Laura Kuebler
    • 1
  • Sabrina Buss
    • 1
  • Natalie Landeck
    • 2
  • Julia G. Mannheim
    • 1
  • Hanna Napieczynska
    • 3
  1. 1.Department of Preclinical Imaging and RadiopharmacyUniversity of TübingenTübingenGermany
  2. 2.Department of Experimental Medical ScienceLund UniversityLundSweden
  3. 3.Department of Animal PhenotypingMax Delbrück Center for Molecular MedicineBerlinGermany

Personalised recommendations