Advertisement

The Radiopharmaceutical Chemistry of the Radioisotopes of Iodine

  • Ganesan VaidyanathanEmail author
  • Michael R. Zalutsky
Chapter

Abstract

Radioisotopes of iodine have been incorporated into a wide variety of radiopharmaceuticals ranging from small, low molecular weight compounds to large molecules like antibodies. Because of the routine availability of radioisotopes of iodine with different nuclear decay properties, radioiodination is an attractive strategy because the same chemistry can be utilized for both radionuclide imaging and targeted radiotherapy. Over the years, various methods have been developed for the synthesis of radioiodinated compounds. This chapter gives an overview of these methods as well as their potential advantages and disadvantages. Some useful tips and tactics for the radioiodination chemistry are provided. Important milestones in radioiodination chemistry are summarized and some thoughts about the future of radioiodination as a radiopharmaceutical chemistry strategy are provided.

Keywords

Radioiodination Electrophilic substitution Nucleophilic substitution Iododemetallation Oxidizing agents Prosthetic agents 

References

  1. 1.
    Mennicke E, Holschbach M, Coenen HH. Direct n.c.a. electrophilic radioiodination of deactivated arenes with N-chlorosuccinimide. J Labelled Compd Radiopharm. 2000;43(7):721–37.Google Scholar
  2. 2.
    Takahashi M, Seki K, Nishijima K, Zhao S, Kuge Y, Tamaki N, et al. Synthesis of a radioiodinated thymidine phosphorylase inhibitor and its preliminary evaluation as a potential SPECT tracer for angiogenic enzyme expression. J Labelled Compd Radiopharm. 2008;51(11–12):384–7.Google Scholar
  3. 3.
    Racys DT, Sharif SA, Pimlott SL, Sutherland A. Silver(I)-catalyzed iodination of Arenes: tuning the Lewis acidity of N-Iodosuccinimide activation. J Org Chem. 2016;81(3):772–80.PubMedGoogle Scholar
  4. 4.
    Tamborini L, Chen Y, Foss CA, Pinto A, Horti AG, Traynelis SF, et al. Development of radiolabeled ligands targeting the glutamate binding site of the N-methyl-d-aspartate receptor as potential imaging agents for brain. J Med Chem. 2016;59(24):11110–9.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Jia J, Song J, Dai J, Liu B, Cui M. Optically pure diphenoxy derivatives as more flexible probes for beta-amyloid plaques. ACS Chem Neurosci. 2016;7(9):1275–82.PubMedGoogle Scholar
  6. 6.
    Vaidyanathan G, Affleck DJ, Alston KL, Zalutsky MR. A tin precursor for the synthesis of no-carrier-added [*I]MIBG and [211At]MABG. J Labelled Compd Radiopharm. 2007;50(3–4):177–82.Google Scholar
  7. 7.
    Garg S, Garg PK, Zalutsky MR. N-succinimidyl 5-(trialkylstannyl)-3-pyridinecarboxylates: a new class of reagents for protein radioiodination. Bioconjug Chem. 1991;2(1):50–6.PubMedGoogle Scholar
  8. 8.
    Chen K, He P, Zhang S, Li PF. Synthesis of aryl trimethylstannanes from aryl halides: an efficient photochemical method. Chem Commun. 2016;52(58):9125–8.Google Scholar
  9. 9.
    Seevers RH, Counsell RE. Radioiodination techniques for small organic molecules. Chem Rev. 1982;82(6):575–90.Google Scholar
  10. 10.
    Zea-Ponce Y, Baldwin RM, Zoghbi SS, Innis RB. Formation of 1-[123I]iodobutane in labeling [123I]iomazenil by iododestannylation: implications for the reaction mechanism. Appl Radiat Isot. 1994;45(1):63–8.Google Scholar
  11. 11.
    Arstad E, Hoff P, Skattebol L, Skretting A, Breistol K. Studies on the synthesis and biological properties of non-carrier-added [125I and 131I]-labeled arylalkylidenebisphosphonates: potent bone-seekers for diagnosis and therapy of malignant osseous lesions. J Med Chem. 2003;46(14):3021–32.Google Scholar
  12. 12.
    Vaidyanathan G, Zalutsky MR. No-carrier-added synthesis of meta-[131I]iodobenzylguanidine. Appl Radiat Isot. 1993;44(3):621–8.Google Scholar
  13. 13.
    Green M, Lowe J, Kadirvel M, McMahon A, Westwood N, Chua S, et al. Radiosynthesis of no-carrier-added meta-[124I]iodobenzylguanidine for PET imaging of metastatic neuroblastoma. J Radioanal Nucl Chem. 2017;311(1):727–32.Google Scholar
  14. 14.
    Champion S, Gross J, Robichaud AJ, Pimlott S. Radiosynthesis of 123I-labelled benzimidazoles as novel single-photon emission computed tomography tracers for the histamine H3 receptor. J Labelled Compd Radiopharm. 2011;54(9–10):674–7.Google Scholar
  15. 15.
    Tang P, Ritter T. Silver-mediated fluorination of aryl silanes. Tetrahedron. 2011;67(24):4449–54.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Wilbur DS, Svitra ZV. Organopentafluorosilicates – reagents for rapid and efficient incorporation of no-carrier-added radiobromine and radioiodine. J Labelled Compd Radiopharm. 1983;20(5):619–26.Google Scholar
  17. 17.
    McNeill E, Barder TE, Buchwald SL. Palladium-catalyzed silylation of aryl chlorides with hexamethyldisilane. Org Lett. 2007;9(19):3785–8.PubMedGoogle Scholar
  18. 18.
    Coenen HH, Moerlein SM, Stocklin G. No-carrier-added radiohalogenation methods with heavy halogens. Radiochim Acta. 1983;34(1–2):47–68.Google Scholar
  19. 19.
    Foulon CF, Zhang YZ, Adelstein SJ, Kassis AI. Instantaneous preparation of radiolabeled 5-iodo-2′-deoxyuridine. Appl Radiat Isot. 1995;46(10):1039–46.PubMedGoogle Scholar
  20. 20.
    Kawai K, Ohta H, Kubodera A, Channing MA, Eckelman WC. Synthesis and evaluation of radioiodinated 6-iodo-L-DOPA as a cerebral L-amino acid transport marker. Nucl Med Biol. 1996;23(3):251–5.PubMedGoogle Scholar
  21. 21.
    Hylarides MD, Wilbur DS, Hadley SW, Fritzberg AR. Synthesis and iodination of methyl 4-tri-normal-butylstannylbenzoate, para-(methoxycarbonyl) phenylmercuric chloride and para-(methoxycarbonyl) phenylboronic acid. J Organomet Chem. 1989;367(3):259–65.Google Scholar
  22. 22.
    Kabalka GW, Yao ML. No-carrier-added radiohalogenations utilizing organoboranes: the synthesis of iodine-123 labeled curcumin. J Organomet Chem. 2009;694(11):1638–41.Google Scholar
  23. 23.
    Kabalka GW, Sastry KAR, Muralidhar K. Synthesis of iodine-125 labeled aryl and vinyl iodides. J Labelled Compd Radiopharm. 1982;19(6):795–9.Google Scholar
  24. 24.
    Kabalka GW, Akula MR, Zhang J. Synthesis of radioiodinated aryl iodides via boronate precursors. Nucl Med Biol. 2002;29(8):841–3.PubMedGoogle Scholar
  25. 25.
    Kabalka GW, Tang G, Mereddy AR. No-carrier-added radiohalogenations utilizing organoborates. J Labelled Compd Radiopharm. 2007;50(5–6):446–7.Google Scholar
  26. 26.
    Akula MR, Yao ML, Kabalka GW. Triolborates: water-soluble complexes of arylboronic acids as precursors to iodoarenes. Tetrahedron Lett. 2010;51(8):1170–1.Google Scholar
  27. 27.
    Moerlein SM. Regiospecific incorporation of no-carrier-added radiobromine and radioiodine into aromatic rings via halodegermylation. J Chem Soc Perkin Trans 1. 1985;8:1687–92.Google Scholar
  28. 28.
    Haberkorn U, Kinscherf R, Krammer PH, Mier W, Eisenhut M. Investigation of a potential scintigraphic marker of apoptosis: radioiodinated Z-Val-Ala-DL-Asp(O-methyl)-fluoromethyl ketone. Nucl Med Biol. 2001;28(7):793–8.PubMedGoogle Scholar
  29. 29.
    Ronnest MH, Nissen F, Pedersen PJ, Larsen TO, Mier W, Clausen MH. A mild method for regioselective labeling of aromatics with radioactive iodine. Eur J Org Chem. 2013;19:3970–3.Google Scholar
  30. 30.
    Wieland DM, Mangner TJ, Inbasekaran MN, Brown LE, Wu JL. Adrenal medulla imaging agents: a structure-distribution relationship study of radiolabeled aralkylguanidines. J Med Chem. 1984;27(2):149–55.PubMedGoogle Scholar
  31. 31.
    Mertens J, Vanryckeghem W, Bossuyt A. High-yield preparation of 123I-N-isopropyl-para-iodoamphetamine (Iamp) in presence of Cu(I). J Labelled Compd Radiopharm. 1985;22(1):89–93.Google Scholar
  32. 32.
    Eersels JLH, Mertens J, Herscheid JDM. Optimization of the labeling yield by determination of the Cu+-acetonitrile complex constant in Cu+-catalyzed nucleophilic exchange reactions in mixed solvent conditions. J Radioanal Nucl Chem. 2011;288(1):291–6.Google Scholar
  33. 33.
    Eersels JL, Mertens J, Herscheid JD. The Cu+-assisted radioiodination kit: mechanistic study of unexplored parameters concerning the acidity and redox properties of the reaction medium. Appl Radiat Isot. 2010;68(2):309–13.Google Scholar
  34. 34.
    Eersels JLH, Travis MJ, Herscheid JDM. Manufacturing I-123-labelled radiopharmaceuticals. Pitfalls and solutions. J Labelled Compd Radiopharm. 2005;48(4):241–57.Google Scholar
  35. 35.
    Chacko AM, Divgi CR. Radiopharmaceutical chemistry with iodine-124: a non-standard radiohalogen for positron emission tomography. Med Chem. 2011;7(5):395–412.PubMedGoogle Scholar
  36. 36.
    Eersels JLH, Mertens J, Herscheid JDM. New insights into the Cu plus -assisted nucleophilic radioiodination of bromopyridine and iodopyridine analogues. J Labelled Compd Radiopharm. 2012;55(4):135–9.Google Scholar
  37. 37.
    Cant AA, Champion S, Bhalla R, Pimlott SL, Sutherland A. Nickel-mediated radioiodination of aryl and heteroaryl bromides: rapid synthesis of tracers for SPECT imaging. Angew Chem Int Ed Engl. 2013;52(30):7829–32.PubMedGoogle Scholar
  38. 38.
    Wilson TC, McSweeney G, Preshlock S, Verhoog S, Tredwell M, Cailly T, et al. Radiosynthesis of SPECT tracers via a copper mediated 123I iodination of (hetero)aryl boron reagents. Chem Commun (Camb). 2016;52(90):13277–80.Google Scholar
  39. 39.
    Zhang P, Zhuang R, Guo Z, Su X, Chen X, Zhang X. A highly efficient copper-mediated radioiodination approach using aryl boronic acids. Chemistry. 2016;22(47):16783–6.PubMedGoogle Scholar
  40. 40.
    Michelot JM, Moreau MF, Labarre PG, Madelmont JC, Veyre AJ, Papon JM, et al. Synthesis and evaluation of new iodine-125 radiopharmaceuticals as potential tracers for malignant melanoma. J Nucl Med. 1991;32(8):1573–80.PubMedGoogle Scholar
  41. 41.
    Pickett JE, Nagakura K, Pasternak AR, Grinnell SG, Majumdar S, Lewis JS, et al. Sandmeyer reaction repurposed for the site-selective, non-oxidizing radioiodination of fully-deprotected peptides: studies on the endogenous opioid peptide alpha-neoendorphin. Bioorg Med Chem Lett. 2013;23(15):4347–50.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Vivier M, Rapp M, Papon J, Labarre P, Galmier MJ, Sauziere J, et al. Synthesis, radiosynthesis, and biological evaluation of new proteasome inhibitors in a tumor targeting approach. J Med Chem. 2008;51(4):1043–7.PubMedGoogle Scholar
  43. 43.
    Khalaj A, Beiki D, Rafiee H, Najafi R. A new and simple synthesis of N-succinimidyl-4-[127/125I] iodobenzoate involving a microwave-accelerated iodination step. J Labelled Compd Radiopharm. 2001;44(3):235–40.Google Scholar
  44. 44.
    Foster NI, Dannals R, Burns HD, Heindel ND. A condition variation study for radioiodination via triazene intermediates. J Radioanal Chem. 1981;65(1–2):95–105.Google Scholar
  45. 45.
    Hu B, Miller WH, Neumann KD, Linstad EJ, DiMagno SG. An alternative to the Sandmeyer approach to aryl iodides. Chemistry. 2015;21(17):6394–8.PubMedPubMedCentralGoogle Scholar
  46. 46.
    DiMagno SG. WO 2016201128 A1 20161215 preparation of guanidinium compounds; 2016.Google Scholar
  47. 47.
    Guerard F, Lee YS, Baidoo K, Gestin JF, Brechbiel MW. Unexpected behavior of the heaviest halogen astatine in the nucleophilic substitution of aryliodonium salts. Chemistry. 2016;22(35):12332–9.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Kothari P, De BP, He B, Chen A, Chiuchiolo MJ, Kim D, et al. Radioiodinated capsids facilitate in vivo non-invasive tracking of adeno-associated gene transfer vectors. Sci Rep. 2017;7:39594.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Culbert PA, Hunter DH. Polymer-supported radiopharmaceuticals – 123I labeled and 131I-labeled N-isopropyl-4-iodoamphetamine. React Polym. 1993;19(3):247–53.Google Scholar
  50. 50.
    Hunter DH, Zhu XZ. Polymer-supported radiopharmaceuticals: [131I]MIBG and [123I]MIBG. J Labelled Compd Radiopharm. 1999;42(7):653–61.Google Scholar
  51. 51.
    Chin BB, Kronauge JF, Femia FJ, Chen J, Maresca KP, Hillier S, et al. Phase-1 clinical trial results of high-specific-activity carrier-free 123I-iobenguane. J Nucl Med. 2014;55(5):765–71.Google Scholar
  52. 52.
    Gifford AN, Kuschel S, Shea C, Fowler JS. Polymer-supported organotin reagent for prosthetic group labeling of biological macromolecules with radioiodine. Bioconjug Chem. 2011;22(3):406–12.PubMedGoogle Scholar
  53. 53.
    Janabi M, Pollock CM, Chacko AM, Hunter DH. Resin-supported arylstannanes as precursors for radiolabeling with iodine: benzaldehydes, benzoic acids, benzamides, and NHS esters. Can J Chem. 2015;93(2):207–17.Google Scholar
  54. 54.
    Kabalka GW, Namboodiri V, Akula MR. Synthesis of 123I labeled Congo red via solid phase organic chemistry. J Labelled Compd Radiopharm. 2001;44(13):921–9.Google Scholar
  55. 55.
    Hernan AG, Horton PN, Hursthouse MB, Kilburn JD. New and efficient synthesis of solid-supported organotin reagents and their use in organic synthesis. J Organomet Chem. 2006;691(8):1466–75.Google Scholar
  56. 56.
    Rajerison H, Faye D, Roumesy A, Louaisil N, Boeda F, Faivre-Chauvet A, et al. Ionic liquid supported organotin reagents to prepare molecular imaging and therapy agents. Org Biomol Chem. 2016;14(6):2121–6.PubMedGoogle Scholar
  57. 57.
    Wang G, Chen ZM, Wu EM, Wang Y, Huang HY. A convenient method for the preparation of radioiodinated meta-iodobenzylguanidine at a no-carrier-added level. J Labelled Compd Radiopharm. 2015;58(11–12):442–4.Google Scholar
  58. 58.
    Dzandzi JP, Beckford Vera DR, Genady AR, Albu SA, Eltringham-Smith LJ, Capretta A, et al. Fluorous analogue of chloramine-t: preparation, x-ray structure determination, and use as an oxidant for radioiodination and s-tetrazine synthesis. J Org Chem. 2015;80(14):7117–25.PubMedGoogle Scholar
  59. 59.
    Dzandzi JP, Vera DR, Valliant JF. A hybrid solid-fluorous phase radioiodination and purification platform. J Labelled Compd Radiopharm. 2014;57(9):551–7.Google Scholar
  60. 60.
    Donovan A, Forbes J, Dorff P, Schaffer P, Babich J, Valliant JF. A new strategy for preparing molecular imaging and therapy agents using fluorine-rich (fluorous) soluble supports. J Am Chem Soc. 2006;128(11):3536–7.PubMedGoogle Scholar
  61. 61.
    Billaud EM, Vidal A, Vincenot A, Besse S, Bouchon B, Debiton E, et al. Development and preliminary evaluation of TFIB, a new bimodal prosthetic group for bioactive molecule labeling. ACS Med Chem Lett. 2015;6(2):168–72.PubMedGoogle Scholar
  62. 62.
    Carter RL, Johnson BF, Sood A, Rishel MJ, Valliant JF, Stephenson KA, et al. Biotin stannane for HPLC-free radioiodination. CA 28855223 A1. Google Patents 28 Mar 2013. https://www.google.com/patents/CA2866223A1?cl=en.
  63. 63.
    Wu T, Yang Y, Stephenson K, Valliant J, Carter R, Johnson B, et al. Biotin stannanes for HPLC-free radioiodination (abstract). J Nucl Med. 2013;54(Suppl 2):496.Google Scholar
  64. 64.
    Nakagawa C, Toyama M, Takeuchi R, Takahashi T, Tanaka H. Synthesis of [I-123]-iodometomidate from a polymer-supported precursor with a large excluded volume. RSC Adv. 2016;6(15):12215–8.Google Scholar
  65. 65.
    Yong L, Yao ML, Kelly H, Green JF, Kabalka GW. Radioiodination of polymer-supported organotrifluoroborates. J Labelled Compd Radiopharm. 2011;54(4):173–4.Google Scholar
  66. 66.
    Spivey AC, Tseng CC, Jones TC, Kohler AD, Ellames GJ. A method for parallel solid-phase synthesis of iodinated analogues of the CB1 receptor inverse agonist rimonabant. Org Lett. 2009;11(20):4760–3.PubMedGoogle Scholar
  67. 67.
    Doll S, Woolum K, Kumar K. Radiolabeling of a cyclic RGD (cyclo Arg-Gly-Asp-d-Tyr-Lys) peptide using sodium hypochlorite as an oxidizing agent. J Labelled Compd Radiopharm. 2016;59(11):462–6.Google Scholar
  68. 68.
    Haubner R, Wester HJ, Reuning U, Senekowitsch-Schmidtke R, Diefenbach B, Kessler H, et al. Radiolabeled αvβ3 integrin antagonists: a new class of tracers for tumor targeting. J Nucl Med. 1999;40(6):1061–71.Google Scholar
  69. 69.
    Terriere D, Chavatte K, Ceusters M, Tourwe D, Mertens J. Radiosynthesis of new radio neurotensin (8-13) analogues. J Labelled Compd Radiopharm. 1998;41(1):19–27.Google Scholar
  70. 70.
    Vaidyanathan G, Affleck D, Welsh P, Srinivasan A, Schmidt M, Zalutsky MR. Radioiodination and astatination of octreotide by conjugation labeling. Nucl Med Biol. 2000;27(4):329–37.PubMedGoogle Scholar
  71. 71.
    Dissoki S, Hagooly A, Elmachily S, Mishani E. Labeling approaches for the GE11 peptide, an epidermal growth factor receptor biomarker. J Labelled Compd Radiopharm. 2011;54(11):693–701.Google Scholar
  72. 72.
    Rossouw DD. Radioiodine labelling of a small chemotactic peptide, utilizing two different prosthetic groups: a comparative study. J Labelled Compd Radiopharm. 2008;51(1–2):48–53.Google Scholar
  73. 73.
    Kondo N, Temma T, Shimizu Y, Ono M, Saji H. Radioiodinated peptidic imaging probes for in vivo detection of membrane type-1 matrix metalloproteinase in cancers. Biol Pharm Bull. 2015;38(9):1375–82.PubMedGoogle Scholar
  74. 74.
    Bhojani MS, Ranga R, Luker GD, Rehemtulla A, Ross BD, Van Dort ME. Synthesis and investigation of a radioiodinated F3 peptide analog as a SPECT tumor imaging radioligand. PLoS One. 2011;6(7):e22418.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Amartey JK, Esguerra C. A facile method for post-conjugation prosthetic radioiodination of “mini-peptides”. Appl Radiat Isot. 2006;64(12):1549–54.PubMedGoogle Scholar
  76. 76.
    Vaidyanathan G, Affleck DJ, Schottelius M, Wester H, Friedman HS, Zalutsky MR. Synthesis and evaluation of glycosylated octreotate analogues labeled with radioiodine and 211At via a tin precursor. Bioconjug Chem. 2006;17(1):195–203.Google Scholar
  77. 77.
    Choi MH, Shim HE, Yun SJ, Kim HR, Mushtaq S, Lee CH, et al. Highly efficient method for 125I-radiolabeling of biomolecules using inverse-electron-demand Diels-Alder reaction. Bioorg Med Chem. 2016;24:2589–94.Google Scholar
  78. 78.
    Verel I, Visser GW, Vosjan MJ, Finn R, Boellaard R, van Dongen GA. High-quality 124I-labelled monoclonal antibodies for use as PET scouting agents prior to 131I-radioimmunotherapy. Eur J Nucl Med Mol Imaging. 2004;31(12):1645–52.Google Scholar
  79. 79.
    Lane DJR, Richardson DR. Revolutions in the labelling of proteins with radionuclides of iodine: William Hunter and radioiodination. Biochem J. 2011;4:34–8.Google Scholar
  80. 80.
    Vaidyanathan G, Zalutsky MR. Preparation of N-succinimidyl 3-[*I]iodobenzoate: an agent for the indirect radioiodination of proteins. Nat Protoc. 2006;1(2):707–13.PubMedGoogle Scholar
  81. 81.
    Wilbur DS, Hadley SW, Hylarides MD, Abrams PG, Beaumier PA, Morgan AC, et al. Development of a stable radioiodinating reagent to label monoclonal antibodies for radiotherapy of cancer. J Nucl Med. 1989;30(2):216–26.PubMedGoogle Scholar
  82. 82.
    Tolmachev V, Orlova A, Lundqvist H. Approaches to improve cellular retention of radiohalogen labels delivered by internalising tumour-targeting proteins and peptides. Curr Med Chem. 2003;10(22):2447–60.PubMedGoogle Scholar
  83. 83.
    Sugiura G, Kuhn H, Sauter M, Haberkorn U, Mier W. Radiolabeling strategies for tumor-targeting proteinaceous drugs. Molecules. 2014;19(2):2135–65.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Yan R, Sander K, Galante E, Rajkumar V, Badar A, Robson M, et al. A one-pot three-component radiochemical reaction for rapid assembly of 125I-labeled molecular probes. J Am Chem Soc. 2013;135(2):703–9.Google Scholar
  85. 85.
    Ono M, Watanabe H, Ikehata Y, Ding N, Yoshimura M, Sano K, et al. Radioiodination of BODIPY and its application to a nuclear and optical dual functional labeling agent for proteins and peptides. Sci Rep. 2017;7(1):3337.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Reist CJ, Archer GE, Kurpad SN, Wikstrand CJ, Vaidyanathan G, Willingham MC, et al. Tumor-specific anti-epidermal growth factor receptor variant III monoclonal antibodies: use of the tyramine-cellobiose radioiodination method enhances cellular retention and uptake in tumor xenografts. Cancer Res. 1995;55(19):4375–82.PubMedGoogle Scholar
  87. 87.
    Choi J, Vaidyanathan G, Koumarianou E, McDougald D, Pruszynski M, Osada T, et al. N-Succinimidyl guanidinomethyl iodobenzoate protein radiohalogenation agents: influence of isomeric substitution on radiolabeling and target cell residualization. Nucl Med Biol. 2014;41(10):802–12.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Shankar S, Vaidyanathan G, Affleck DJ, Peixoto K, Bigner DD, Zalutsky MR. Evaluation of an internalizing monoclonal antibody labeled using N-succinimidyl 3-[131I]iodo-4-phosphonomethylbenzoate ([131I]SIPMB), a negatively charged substituent bearing acylation agent. Nucl Med Biol. 2004;31(7):909–19.Google Scholar
  89. 89.
    Karmani L, Leveque P, Bouzin C, Bol A, Dieu M, Walrand S, et al. Biodistribution of 125I-labeled anti-endoglin antibody using SPECT/CT imaging: impact of in vivo deiodination on tumor accumulation in mice. Nucl Med Biol. 2016;43(7):415–23.Google Scholar
  90. 90.
    Pruszynski M, Koumarianou E, Vaidyanathan G, Chitneni S, Zalutsky MR. D-amino acid peptide residualizing agents bearing N-hydroxysuccinimido- and maleimido-functional groups and their application for trastuzumab radioiodination. Nucl Med Biol. 2015;42(1):19–27.PubMedGoogle Scholar
  91. 91.
    Lee FT, Burvenich IJ, Guo N, Kocovski P, Tochon-Danguy H, Ackermann U, et al. l-tyrosine confers residualizing properties to a d-amino acid-rich residualizing peptide for radioiodination of internalizing antibodies. Mol Imaging. 2016. https://doi.org/10.1177/15:1536012116647535.
  92. 92.
    van Schaijk FG, Broekema M, Oosterwijk E, van Eerd JE, McBride BJ, Goldenberg DM, et al. Residualizing iodine markedly improved tumor targeting using bispecific antibody-based pretargeting. J Nucl Med. 2005;46(6):1016–22.PubMedGoogle Scholar
  93. 93.
    Boswell CA, Marik J, Elowson MJ, Reyes NA, Ulufatu S, Bumbaca D, et al. Enhanced tumor retention of a radiohalogen label for site-specific modification of antibodies. J Med Chem. 2013;56(23):9418–26.PubMedGoogle Scholar
  94. 94.
    Vaidyanathan G, White BJ, Affleck DJ, Zhao XG, Welsh PC, McDougald D, et al. SIB-DOTA: a trifunctional prosthetic group potentially amenable for multi-modal labeling that enhances tumor uptake of internalizing monoclonal antibodies. Bioorg Med Chem. 2012;20(24):6929–39.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Albu SA, Al-Karmi SA, Vito A, Dzandzi JP, Zlitni A, Beckford-Vera D, et al. 125I-Tetrazines and inverse-electron-demand diels-alder chemistry: a convenient radioiodination strategy for biomolecule labeling, screening, and biodistribution studies. Bioconjug Chem. 2016;27(1):207–16.Google Scholar
  96. 96.
    Cavina L, van der Born D, Klaren PHM, Feiters MC, Boerman OC, Rutjes F. Design of radioiodinated pharmaceuticals: structural features affecting metabolic stability towards in vivo deiodination. Eur J Org Chem. 2017;2017(24):3387–414.Google Scholar
  97. 97.
    Genady AR, Tan J, El-Zaria ME, Zlitni A, Janzen N, Valliant JF. Reprint of: synthesis, characterization and radiolabeling of carborane-functionalized tetrazines for use in inverse electron demand Diels-Alder ligation reactions. J Organomet Chem. 2015;798:278–88.Google Scholar
  98. 98.
    DiMagno SG. US 20140275539 A1. Preparation of radioiodinated and astatinated organic compounds as imaging agents; 2014.Google Scholar
  99. 99.
    Sajjad M, Lambrecht RM, Bakr SA. Autoradiolytic decomposition of reductant-free sodium I-124 iodide and I-123 iodide. Radiochim Acta. 1990;50(1–2):123–7.Google Scholar
  100. 100.
    Sartor J, Guhlke S, Tentler M, Biersack HJ. A simple and efficient method for purification and reduction of radioiodine for pharmaceutical syntheses. J Nucl Med. 1998;39(5):143P.Google Scholar
  101. 101.
    Sahu S, Sahoo PR, Patel S, Mishra BK. Oxidation of thiourea and substituted thioureas: a review. J Sulfur Chem. 2011;32(2):171–97.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of RadiologyDuke University Medical CenterDurhamUSA
  2. 2.Departments of Radiology, Radiation Oncology, Pathology, and Biomedical EngineeringDuke University Medical CenterDurhamUSA

Personalised recommendations