Bioconjugation Methods for Radiopharmaceutical Chemistry

  • Jens Cardinale
  • Carolina Giammei
  • Nedra Jouini
  • Thomas L. MindtEmail author


Bioconjugation methods are critical for the stable conjugation of metallic and nonmetallic radionuclides to biomolecular targeting vectors. In contrast to the radiosynthesis of most small molecule tracers, the creation of biomolecular imaging agents typically employs biomolecules in their native form, eschews protective groups, and generally involves no more than one or two steps. Because the majority of biomolecules contain not only different functional groups but also multiple copies thereof at different positions, particular attention has to be paid to the chemoselectivity and site-specificity of bioconjugation reactions. In addition, the sensitivity of many biomolecules frequently means that mild aqueous reaction conditions must be used, a requirement which imposes further restrictions on radiolabeling protocols. Taken together, these factors combine to make the controlled functionalization of biomolecules a non-trivial task. In this chapter, we discuss the various bioconjugation methods that have been harnessed for the development of biomolecular radiopharmaceuticals. Several classical approaches based on bifunctional reactive probes will be discussed as well as a number of more recently developed strategies employing enzymes and biorthogonal chemistry. The strengths and limitations of each approach will be addressed, and examples of the application of each strategy to different classes of biomolecules will be provided.


Bioconjugation Proteins Peptides Carbohydrates Nucleic acids DNA RNA Phospholipids Enzymatic methods Chemoselectivity Site-specificity Bioorthogonal chemistry 


  1. 1.
    Hermanson GT, editor. Bioconjugate techniques. 3rd ed. Boston: Academic Press; 2013.Google Scholar
  2. 2.
    Algar WR, Dawson P, Medintz IL, editors. Chemoselective and bioorthogonal ligation reactions: concepts and applications. Weinheim: Wiley-VCH Verlag; 2017.Google Scholar
  3. 3.
    Coenen HH, Gee AD, Adam M, Antoni G, Cutler CS, Fujibayashi Y, et al. Consensus nomenclature rules for radiopharmaceutical chemistry – setting the record straight. Nucl Med Biol. 2017;55:v–xi.PubMedGoogle Scholar
  4. 4.
    Sletten EM, Bertozzi CR. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew Chem Int Ed Eng. 2009;48(38):6974–98.Google Scholar
  5. 5.
    Rodwell VW, Bender D, Botham KM, Kennelly PJ, Weil PA, editors. Harper’s illustrated biochemistry. 30th ed. New York: McGraw-Hill Education; 2015.Google Scholar
  6. 6.
    Ermert J, Coenen HH. Methods for 11C- and 18F-labelling of amino acids and derivatives for positron emission tomography imaging. J Label Compd Radiopharm. 2013;56(3–4):225–36.Google Scholar
  7. 7.
    Koniev O, Wagner A. Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. Chem Soc Rev. 2015;44(15):5495–51.Google Scholar
  8. 8.
    deGruyter JN, Malins LR, Baran PS. Residue-specific peptide modification: a chemist's guide. Biochemistry. 2017;56(30):3863–73.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Adumeau P, Sharma SK, Brent C, Zeglis BM. Site-specifically labeled immunoconjugates for molecular imaging–part 1: cysteine residues and glycans. Mol Imaging Biol. 2016;18(1):1–17.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Charron CL, Hickey JL, Nsiama TK, Cruickshank DR, Turnbull WL, Luyt LG. Molecular imaging probes derived from natural peptides. Nat Prod Rep. 2016;33(6):761–800.PubMedGoogle Scholar
  11. 11.
    Bernhard C, Moreau M, Lhenry D, Goze C, Boschetti F, Rousselin Y, et al. DOTAGA-anhydride: a valuable building block for the preparation of DOTA-like chelating agents. Chemistry. 2012;18(25):7834–41.PubMedGoogle Scholar
  12. 12.
    Hnatowich D, Layne W, Childs R, Lanteigne D, Davis M, Griffin T, et al. Radioactive labeling of antibody: a simple and efficient method. Science. 1983;220(4597):613–5.PubMedGoogle Scholar
  13. 13.
    van der Born D, Pees A, Poot AJ, Orru RVA, Windhorst AD, Vugts DJ. Fluorine-18 labelled building blocks for PET tracer synthesis. Chem Soc Rev. 2017;46(15):4709–73.PubMedGoogle Scholar
  14. 14.
    Chin J, Vesnaver M, Bernard-Gauthier V, Saucke-Lacelle E, Wängler B, Wängler C, et al. Direct one-step labeling of cysteine residues on peptides with [11C]methyl triflate for the synthesis of PET radiopharmaceuticals. Amino Acids. 2013;45(5):1097–108.PubMedGoogle Scholar
  15. 15.
    Jeon J, Shen B, Xiong L, Miao Z, Lee KH, Rao J, et al. Efficient method for site-specific 18F-labeling of biomolecules using the rapid condensation reaction between 2-cyanobenzothiazole and cysteine. Bioconjug Chem. 2012;23(9):1902–8.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Leier SRS, Wuest F. Radiometal-containing arene diazonium salts for chemoselective bioconjugation of tyrosine residues. J Label Compd Radiopharm. 2017;60(Suppl 1):S94.Google Scholar
  17. 17.
    Moradi SV, Hussein WM, Varamini P, Simerska P, Toth I. Glycosylation, an effective synthetic strategy to improve the bioavailability of therapeutic peptides. Chem Sci. 2016;7(4):2492–500.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Rodwell JD, Alvarez VL, Lee C, Lopes AD, Goers JW, King HD, et al. Site-specific covalent modification of monoclonal antibodies: in vitro and in vivo evaluations. Proc Natl Acad Sci U S A. 1986;83(8):2632–6.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Jeong JM, Lee J, Paik CH, Kim D-K, Lee DS, Chung J-K, et al. Site-specific99mTc-labeling of antibody using dihydrazinophthalazine (DHZ) conjugation to Fc region of heavy chain. Arch Pharm Res. 2004;27(9):961–7.PubMedGoogle Scholar
  20. 20.
    Kurth M, Pelegrin A, Rose K, Offord RE, Pochon S, Mach JP, et al. Site-specific conjugation of a radioiodinated phenethylamine derivative to a monoclonal antibody results in increased radioactivity localization in tumor. J Med Chem. 1993;36(9):1255–61.PubMedGoogle Scholar
  21. 21.
    Namavari M, Cheng Z, Zhang R, De A, Levi J, Hoerner JK, et al. A novel method for direct site-specific radiolabeling of peptides using [18F]FDG. Bioconjug Chem. 2009;20(3):432–6.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Maschauer S, Prante O. A series of 2-O-trifluoromethylsulfonyl-D-mannopyranosides as precursors for concomitant 18F-labeling and glycosylation by click chemistry. Carbohydr Res. 2009;344(6):753–61.PubMedGoogle Scholar
  23. 23.
    Younes C, Boisgard R, Tavitian B. Labelled oligonucleotides as radiopharmaceuticals: pitfalls, problems and perspectives. Curr Pharm Des. 2002;8(16):1451–66.PubMedGoogle Scholar
  24. 24.
    Bogdanov A, Licha K, editors. Molecular Imaging, an essential tool in preclinical research, diagnostic imaging and therapy. Berlin: Springer-Verlag; 2005.Google Scholar
  25. 25.
    Alauddin MM. Nucleoside-based probes for imaging tumor proliferation using positron emission tomography. J Label Compd Radiopharm. 2013;56(3–4):237–43.Google Scholar
  26. 26.
    Gijs M, Aerts A, Impens N, Baatout S, Luxen A. Aptamers as radiopharmaceuticals for nuclear imaging and therapy. Nucl Med Biol. 2016;43(4):253–71.PubMedGoogle Scholar
  27. 27.
    Dolle F, Hinnen F, Vaufrey F, Tavitian B, Crouzel C. A general method for labeling oligodeoxynucleotides with 18F for in vivo PET imaging. J Label Compd Radiopharm. 1997;39(4):319–30.Google Scholar
  28. 28.
    Gijs M, Dammicco S, Warnier C, Aerts A, Impens NR, D'Huyvetter M, et al. Gallium-68-labelled NOTA-oligonucleotides: an optimized method for their preparation. J Label Compd Radiopharm. 2016;59(2):63–71.Google Scholar
  29. 29.
    Cevc G, editor. Phospholipid handbook. New York: Marcel Dekker; 1993.Google Scholar
  30. 30.
    Poulsen RH, Rasmussen JT, Bøtker HE, Waehrens LS, Falborg L, Heegaard CW, et al. Imaging the myocardium at risk with 99mTc-lactadherin administered after reperfusion in a porcine model. Nucl Med Biol. 2014;41(1):114–9.PubMedGoogle Scholar
  31. 31.
    Schwarzenböck S, Souvatzoglou M, Krause BJ. Choline PET and PET/CT in primary diagnosis and staging of prostate cancer. Theranostics. 2012;2(3):318–30.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Zeng H, Zhang T, Song F, Wu X. Technetium-99m labeled fatty acid analogues for SPECT imaging in heart and liver. Med Chem. 2014;4:481–6.Google Scholar
  33. 33.
    de Barros AB, Tsourkas A, Saboury B, Cardoso VN, Alavi A. Emerging role of radiolabeled nanoparticles as an effective diagnostic technique. EJNMMI Res. 2012;2(1):39.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Lamichhane N, Dewkar GK, Sundaresan G, Mahon RN, Zweit J. [18F]-fluorinated carboplatin and [111In]-liposome for image-guided drug delivery. Int J Mol Sci. 2017;18:1079.PubMedCentralGoogle Scholar
  35. 35.
    Seo JW, Mahakian LM, Kheirolomoom A, Zhang H, Meares CF, Ferdani R, et al. Liposomal Cu-64 labeling method using bifunctional chelators: poly(ethylene glycol) spacer and chelator effects. Bioconjug Chem. 2010;21(7):1206–15.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Seo JW, Mahakian LM, Tam S, Qin S, Ingham ES, Meares CF, et al. The pharmacokinetics of Zr-89 labeled liposomes over extended periods in a murine tumor model. Nucl Med Biol. 2015;42(2):155–63.PubMedGoogle Scholar
  37. 37.
    Onega M, Winkler M, O'Hagan D. Fluorinase: a tool for the synthesis of 18F-labeled sugars and nucleosides for PET. Future Med Chem. 2009;1(5):865–73.PubMedGoogle Scholar
  38. 38.
    Massa S, Vikani N, Betti C, Ballet S, Vanderhaegen S, Steyaert J, et al. Sortase A-mediated site-specific labeling of camelid single-domain antibody-fragments: a versatile strategy for multiple molecular imaging modalities. Contrast Media Mol Imaging. 2016;11(5):328–39.PubMedGoogle Scholar
  39. 39.
    Paterson BM, Alt K, Jeffery CM, Price RI, Jagdale S, Rigby S, et al. Enzyme-mediated site-specific bioconjugation of metal complexes to proteins: sortase-mediated coupling of copper-64 to a single-chain antibody. Angew Chem Int Ed Eng. 2014;53(24):6115–9.Google Scholar
  40. 40.
    Jeger S, Zimmermann K, Blanc A, Grunberg J, Honer M, Hunziker P, et al. Site-specific and stoichiometric modification of antibodies by bacterial transglutaminase. Angew Chem Int Ed Eng. 2010;49(51):9995–7.Google Scholar
  41. 41.
    Zeglis BM, Davis CB, Aggeler R, Kang HC, Chen A, Agnew BJ, et al. Enzyme-mediated methodology for the site-specific radiolabeling of antibodies based on catalyst-free click chemistry. Bioconjug Chem. 2013;24(6):1057–67.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Adumeau P, Sharma SK, Brent C, Zeglis BM. Site-specifically labeled immunoconjugates for molecular imaging–part 2: peptide tags and unnatural amino acids. Mol Imaging Biol. 2016;18(2):153–65.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Waibel R, Alberto R, Willuda J, Finnern R, Schibli R, Stichelberger A, et al. Stable one-step technetium-99m labeling of His-tagged recombinant proteins with a novel Tc(I)–carbonyl complex. Nat Biotechnol. 1999;17(9):897–901.PubMedGoogle Scholar
  44. 44.
    Spicer CD, Davis BG. Selective chemical protein modification. Nat Commun. 2014;5:4740.PubMedGoogle Scholar
  45. 45.
    Noren CJ, Anthonycahill SJ, Griffith MC, Schultz PG. A general-method for site-specific incorporation of unnatural amino-acids into proteins. Science. 1989;244(4901):182–8.PubMedGoogle Scholar
  46. 46.
    Hallam TJ, Wold E, Wahl A, Smider VV. Antibody conjugates with unnatural amino acids. Mol Pharm. 2015;12(6):1848–62.PubMedGoogle Scholar
  47. 47.
    Wu Y, Zhu H, Zhang B, Liu F, Chen J, Wang Y, et al. Synthesis of site-specific radiolabeled antibodies for radioimmunotherapy via genetic code expansion. Bioconjug Chem. 2016;27(10):2460–8.PubMedGoogle Scholar
  48. 48.
    Wållberg H, Grafström J, Cheng Q, Lu L, Martinsson Ahlzén HS, et al. HER2-positive tumors imaged within 1 hour using a site-specifically 11C-labeled sel-tagged affibody molecule. J Nucl Med. 2012;53(9):1446–53.PubMedGoogle Scholar
  49. 49.
    Baldwin AD, Kiick KL. Tunable degradation of maleimide–thiol adducts in reducing environments. Bioconjug Chem. 2011;22(10):1946–53.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Fontaine SD, Reid R, Robinson L, Ashley GW, Santi DV. Long-term stabilization of maleimide–thiol conjugates. Bioconjug Chem. 2015;26(1):145–52.PubMedGoogle Scholar
  51. 51.
    Lyon RP, Setter JR, Bovee TD, Doronina SO, Hunter JH, Anderson ME, et al. Self-hydrolyzing maleimides improve the stability and pharmacological properties of antibody-drug conjugates. Nat Biotechnol. 2014;32(10):1059–62.PubMedGoogle Scholar
  52. 52.
    Chiotellis A, Sladojevich F, Mu L, Muller Herde A, Valverde IE, Tolmachev V, et al. Novel chemoselective 18F-radiolabeling of thiol-containing biomolecules under mild aqueous conditions. Chem Commun (Camb). 2016;52(36):6083–6.Google Scholar
  53. 53.
    Kalia D, Malekar PV, Parthasarathy M. Exocyclic olefinic maleimides: synthesis and application for stable and thiol-selective bioconjugation. Angew Chem Int Ed Eng. 2016;55(4):1432–5.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jens Cardinale
    • 1
  • Carolina Giammei
    • 1
  • Nedra Jouini
    • 1
  • Thomas L. Mindt
    • 1
    Email author
  1. 1.Ludwig Boltzmann Institute Applied DiagnosticsGeneral Hospital Vienna (AKH)ViennaAustria

Personalised recommendations