Advertisement

Target Identification, Lead Discovery, and Optimization

  • Julien Dimastromatteo
  • Kimberly A. KellyEmail author
Chapter

Abstract

The selection of an appropriate target can make or break a radiopharmaceutical development program. Understanding the characteristics of a good target and creating ligands with high affinity, specificity, and ideal pharmacokinetics will lead to the creation of radiopharmaceuticals that will be invaluable to patient outcomes. In this chapter, we will introduce the notion of targeting, define the characteristics of the ideal target, and describe the most common ways used to identify and develop ligands specific to the target.

Keywords

Precision medicine Target identification ligand identification Peptides Phage display 

References

  1. 1.
    Brand FX, Ravanel N, Gauchez AS, Pasquier D, Payan R, Fagret D, et al. Prospect for anti-HER2 receptor therapy in breast cancer. Anticancer Res. 2006;26(1B):463–70.PubMedGoogle Scholar
  2. 2.
    Fueger BJ, Hamilton G, Raderer M, Pangerl T, Traub T, Angelberger P, et al. Effects of chemotherapeutic agents on expression of somatostatin receptors in pancreatic tumor cells. J Nucl Med. 2001;42(12):1856–62.PubMedGoogle Scholar
  3. 3.
    Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature. 2003;422(6928):198–207.CrossRefGoogle Scholar
  4. 4.
    Aebersold R, Goodlett DR. Mass spectrometry in proteomics. Chem Rev. 2001;101(2):269–96.CrossRefGoogle Scholar
  5. 5.
    McDonald WH, Yates JR. Shotgun proteomics: integrating technologies to answer biological questions. Curr Opin Mol Ther. 2003;5(3):302–9.PubMedGoogle Scholar
  6. 6.
    Eng JK, McCormack AL, Yates JR. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom. 1994;5(11):976–89.CrossRefGoogle Scholar
  7. 7.
    Perkins DN, Pappin DJ, Creasy DM, Cottrell JS. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis. 1999;20(18):3551–67.CrossRefGoogle Scholar
  8. 8.
    Craig R, Beavis RC. TANDEM: matching proteins with tandem mass spectra. Bioinformatics. 2004;20(9):1466–7.CrossRefGoogle Scholar
  9. 9.
    Mueller LN, Brusniak M-Y, Mani DR, Aebersold R. An assessment of software solutions for the analysis of mass spectrometry based quantitative proteomics data. J Proteome Res. 2008;7(1):51–61.CrossRefGoogle Scholar
  10. 10.
    Parmley SF, Smith GP. Filamentous fusion phage cloning vectors for the study of epitopes and design of vaccines. Adv Exp Med Biol. 1989;251:215–8.PubMedGoogle Scholar
  11. 11.
    Willats WGT. Phage display: practicalities and prospects. Plant Mol Biol. 2002;50(6):837–54.CrossRefGoogle Scholar
  12. 12.
    Smith GP, Petrenko VA. Phage display. Chem Rev. 1997;97(2):391–410.CrossRefGoogle Scholar
  13. 13.
    Brinton LT, Bauknight DK, Dasa SSK, Kelly KA. PHASTpep: analysis software for discovery of cell-selective peptides via phage display and next-generation sequencing. PLoS One. 2016;11(5):e0155244.CrossRefGoogle Scholar
  14. 14.
    Kelly KA, Bardeesy N, Anbazhagan R, Gurumurthy S, Berger J, Alencar H, et al. Targeted nanoparticles for imaging incipient pancreatic ductal adenocarcinoma. Gambhir S, editor. PLoS Med. 2008;5(4):e85.CrossRefGoogle Scholar
  15. 15.
    Gutknecht MF, Seaman ME, Ning B, Cornejo DA, Mugler E, Antkowiak PF, et al. Identification of the S100 fused-type protein hornerin as a regulator of tumor vascularity. Nat Commun. 2017;8(1):552.CrossRefGoogle Scholar
  16. 16.
    Kraeber-Bodéré F, Rousseau C, Bodet-Milin C, Frampas E, Faivre-Chauvet A, Rauscher A, et al. A pretargeting system for tumor PET imaging and radioimmunotherapy. Front Pharmacol. 2015;6:54.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Broisat A, Hernot S, Toczek J, De Vos J, Riou LM, Martin S, et al. Nanobodies targeting mouse/human vcam1 for the nuclear imaging of atherosclerotic lesions. Circ Res. 2012;110(7):927–37.CrossRefGoogle Scholar
  18. 18.
    Fridy PC, Li Y, Keegan S, Thompson MK, Nudelman I, Scheid JF, et al. A robust pipeline for rapid production of versatile nanobody repertoires. Nat Methods. 2014;11(12):1253–60.CrossRefGoogle Scholar
  19. 19.
    Nikolovska-Coleska Z, Wang R, Fang X, Pan H, Tomita Y, Li P, et al. Development and optimization of a binding assay for the XIAP BIR3 domain using fluorescence polarization. Anal Biochem. 2004;332(2):261–73.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Biomedical Engineering, School of MedicineUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations