Advertisement

The Radiopharmaceutical Chemistry of Seldom-Used Radionuclides in Nuclear Medicine

  • Jason P. HollandEmail author
Chapter

Abstract

The preceding chapters of this book have explored the chemistry and radiochemistry of several radionuclides used in the design of radiotracers for diagnostic imaging and targeted therapy. These ‘common’ radionuclides – such as carbon-11, fluorine-18, copper-64, gallium-67/gallium-68, zirconium-89, yttrium-90, technetium-99m, indium-111, radioiodine, and lutetium-177 – are the mainstay of nuclear medicine. Their chemistry is diverse, yet collectively, they represent only a small part of the radiochemical landscape. The National Nuclear Decay Center contains detailed information on the physical decay properties of more than 3175 extant radionuclides, with many more that have been predicted to exist but have yet to be discovered. Traditional synthetic chemistry is built upon ~253 nuclides that are classified as ‘stable’. But what about the other ~2900 radionuclides? In this chapter, we will explore the chemistry and radiochemistry of several alternative radionuclides which, based on their decay properties, show promise for future radiopharmaceutical applications. The discussion of these ‘seldom-used’ radionuclides is organized according to the classical groups of the periodic table and includes sections detailing the emerging radiochemistry of promising radionuclides of scandium, titanium, manganese, arsenic, niobium, terbium, and erbium.

Keywords

Radiochemistry Radionuclides Scandium Titanium Arsenic Niobium Terbium Erbium Halogens 

Notes

Acknowledgements

JPH thanks the Swiss National Science Foundation (SNSF Professorship PP00P2_163683), the European Research Council (ERC-StG-2015, NanoSCAN – 676904), the Swiss Cancer League (Krebsliga Schweiz; KLS-4257-08-2017), and the University of Zurich for financial support.

References

  1. 1.
    Blower PJ. A nuclear chocolate box: the periodic table of nuclear medicine. Dalton Trans. 2015;44(11):4819–44.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Nickles RJ. The production of a broader palette of PET tracers. J Label Compd Radiopharm. 2003;46(1):1–27.Google Scholar
  3. 3.
    Qaim SM. The present and future of medical radionuclide production. Radiochim Acta. 2012;100(8–9):635–51.Google Scholar
  4. 4.
    International Atomic Energy Agency. Cyclotron produced radionuclides: physical characteristics and production methods. Technical Report Series No. 468. October. 2009;(468):279.Google Scholar
  5. 5.
    Holland JP, Williamson MJ, Lewis JS. Unconventional nuclides for radiopharmaceuticals. Mol Imaging. 2010;9(1):1–20.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Poonia NS, Bajaj AV. Coordination chemistry of alkali and alkaline earth cations. Chem Rev. 1979;79(5):389–445.  https://doi.org/10.1021/cr60321a002.Google Scholar
  7. 7.
    Takami A, Yoshida K, Tadokoro H, Kitsukawa S, Shimada K, Sato M, et al. Uptakes and images of 38K in rabbit heart, kidney, and brain. J Nucl Med. 2000;41(4):763–9.PubMedGoogle Scholar
  8. 8.
    Hunter CRRN, Hill J, Ziadi MC, Beanlands RSB, deKemp RA. Biodistribution and radiation dosimetry of 82Rb at rest and during peak pharmacological stress in patients referred for myocardial perfusion imaging. Eur J Nucl Med Mol Imaging. 2015;42(7):1032–42.PubMedGoogle Scholar
  9. 9.
    Nair N. Relative efficacy of 32P and 89Sr in palliation in skeletal metastases. J Nucl Med. 1999;40(2):256–61.PubMedGoogle Scholar
  10. 10.
    Kastleiner S, Qaim SM, Nortier FM, Blessing G, Van Der Walt TN, Coenen HH. Excitation functions of 85Rb(p,xn)85m,g,83,82,81Sr reactions up to 100 MeV: integral tests of cross section data, comparison of production routes of 83Sr and thick target yield of 82Sr. Appl Radiat Isot. 2002;56(5):685–95.PubMedGoogle Scholar
  11. 11.
    Pasachoff N. Marie Curie and the science of radioactivity. New York: Oxford University Press; 1996. p. 48.Google Scholar
  12. 12.
    Henriksen G, Hoff P, Larsen RH. Evaluation of potential chelating agents for radium. Appl Radiat Isot. 2002;56(5):667–71.PubMedGoogle Scholar
  13. 13.
    Vaidyanathan G, Zalutsky MR. Applications of 211At and 223Ra in targeted alpha-particle radiotherapy. Curr Radiopharm. 2011;4(4):283–94.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Othman MF, Mitry NR, Lewington VJ, Blower PJ, Terry SY. Re-assessing gallium-67 as a therapeutic radionuclide. Nucl Med Biol. 2017;46:12–8.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Unger LM, Trubey DK. Specific gamma-ray dose constants for nuclides important to dosimetry and radiological assessment. ORNL/RSIC-45/Rev.1. International Atomic Energy Agency/International Nuclear Information System. 1982. INIS 14(3):14724519.Google Scholar
  16. 16.
    Walsh G. Biopharmaceutical benchmarks 2010. Nat Biotechnol. 2010;28(9):917–24.PubMedGoogle Scholar
  17. 17.
    Chakravarty R, Valdovinos HF, Chen F, Lewis CM, Ellison PA, Luo H, et al. Intrinsically germanium-69-labeled iron oxide nanoparticle: synthesis and in vivo dual-modality PET/MR imaging HHS public access. Adv Mater. 2014;26(30):5119–23.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Boros E, Bowen AM, Josephson L, Vasdev N, Holland JP. Chelate-free metal ion binding and heat-induced radiolabeling of iron oxide nanoparticles. Chem Sci. 2015;6(1):225–36.PubMedGoogle Scholar
  19. 19.
    Lamb JR, Holland JP. Advanced methods for radiolabelling nanomedicines for multi-modality nuclear/MR imaging. J Nucl Med. 2018;59(3):382–9.PubMedGoogle Scholar
  20. 20.
    Maslov OD, Starodub GY, Vostokin GK, Gustova MV, Dmitriev SN, Shvetsov VN, et al. Production of (117m)Sn with high specific activity by cyclotron. Appl Radiat Isot. 2011;69(7):965–8.PubMedGoogle Scholar
  21. 21.
    Chappell LL, Dadachova E, Milenic DE, Garmestani K, Wu C, Brechbiel MW. Synthesis, characterization, and evaluation of a novel bifunctional chelating agent for the lead isotopes 203 Pb and 212 Pb. Nucl Med Biol. 2000;27(1):93–100.PubMedGoogle Scholar
  22. 22.
    Torres Martin de Rosales R, Tavaré R, Glaria A, Varma G, Protti A, Blower PJ. (99m) Tc-bisphosphonate-iron oxide nanoparticle conjugates for dual-modality biomedical imaging. Bioconjug Chem. 2011;22(3):455–65.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Chen F, Ellison PA, Lewis CM, Hong H, Zhang Y, Shi S, et al. Chelator-free synthesis of a dual-modality PET/MRI agent. Angew Chem Int Ed Eng. 2013;52(50):13319–23.Google Scholar
  24. 24.
    McDevitt MR, Barendswaard E, Ma D, Lai L, Curcio MJ, Sgouros G, et al. An alpha-particle emitting antibody ([213Bi]J591) for radioimmunotherapy of prostate cancer. Cancer Res. 2000;60(21):6095–100.PubMedGoogle Scholar
  25. 25.
    Milenic DE, Roselli M, Mirzadeh S, Pippin CG, Gansow OA, Colcher D, et al. In vivo evaluation of bismuth-labeled monoclonal antibody comparing DTPA-derived bifunctional chelates. Cancer Biother Radiopharm. 2001;16(2):133–46.PubMedGoogle Scholar
  26. 26.
    Mirzadeh S, Kumar K, Gansow OA. The chemical fate of 212Bi-DOTA formed by β-decay of 212Pb(DOTA)2. Radiochim Acta. 1993;60(1):1–10.Google Scholar
  27. 27.
    Plenevaux A, Guillaume M, Brihaye C, Lemaire C, Cantineau R. Chemical processing for production of no-carrier-added selenium-73 from germanium and arsenic targets and synthesis of l-2-amino-4-([73Se]methylseleno) butyric acid (l-[73Se]selenomethionine). Int J Radiat Appl Instrum A. 1990;41(9):829–38.Google Scholar
  28. 28.
    Engle JW, Barnhart TE, DeJesus OT, Nickles RJ. Production of 34mCl and 38Cl via the (d,α) reaction on 36Ar and natAr gas at 8.4MeV. Appl Radiat Isot. 2011;69(1):75–9.PubMedGoogle Scholar
  29. 29.
    Tolmachev V. Radiobromine-labelled tracers for positron emission tomography: possibilities and pitfalls. Curr Radiopharm. 2011;4(2):76–89.PubMedGoogle Scholar
  30. 30.
    Teze D, Sergentu D-C, Kalichuk V, Barbet J, Deniaud D, Galland N, et al. Targeted radionuclide therapy with astatine-211: oxidative dehalogenation of astatobenzoate conjugates. Sci Rep. 2017;7(1):2579.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Walczak R, Krajewski S, Szkliniarz K, et al. Cyclotron production of 43Sc for PET imaging. EJNMMI Phys. 2015;2:33.  https://doi.org/10.1186/s40658-015-0136-x.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Severin GW, Engle JW, Valdovinos HF, Barnhart TE, Nickles RJ. Cyclotron produced 44gSc from natural calcium. Appl Radiat Isot. 2012;70(8):1526–30.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Valdovinos HF, Hernandez R, Barnhart TE, Graves S, Cai W, Nickles RJ. Separation of cyclotron-produced 44Sc from a natural calcium target using a dipentyl pentylphosphonate functionalized extraction resin. Appl Radiat Isot. 2015;95:23–9.PubMedGoogle Scholar
  34. 34.
    Filosofov DV, Loktionova NS, Rösch F. A 44Ti/44Sc radionuclide generator for potential application of 44Sc-based PET-radiopharmaceuticals. Radiochim Acta. 2010;98(3):149–56.Google Scholar
  35. 35.
    Rane S, Harris JT, Starovoitova VN. 47Ca production for 47Ca/47Sc generator system using electron linacs. Appl Radiat Isot. 2015;97:188–92.PubMedGoogle Scholar
  36. 36.
    Pruszyński M, Loktionova NS, Filosofov DV, Rösch F. Post-elution processing of 44Ti/ 44Sc generator-derived 44Sc for clinical application. Appl Radiat Isot. 2010;68(9):1636–41.PubMedGoogle Scholar
  37. 37.
    Yoo J, Tang L, Perkins TA, Rowland DJ, Laforest R, Lewis JS, et al. Preparation of high specific activity 86Y using a small biomedical cyclotron. Nucl Med Biol. 2005;32(8):891–7.PubMedGoogle Scholar
  38. 38.
    Chen F, Valdovinos HF, Hernandez R, Goel S, Barnhart TE, Cai W. Intrinsic radiolabeling of Titanium-45 using mesoporous silica nanoparticles. Acta Pharmacol Sin. 2017;38(6):907–13.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Busse S, Brockmann J, Rösch F. Radiochemical separation of no-carrier-added radioniobium from zirconium targets for application of 90Nb-labelled compounds. Radiochim Acta. 2002;90(37438):411–5.Google Scholar
  40. 40.
    Radchenko V, Filosofov DV, Bochko OK, Lebedev NA, Rakhimov AV, Hauser H, et al. Separation of 90Nb from zirconium target for application in immuno-pet. Radiochim Acta. 2014;102(5):433–42.Google Scholar
  41. 41.
    Radchenko V, Hauser H, Eisenhut M, Vugts DJ, Van Dongen GAMS, Roesch F. 90Nb – a potential PET nuclide: production and labeling of monoclonal antibodies. Radiochim Acta. 2012;100(11):857–63.Google Scholar
  42. 42.
    Lacy JL, Layne WW, Guidry GW, Verani MS, Roberts R. Development and clinical performance of an automated, portable tungsten-178/tantalum-178 generator. J Nucl Med. 1991;32(11):2158–61.PubMedGoogle Scholar
  43. 43.
    Moore AEB, Park-Holohan SJ, Blake GM, Fogelman I. Conventional measurements of GFR using 51Cr-EDTA overestimate true renal clearance by 10 percent. Eur J Nucl Med Mol Imaging. 2003;30(1):4–8.PubMedGoogle Scholar
  44. 44.
    Graves SA, Hernandez R, Fonslet J, England CG, Valdovinos HF, Ellison PA, et al. Novel preparation methods of 52Mn for ImmunoPET imaging. Bioconjug Chem. 2015;26(10):2118–24.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Graves SA, Hernandez R, Valdovinos HF, Ellison PA, Engle JW, Barnhart TE, et al. Preparation and in vivo characterization of 51MnCl2 as PET tracer of Ca2+ channel-mediated transport. Sci Rep. 2017;7:3033.  https://doi.org/10.1038/s41598-017-03202-0.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Gagnon K, McQuarrie S, Abrams D, McEwan AJ, Wuest F. Radiotracers based on technetium-94m. Curr Radiopharm. 2011;4(2):90–101.PubMedGoogle Scholar
  47. 47.
    Alberto R, Braband H. SPECT/PET imaging with technetium, gallium, copper, and other metallic radionuclides. In: Alberto R, Braband H, editors. Comprhensive inorganic chemistry II: from elements to applications. 2nd ed. Oxford: Elsevier; 2013. p. 785–817.Google Scholar
  48. 48.
    Zaitseva NG, Stegailov VI, Khalkin VA, Shakun NG, Shishlyannikov PT, Bukov KG. Metal technetium target and target chemistry for the production of 97Ru via the 99Tc(p,3n) 97Ru reaction. Appl Radiat Isot. 1996;47(2):145–51.Google Scholar
  49. 49.
    Oster ZH, Som P, Gil MC, Fairchild RG. Ruthenium-97 DTPA: a new radiopharmaceutical for cisternography. J Nucl. 1981;22(3):269–73.Google Scholar
  50. 50.
    Jansen HM, van der Naalt J, van Zomeren AH, Paans AM, Veenma-van der Duin L, Hew JM, et al. Cobalt-55 positron emission tomography in traumatic brain injury: a pilot study. J Neurol Neurosurg Psychiatry. 1996;60(2):221–4.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Jurisson SS, Ketring AR, Volkert WA. Rhodium-105 complexes as potential radiotherapeutic agents. Transit Met Chem. 1997;22(3):315–7.Google Scholar
  52. 52.
    Zweit J, Carnochan P, Goodall R, Ott RJ. Excitation functions of proton induced reactions on cobalt: production of no-carrier added nickel-57, a positron emitting label for doxorubicin. Appl Radiat Isot. 1993;44(12):1411–6.Google Scholar
  53. 53.
    Black KCL, Wang Y, Luehmann HP, Cai X, Xing W, Pang B, et al. Radioactive 198au-doped nanostructures with different shapes for in vivo analyses of their biodistribution, tumour uptake, and intratumoral distribution. ACS Nano. 2014;8(5):4385–94.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Watt NT, Whitehouse IJ, Hooper NM. The role of zinc in Alzheimer’s disease. Int J Alzheimers Dis. 2011;2011:1–10.Google Scholar
  55. 55.
    Walther M, Preusche S, Bartel S, Wunderlich G, Freudenberg R, Steinbach J, et al. Theranostic mercury: 197(m)Hg with high specific activity for imaging and therapy. Appl Radiat Isot. 2015;97:177–81.PubMedGoogle Scholar
  56. 56.
    Lehenberger S, Barkhausen C, Cohrs S, Fischer E, Grünberg J, Hohn A, et al. The low-energy β – and electron emitter 161Tb as an alternative to 177Lu for targeted radionuclide therapy. Nucl Med Biol. 2011;38(6):917–24.PubMedGoogle Scholar
  57. 57.
    Müller C, Zhernosekov K, Köster U, Johnston K, Hohn DH, et al. A unique matched quadruplet of terbium radioisotopes for PET and SPECT and for α- and β- radionuclide therapy: an in vivo proof-of-concept study with a new receptor-targeted folate derivative. J Nucl Med. 2012;53(12):1951–9.Google Scholar
  58. 58.
    Severin G, Jensen M. A radionuclide generator of Erbium-165, an isotope for Auger Therapy (abstract). Radiother Oncol. 2014;110(Suppl 1):S88–9.Google Scholar
  59. 59.
    Di Pasqua AJ, Yuan H, Chung Y, Kim JK, Huckle JE, Li C, et al. Neutron-activatable holmium-containing mesoporous silica nanoparticles as a potential radionuclide therapeutic agent for ovarian cancer. J Nucl Med. 2012;54(1):111–6.PubMedGoogle Scholar
  60. 60.
    Kratochwil C, Bruchertseifer F, Giesel FL, Weis M, Verburg FA, Mottaghy F, et al. 225Ac-PSMA-617 for PSMA-targeted α-radiation therapy of metastatic castration-resistant prostate cancer. J Nucl Med. 2016;57(12):1941–4.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of ZurichZurichSwitzerland

Personalised recommendations