Choosing a Target for Nuclear Imaging or Targeted Radiotherapy

  • Andrew M. ScottEmail author
  • Yit Wooi Goh
  • Sze Ting Lee
  • Salvatore U. Berlangieri


Single-photon emission computerized tomography (SPECT) and positron-emission tomography (PET) imaging are highly sensitive techniques that allow for the non-invasive detection, quantitation, and response monitoring of a broad array of diseases through target visualization and kinetic modeling. The selection of a target for nuclear imaging requires a deep understanding of the disease process and physiological changes that are to be evaluated. The target itself may be protein expressed on cells of a particular organ, a receptor on circulating blood cells, or a biochemical or metabolic pathway in cells throughout the body. Targeted radiotherapy has emerged as a highly promising modality across a range of diseases, and the selection of targets for therapy is dependent on the radionuclide utilized, the biology of target expression, and the sensitivity of cells to radiation treatment. This chapter reviews the basis of target selection for radiopharmaceuticals and provides examples of the successful clinical use of targeted imaging and therapy.


Target Receptor Metabolism Signaling pathway Physiology Kinetics 



The authors acknowledge support from NHMRC (grants 1092788, 1143710, 1084178), Cancer Council Victoria, and Operational Infrastructure from the Victorian Government.


  1. 1.
    Edwards CI. Tumor localizing radionuclides in retrospect and prospect. Semin Nucl Med. 1979;3:186–9.Google Scholar
  2. 2.
    Ice RD. History of medical radionuclide production. Health Phys. 1995;69(5):721–7.PubMedGoogle Scholar
  3. 3.
    Ell P, Gambhir S, editors. Nuclear medicine in clinical diagnosis and treatment. 3rd ed. London: Churchill Livingstone; 2004.Google Scholar
  4. 4.
    Thul PJ, Åkesson L, Wiking M, Mahdessian D, Geladaki A, AitBlal H, et al. A subcellular map of the human proteome. Science. 2017;356(6340). pii: eaal3321.Google Scholar
  5. 5.
    Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12(12):861–74.PubMedGoogle Scholar
  6. 6.
    Bhullar KS, Lagarón NO, McGowan EM, Parmar I, Jha A, Hubbard BP, Rupasinghe HP. Kinase-target cancer therapies: progress, challenges and future directions. Mol Cancer. 2018;17(1):48.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Cardon LR, Harris T. Precision medicine, genomics and drug discovery. Hum Mol Genet. 2016;25(R2):R166–72.PubMedGoogle Scholar
  8. 8.
    Weber J, Haberkorn U, Mier W. Cancer stratification by molecular imaging. Int J Mol Sci. 2015;16(3):4918–46.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Kenny LM, Aboagye EO. Clinical translation of molecular imaging agents used in PET studies of cancer. Adv Cancer Res. 2014;124:329–74.PubMedGoogle Scholar
  10. 10.
    Gandal MJ, Leppa V, Won H, Parikshak NN, Geschwind DH. The road to precision psychiatry: translating genetics into disease mechanisms. Nat Neurosci. 2016;19(11):1397–407.PubMedGoogle Scholar
  11. 11.
    Varley J, Brooks DJ, Edison P. Imaging neuroinflammation in Alzheimer’s disease and other dementias: recent advances and future directions. Alzheimers Dement. 2015;11(9):1110–20.PubMedGoogle Scholar
  12. 12.
    Osborn EA, Kessinger CW, Tawakol A, Jaffer FA. Metabolic and molecular imaging of atherosclerosis and venous thromboembolism. J Nucl Med. 2017;58(6):871–7.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Villemagne VL, Doré V, Bourgeat P, Burnham SC, Laws S, Salvado O, et al. Aβ-amyloid and tau imaging in dementia. Semin Nucl Med. 2017;47(1):75–88.PubMedGoogle Scholar
  14. 14.
    Scott AM, Wolchok JD, Old LJ. Antibody therapy of cancer. Nat Rev Cancer. 2012;12(4):278–87.PubMedGoogle Scholar
  15. 15.
    Orcutt KD, Adams GP, Wu AM, Silva MD, Harwell C, Hoppin J, et al. Molecular simulation of receptor occupancy and tumor penetration of an antibody and smaller scaffolds: application to molecular imaging. Mol Imaging Biol. 2017;19(5):656–64.PubMedGoogle Scholar
  16. 16.
    Ciprotti M, Chong G, Gan HK, Chan A, Murone C, MacGregor D, et al. Quantitative intratumoral microdistribution and kinetics of (131)I-huA33 in patients with colorectal carcinoma. EJNMMI Res. 2014;4:22.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Pardridge WM. Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab. 2012;32(11):1959–72.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Gan HK, van den Bent M, Lassman AB, Reardon DA, Scott AM. Antibody-drug conjugates in glioblastoma therapy: the right drugs to the right cells. Nat Rev Clin Oncol. 2017;14(11):695–707.PubMedGoogle Scholar
  19. 19.
    van Isselt JW, Gast B-d. The radioiodine turnover rate as a determinant of radioiodine treatment outcome in Grave’s disease. Hell J Nucl Med. 2010;13(1):2–5.PubMedGoogle Scholar
  20. 20.
    Goldstein JL, Anderson RGW, Brwon MS. Coated pits, coated vesicles and receptor-mediated endocytosis. Nature. 1979;279:679–85.PubMedGoogle Scholar
  21. 21.
    Sorkin A, von Zastrow M. Endocytosis and signalling: intertwining molecular networks. Nat Rev Mol Cell Biol. 2009;10:609–22.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Perner S, Hofer MD, Kim R, Shah RB, Li H, Möller P, et al. Prostate-specific membrane antigen expression as a predictor of prostate cancer progression. Hum Pathol. 2007;38(5):696–701.PubMedGoogle Scholar
  23. 23.
    Luster M, Pfestroff A, Hänscheid H, Verburg FA. Radioiodine therapy. Semin Nucl Med. 2017;47(2):126–34.PubMedGoogle Scholar
  24. 24.
    Puranik AD, Kulkarni HR, Baum RP. Companion diagnostics and molecular imaging. Cancer J. 2015;21(3):213–7.PubMedGoogle Scholar
  25. 25.
    Yordanova A, Eppard E, Kürpig S, Bundschuh RA, Schönberger S, Gonzalez-Carmona M, et al. Theranostics in nuclear medicine practice. Onco Targets Ther. 2017;10:4821–8.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Braband H. High-valent technetium chemistry – new opportunities for radiopharmaceutical developments. J Label Compd Radiopharm. 2014;57(4):270–4.Google Scholar
  27. 27.
    SmitDuijzentkunst DA, Kwekkeboom DJ, Bodei L. Somatostatin receptor-2 targeting compounds. J Nucl Med. 2017;58(Suppl 2):10S–6S.Google Scholar
  28. 28.
    Oliveira BL, Caravan P. Peptide-based fibrin-targeting probes for thrombus imaging. Dalton Trans. 2017;46(42):14488–508.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Bjornmalm M, Thurecht KJ, Michael M, Scott AM, Caruso F. Bridging bio-nano science and cancer nanomedicine. ACS Nano. 2017;11(10):9594–613.PubMedGoogle Scholar
  30. 30.
    Lee S, Xie J, Chen X. Peptides and peptide hormones for molecular imaging and disease diagnosis. Chem Rev. 2010;110(5):3087–111.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Katritch V, Cherezov V, Stevens RC. Structure-function of the G protein-coupled receptor superfamily. Annu Rev Pharmacol Toxicol. 2013;53:531–56.PubMedGoogle Scholar
  32. 32.
    Schottelius M, Wester H-J. Molecular imaging targeting peptide receptors. Methods. 2009;48(2):161–77.PubMedGoogle Scholar
  33. 33.
    Parakh S, Parslow AC, Gan HK, Scott AM. Antibody-mediated delivery of therapeutics for cancer therapy. Expert Opin Drug Deliv. 2016;13(3):401–19.PubMedGoogle Scholar
  34. 34.
    Moek KL, Giesen D, Kok IC, de Groot DJA, Jalving M, Fehrmann RSN, et al. Theranostics using antibodies and antibody-related therapeutics. J Nucl Med. 2017;58(Suppl 2):83S–90S.PubMedGoogle Scholar
  35. 35.
    Goedert M, Yamaguchi Y, Mishra SK, Higuchi M, Sahara N. Tau filaments and the development of positron emission tomography tracers. Front Neurol. 2018;9:70.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Suwijn SR, van Boheemen CJ, de Haan RJ, Tissingh G, Booij J, de Bie RM. The diagnostic accuracy of dopamine transporter SPECT imaging to detect nigrostriatal cell loss in patients with Parkinson’s disease or clinically uncertain Parkinsonism: a systematic review. EJNMMI Res. 2015;5:12.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Elsinga P, Ishiwata K, Hatano K. PET tracers for imaging the dopaminergic system. Med Chem. 2006;13(18):2139–53.Google Scholar
  38. 38.
    Slifstein M. Abi-Dargham. Recent developments in molecular brain imaging of neuropsychiatric disorders. Semin Nucl Med. 2017;47(1):54–63.PubMedGoogle Scholar
  39. 39.
    Kassenbrock A, Vasdev N, Liang SH. Selected PET radioligands for ion channel linked neuroreceptor imaging: focus on GABA, NMDA and nACH receptors. Curr Top Med Chem. 2016;16(16):1830–42.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Meyer PM, Tiepolt S, Barthel H, Hesse S, Sabri O. Radioligand imaging of α4α2* nicotinic acetylcholine receptors in Alzheimer’s disease and Parkinson’s disease. Q J Nucl Med Mol Imaging. 2014;58(4):376–86.PubMedGoogle Scholar
  41. 41.
    Denora N, Natile G. An updated view of the translocator protein (TSPO). Int J Mol Sci. 2017;18(12). pii. E2640.Google Scholar
  42. 42.
    Alam MM, Lee J, Lee SY. Recent progress in the development of TSPO PET ligands for neuroinflammation imaging in neurologic diseases. Nucl Med Mol Imaging. 2017;51(4):283–96.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Shaw SY. Molecular imaging in cardiovascular disease: targets and opportunities. Nat Rev Cardiol. 2009;6:567–79.Google Scholar
  44. 44.
    Underwood SR, de Bondt P, Flotats A, Marcasa C, Pinto F, Schaefer W, Verberne HJ. The current and future status of nuclear cardiology: a consensus report. Eur Heart J. 2014;15:949–55.Google Scholar
  45. 45.
    Travin MI. Current clinical applications and next steps for cardiac innervation imaging. Curr Cardiol Rep. 2017;19(1):1.PubMedGoogle Scholar
  46. 46.
    Gaertner FC, Kessler H, Wester HJ, Schwaiger M, Beer AJ. Radiolabelled RGD peptides for imaging and therapy. Eur J Nucl Med Mol Imaging. 2012;39(Suppl 1):S126–38.PubMedGoogle Scholar
  47. 47.
    Bala G, Blykers A, Xavier C, Descamps B, Broisat A, Ghezzi C, et al. Argeting of vascular cell adhesion molecule-1 by 18F-labelled nanobodies for PET/CT imaging of inflamed atheroscerotic plaques. Eur Heart J Cardiovac Imaging. 2016;17(9):1001–8.Google Scholar
  48. 48.
    Laufer EM, Winkens HM, Corsten MF, Reutelingsperger CP, Narula J, Hofstra L. PET and SPECT imaging of apoptosis in vulnerable atherosclerotic plaques with radiolabeled Annexin A5. Q J Nucl Med Mol Imaging. 2009;53(1):26–34.PubMedGoogle Scholar
  49. 49.
    Annovazzi A, Bonanno E, Arca M, D’Alessandria C, Marcoccia A, Spagnoli LG, et al. 99mTc-interleukin-2 scintigraphy for the in vivo detection of vulnerable atherosclerotic plaques. Eur J Nucl Med Mol Imaging. 2006;33(2):117–26.PubMedGoogle Scholar
  50. 50.
    Hanahan D, Weinberg RA. Hallmarks of cancer. Cell. 2011;144(5):646–74.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Fletcher JW, Djulbegovic B, Soares HP, Siegel BA, Lowe VJ, Lyman GH, et al. Recommendations on the use of 18F-FDG in oncology. J Nucl Med. 2008;49:480–508.PubMedGoogle Scholar
  52. 52.
    Zhu A, Lee D, Shim H. Metabolic PET imaging in cancer detection and therapy response. Semin Oncol. 2011;38(1):55–69.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Jadvar H, Colletti PM, Delgado-Bolton R, Esposito G, Krause BJ, Iagaru AH, et al. Appropriate use criteria for 18F-FDG PET/CT in restaging and treatment response assessment of malignant disease. J Nucl Med. 2017;58(12):2026–37.PubMedGoogle Scholar
  54. 54.
    Van Dongen GA, Poot AJ, Vugts DJ. PET imaging with radiolabeled antibodies and tyrosine kinase inhibitors: immuno-PET and TKI-PET. Tumour Biol. 2012;33(3):607–15.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Peck M, Pollack HA, Friesen A, Muzi M, Shoner SC, Shankland EG, et al. Applications of PET imaging with the proliferation marker [18F]-FLT. Q J Nucl Med Mol Imaging. 2015;59(1):95–104.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Dunet V, Pomoni A, Hottinger A, Nicod-Lalonde M, Prior JO. Performance of 18F-FET versus 18F-FDG-PET for the diagnosis and grading of brain tumors: systematic review and meta-analysis. Neuro Oncol. 2016;18(3):426–34.PubMedGoogle Scholar
  57. 57.
    Lee ST, Scott AM. Hypoxia imaging with 18F-Fluoromisonidazole. Semin Nucl Med. 2007;37(6):451–61.PubMedGoogle Scholar
  58. 58.
    Fleming IN, Manavaki R, Blower PJ, West C, Williams KJ, Harris AL, et al. Imaging tumour hypoxia with positron emission tomography. Br J Cancer. 2015;112:238–50.PubMedGoogle Scholar
  59. 59.
    Chong G, Lee FT, Hopkins W, Tebbutt N, Cebon JS, Mountain AJ, et al. Phase I trial of 131I-huA33 in patients with advanced colorectal carcinoma. Clin Cancer Res. 2005;11(13):4818–26.PubMedGoogle Scholar
  60. 60.
    Khajornjiraphan N, Thu NA, Chow PKH. Yttrium-90 microspheres: a review of its emerging clinical indications. Liver Cancer. 2015;4(1):6–15.PubMedGoogle Scholar
  61. 61.
    Knut L. Radiosynovectomy in the therapeutic management of arthritis. World J Nucl Med. 2015;14(1):10–5.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Strosberg J, El-Haddad G, Wolin E, Hendifar A, Yao J, Chasen B, NETTER-1 Trial Investigators, et al. Phase 3 trial of 177Lu-Dotatate for midgut neuroendocrine tumors. N Engl J Med. 2017;376(2):125–35.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Emmett L, Willowson K, Violet J, Shin J, Blanksby A, Lee J. Lutetium 177 PSMA radionuclide therapy for men with prostate cancer: a review of the current literature and discussion of practical aspects of therapy. J Med Radiat Sci. 2017;64(1):52–60.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Cheal SM, Fung EK, Patel M, Xu H, Guo HF, Zanzonico PB, et al. Curative multicycleradioimmunotherapy monitored by quantitative SPECT/CT based theranostics, using bispecific antibody pretargeting strategy in colorectal cancer. J Nucl Med. 2017;58(11):1735–42.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Florimonte L, Dellavedova L, Maffiolo LS. Radium-223 dichoride in clinical practice: a review. Eur J Nucl Med Mol Imaging. 2016;43(10):1896–909.PubMedGoogle Scholar
  66. 66.
    Marcu L, Bezak E, Allen BJ. Global comparison of targeted alpha vs targeted beta therapy for cancer: in vitro, in vivo and clinical trials. Crit Rev Oncol. 2018;123:7–20.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Andrew M. Scott
    • 1
    • 2
    • 3
    Email author
  • Yit Wooi Goh
    • 4
  • Sze Ting Lee
    • 1
    • 4
  • Salvatore U. Berlangieri
    • 1
  1. 1.Department of Molecular Imaging and TherapyAustin HospitalHeidelbergAustralia
  2. 2.Tumour Targeting Laboratory, Olivia-Newton John Cancer Research Institute, and La Trobe UniversityMelbourneAustralia
  3. 3.University of MelbourneMelbourneAustralia
  4. 4.Tumor Targeting Laboratory, Olivia Newton-John Cancer Research InstituteMelbourneAustralia

Personalised recommendations