The Radiopharmaceutical Chemistry of Technetium-99m

  • Stephanie M. Rathmann
  • Zainab Ahmad
  • Samantha Slikboer
  • Holly A. Bilton
  • Denis P. Snider
  • John F. ValliantEmail author


Technetium-99m (99mTc) is a radiometal that has nearly ideal nuclear properties for diagnostic nuclear medicine imaging, which has helped make it high impact and extensively utilized radionuclide in medicine. 99mTc-based imaging—which can be done using a simple gamma camera or a more advanced 3-D method known as single photon emission computed tomography (SPECT)—has been a mainstay of diagnostic nuclear medicine for decades. In this chapter, we provide an introduction to the nuclear and coordination chemistry of 99mTc, emphasizing areas that relate to its use to create radiopharmaceuticals. The ease of access to the radionuclide is described along with how one can take advantage of the many oxidation states of technetium and unique ligand environments to create a diverse array of radiopharmaceuticals. Several established clinical agents are presented as examples along with details of their structures, methods of preparation, and diagnostic utility. This discussion is followed by detailed descriptions of the procedures used to prepare and characterize selected 99mTc-labeled compounds that can be used to create the next generation of targeted radiopharmaceuticals, along with commentary on the influence of chelators on the pharmacokinetics of 99mTc-based radiotracers. Additional information concerning the characterization and evaluation of novel constructs is provided as well, including ligand challenge, stability, and other useful assays as well as how to prepare for biodistribution studies. It is important to note that this chapter was written as an introductory guide for those who are new to the field and is not a comprehensive examination of the chemistry and nuclear medicine applications of 99mTc. A more comprehensive treatment of this material can be obtained from a number of excellent review articles.


Technetium-99m Radiopharmaceuticals Chelators Targeting Practical guide 


  1. 1.
    Perrier C, Segrè E. Radioactive isotopes of element 43. Nature. 1937;140:193–4.CrossRefGoogle Scholar
  2. 2.
    Abram U, Alberto R. Technetium and rhenium – Coordination chemistry and nuclear medical applications. J Braz Chem Soc. 2006;17(8):1486–500.CrossRefGoogle Scholar
  3. 3.
    Méndez-Rojas MA, Kharisov BI, Tsivadze AY. Recent advances on technetium complexes: coordination chemistry and medical applications. J Coord Chem. 2006;59(1):1–63.CrossRefGoogle Scholar
  4. 4.
    Morais GR, Paulo A, Santos I. Organometallic complexes for SPECT imaging and/or radionuclide therapy. Organometallics. 2012;31(16):5693–714.CrossRefGoogle Scholar
  5. 5.
    Amato I. Nuclear medicine’s conundrum. Chem Eng News. 2009;87(36):58–64.CrossRefGoogle Scholar
  6. 6.
    Kluba CA, Mindt TL. Click-to-Chelate: development of technetium and rhenium-tricarbonyl labeled radiopharmaceuticals. Molecules. 2013;18(3):3206–26.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Pillai MR, Dash A, Knapp FF Jr. Sustained availability of 99mTc: possible paths forward. J Nucl Med. 2013;54(2):313–23.PubMedCrossRefGoogle Scholar
  8. 8.
    Boschi A, Martini P, Pasquali M, Uccelli L. Recent achievements in Tc-99m radiopharmaceutical direct production by medical cyclotrons. Drug Dev Ind Pharm. 2017;43(9):1402–12.PubMedCrossRefGoogle Scholar
  9. 9.
    Ross CA, Diamond WT. Predictions regarding the supply of 99Mo and 99mTc when NRU ceases production in 2018. Phys Can. 2015;71(3):131–8.Google Scholar
  10. 10.
    Jang J, Yamamoto M, Uesaka M. Design of an X-band electron linear accelerator dedicated to decentralized 99Mo/99mTc supply: From beam energy selection to yield estimation. Phys Rev Accel Beams. 2017;20(10):104701.CrossRefGoogle Scholar
  11. 11.
    Schaffer P, Bénard F, Bernstein A, Buckley K, Celler A, Cockburn N, et al. Direct production of 99mTc via 100Mo(p,2n) on small medical cyclotrons. Phys Procedia. 2015;66:383–95.CrossRefGoogle Scholar
  12. 12.
    Lebowitz E, Richards P. Radionuclide generator systems. Semin Nucl Med. 1974;4(3):257–68.PubMedCrossRefGoogle Scholar
  13. 13.
    Jones AG, Davison A. The chemistry of technetium I, II, III and IV. Int J Appl Radiat Isot. 1982;33(10):867–74.CrossRefGoogle Scholar
  14. 14.
    Papagiannopoulou D. Technetium-99m radiochemistry for pharmaceutical applications. J Label Compd Radiopharm. 2017;60(11):502–20.CrossRefGoogle Scholar
  15. 15.
    Technetium-99m Radiopharmaceuticals: Manufacture of Kits. International Atomic Energy Agency, 2008. Technical Reports Report No.: 466.Google Scholar
  16. 16.
    Wong E, Fauconnier T, Bennett S, Valliant J, Nguyen T, Lau F, et al. Rhenium(V) and technetium(V) oxo complexes of an N2N’S peptidic chelator: evidence of interconversion between the syn and anti conformations. Inorg Chem. 1997;36(25):5799–808.PubMedCrossRefGoogle Scholar
  17. 17.
    Alberto R, Schibli R, Egli A, Schubiger AP, Abram U, Kaden TA. A Novel organometallic aqua complex of technetium for the labeling of biomolecules: synthesis of [99mTc(OH2)3(CO)3]+ from [99mTcO4] in aqueous solution and its reaction with a bifunctional ligand. J Am Chem Soc. 1998;120(31):7987–8.CrossRefGoogle Scholar
  18. 18.
    Alberto R, Schibli R, Egli A, Schubiger PA, Herrmann WA, Artus G, et al. Metal-carbonyl syntheses XXII. Low-pressure carbonylation of [MOCl4)] and [Mo4]: the technetium(I) and rhenium(I) complexes [NEt4]2[MCl3(CO3]. J Organomet Chem. 1995;493(1–2):119.Google Scholar
  19. 19.
    Egli A, Alberto R, Tannahill L, Schibli R, Abram U, Schaffland A, et al. Organometallic 99mTc-aquaion labels peptide to an unprecedented high specific activity. J Nucl Med. 1999;40(11):1913–7.PubMedGoogle Scholar
  20. 20.
    Schibli R, Schwarzbach R, Alberto R, Ortner K, Schmalle H, Dumas C, et al. Steps toward high specific activity labeling of biomolecules for therapeutic application: preparation of precursor [188Re(H2O)3(CO)3]+ and synthesis of tailor-made bifunctional ligand systems. Bioconjug Chem. 2002;13(4):750–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Deutsch E, Libson K, Vanderheyden JL, Ketring AR, Maxon HR. The chemistry of rhenium and technetium as related to the use of isotopes of these elements in therapeutic and diagnostic nuclear medicine. Int J Rad Appl Instrum B. 1986;13(4):465–77.PubMedCrossRefGoogle Scholar
  22. 22.
    Farwell MD, Pryma DA, Mankoff DA. PET/CT imaging in cancer: current applications and future directions. Cancer. 2014;120(22):3433–45.PubMedCrossRefGoogle Scholar
  23. 23.
    Zolle I, editor. Technetium-99m pharmaceuticals: preparation and quality control in nuclear medicine. Berlin/Heidelberg: Springer; 2007.Google Scholar
  24. 24.
    Coover LR. The role of technetium tc 99m sestamibi in the early detection of breast carcinoma. Hosp Physician. 1999;35(2):16–21.Google Scholar
  25. 25.
    Berman DS, Kiat H, Friedman JD, Wang FP, Van Train K, Matzer L, et al. Separate acquisition rest thallium-201/stress technetium-99m sestamibi dual-isotope myocardial perfusion single-photon emission computed tomography: a clinical validation study. J Am Coll Cardiol. 1993;22(5):1455–64.PubMedCrossRefGoogle Scholar
  26. 26.
    Wackers FJ, Berman DS, Maddahi J, Watson DD, Beller GA, Strauss HW, et al. Technetium-99m hexakis 2-methoxyisobutyl isonitrile: human biodistribution, dosimetry, safety, and preliminary comparison to thallium-201 for myocardial perfusion imaging. J Nucl Med. 1989;30(3):301–11.PubMedGoogle Scholar
  27. 27.
    Yaes RJ. Clinical review, Tc 99m Sestamibi. U.S. Food and Drug Administration 2 Apr 2008. NDA 19-785. Accessed 7 Apr 2018.
  28. 28.
    Kelly JD, Forster AM, Higley B, Archer CM, Booker FS, Canning LR, et al. Technetium-99m-tetrofosmin as a new radiopharmaceutical for myocardial perfusion imaging. J Nucl Med. 1993;34(2):222–7.PubMedGoogle Scholar
  29. 29.
    Sinusas AJ, Shi Q, Saltzberg MT, Vitols P, Jain D, Wackers FJ, et al. Technetium-99m-tetrofosmin to assess myocardial blood flow: experimental validation in an intact canine model of ischemia. J Nucl Med. 1994;35(4):664–71.PubMedCrossRefGoogle Scholar
  30. 30.
    Myoview 30 mL Kit for the preparation of technetium Tc99m tetrofosmin for Injection. GE Healthcare. 2011. Accessed Oct 2017.
  31. 31.
    Yazdani A, Bilton H, Vito A, Genady AR, Rathmann SM, Ahmad Z, et al. A bone-seeking trans-cyclooctene for pretargeting and bioorthogonal chemistry: a proof of concept study using 99mTc- and 177Lu-labeled tetrazines. J Med Chem. 2016;59(20):9381–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Jurisson S, Berning D, Jia W, Ma DS. Coordination-compounds in nuclear-medicine. Chem Rev. 1993;93(3):1137–56.CrossRefGoogle Scholar
  33. 33.
    Libson K, Deutsch E, Barnett BL. Structural characterization of a technetium-99-diphosphonate complex. Implications for the chemistry of technetium-99m skeletal imaging agents. J Am Chem Soc. 1980;102(7):2476–8.CrossRefGoogle Scholar
  34. 34.
    Atkins HL. Radiopharmaceuticals. Phys Rep. 1975;21(6):315–67.CrossRefGoogle Scholar
  35. 35.
    Junankar S, Shay G, Jurczyluk J, Ali N, Down J, Pocock N, et al. Real-time intravital imaging establishes tumor-associated macrophages as the extraskeletal target of bisphosphonate action in cancer. Cancer Discov. 2015;5(1):35–42.PubMedCrossRefGoogle Scholar
  36. 36.
    DMSA kit for the preparation of technetium Tc99m Succimer Injection. GE Healthcare. 2006. Accessed Oct 2017.
  37. 37.
    Handmaker H, Young BW, Lowenstein JM. Clinical experience with 99mTc-DMSA (dimercaptosuccinic acid), a new renal-imaging agent. J Nucl Med. 1975;16(1):28–32.PubMedGoogle Scholar
  38. 38.
    de Lange MJ, Piers DA, Kosterink JG, van Luijk WH, Meijer S, de Zeeuw D, et al. Renal handling of technetium-99m DMSA: evidence for glomerular filtration and peritubular uptake. J Nucl Med. 1989;30(7):1219–23.PubMedGoogle Scholar
  39. 39.
    Draximage DTPA kit for the preparation of technetium Tc99m pentate injection. GE Healthcare. 2016. Accessed Oct 2017.
  40. 40.
    Kabasakal L. Technetium-99m ethylene dicysteine: a new renal tubular function agent. Eur J Nucl Med. 2000;27(3):351–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Technescan MAG3 kit for the preparation of technetium Tc99m mertiatide. Curium Pharma. 2015. Accessed Oct 2017.
  42. 42.
    Klingensmith WC 3rd, Briggs DE, Smith WI. Technetium-99m-MAG3 renal studies: normal range and reproducibility of physiologic parameters as a function of age and sex. J Nucl Med. 1994;35(10):1612–7.PubMedGoogle Scholar
  43. 43.
    Eshima D, Fritzberg AR, Taylor A Jr. 99mTc renal tubular function agents: current status. Semin Nucl Med. 1990;20(1):28–40.PubMedCrossRefGoogle Scholar
  44. 44.
    Jurgens S, Herrmann WA, Kuhn FE. Rhenium and technetium based radiopharmaceuticals: development and recent advances. J Organomet Chem. 2014;751:83–9.CrossRefGoogle Scholar
  45. 45.
    Ponto JA. Mechanisms of radiopharmaceutical localization (Norenberg J, editor). Albuquerque: University of New Mexico College of Pharmacy 2012;16(4). Program No. 0039-000-12-164-H04-P 2.5.Google Scholar
  46. 46.
    Ceretec kit for the preparation of technetium Tc99m exametazime injection. GE Healthcare. 2013. Accessed Oct 2017.
  47. 47.
    Neirinckx RD, Canning LR, Piper IM, Nowotnik DP, Pickett RD, Holmes RA, et al. Technetium-99m d,l-HM-PAO: a new radiopharmaceutical for SPECT imaging of regional cerebral blood perfusion. J Nucl Med. 1987;28(2):191–202.PubMedGoogle Scholar
  48. 48.
    Robins PD, Salazar I, Forstrom LA, Mullan BP, Hung JC. Biodistribution and radiation dosimetry of stabilized 99mTc-exametazine-labeled leukocytes in normal subjects. J Nucl Med. 2000;41(5):934–40.PubMedGoogle Scholar
  49. 49.
    Chervu LR, Nunn AD, Loberg MD. Radiopharmaceuticals for hepatobiliary imaging. Semin Nucl Med. 1982;12(1):5–17.PubMedCrossRefGoogle Scholar
  50. 50.
    Krishnamurthy GT, Turner FE. Pharmacokinetics and clinical application of technetium 99m-labeled hepatobiliary agents. Semin Nucl Med. 1990;20(2):130–49.PubMedCrossRefGoogle Scholar
  51. 51.
    Weissmann HS, Frank MS, Bernstein LH, Freeman LM. Rapid and accurate diagnosis of acute cholecystitis with 99mTc-HIDA cholescintigraphy. AJR Am J Roentgenol. 1979;132(4):523–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Neurolite kit for the preparation of technetium Tc99m bicisate for injection. Lantheus Medical Imaging. 2015. Accessed Oct 2017.
  53. 53.
    Vanbilloen HP, Cleynhens BJ, Verbruggen AM. Importance of the two ester functions for the brain retention of 99mTc-labelled ethylene dicysteine diethyl ester (99mTc-ECD). Nucl Med Biol. 1998;25(6):569–75.PubMedCrossRefGoogle Scholar
  54. 54.
    Vallabhajosula S, Zimmerman RE, Picard M, Stritzke P, Mena I, Hellman RS, et al. Technetium-99m ECD: a new brain imaging agent: in vivo kinetics and biodistribution studies in normal human subjects. J Nucl Med. 1989;30(5):599–604.PubMedGoogle Scholar
  55. 55.
    Kit for the preparation of technetium Tc 99m sulfur colloid injection. Rev. 1.1 Pharmalucence. 2013. Accessed Oct 2017.
  56. 56.
    Michenfelder MM, Bartlett LJ, Mahoney DW, Herold TJ, Hung JC. Particle-size and radiochemical purity evaluations of filtered 99mTc-sulfur colloid prepared with different heating times. J Nucl Med Technol. 2014;42(4):283–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Kern KA, Rosenberg RJ. Preoperative lymphoscintigraphy during lymphatic mapping for breast cancer: improved sentinel node imaging using subareolar injection of technetium 99m sulfur colloid. J Am Coll Surg. 2000;191(5):479–89.PubMedCrossRefGoogle Scholar
  58. 58.
    Dewanjee MK. The chemistry of 99mTc-labeled radiopharmaceuticals. Semin Nucl Med. 1990;20(1):5–27.PubMedCrossRefGoogle Scholar
  59. 59.
    Maresca KP, Marquis JC, Hillier SM, Lu G, Femia FJ, Zimmerman CN, et al. Novel polar single amino acid chelates for technetium-99m tricarbonyl-based radiopharmaceuticals with enhanced renal clearance: application to octreotide. Bioconjug Chem. 2010;21(6):1032–42.PubMedCrossRefGoogle Scholar
  60. 60.
    Meszaros LK, Dose A, Biagini SCG, Blower PJ. Hydrazinonicotinic acid (HYNIC) – Coordination chemistry and applications in radiopharmaceutical chemistry. Inorg Chim Acta. 2010;363(6):1059–69.CrossRefGoogle Scholar
  61. 61.
    Ogawa K, Mukai T, Inoue Y, Ono M, Saji H. Development of a novel 99mTc-chelate-conjugated bisphosphonate with high affinity for bone as a bone scintigraphic agent. J Nucl Med. 2006;47(12):2042–7.PubMedGoogle Scholar
  62. 62.
    Zhang XY, Yu PR, Yang YP, Hou YQ, Peng C, Liang ZG, et al. 99mTc-labeled 2-arylbenzothiazoles: a beta imaging probes with favorable brain pharmacokinetics for single-photon emission computed tomography. Bioconjug Chem. 2016;27(10):2493–504.PubMedCrossRefGoogle Scholar
  63. 63.
    Eckelman W, Richards P. Instant 99mTc-DTPA. J Nucl Med. 1970;11(12):761.PubMedGoogle Scholar
  64. 64.
    Abrams MJ, Juweid M, tenKate CI, Schwartz DA, Hauser MM, Gaul FE, et al. Technetium-99m-human polyclonal IgG radiolabeled via the hydrazino nicotinamide derivative for imaging focal sites of infection in rats. J Nucl Med. 1990;31(12):2022–8.PubMedGoogle Scholar
  65. 65.
    Garcia MF, Zhang X, Shah M, Newton-Northup J, Cabral P, Cerecetto H, et al. 99mTc-bioorthogonal click chemistry reagent for in vivo pretargeted imaging. Bioorg Med Chem. 2016;24(6):1209–15.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    von Guggenberg E, Behe M, Behr TM, Saurer M, Seppi T, Decristoforo C. 99mTc-labeling and in vitro and in vivo evaluation of HYNIC- and (Na-His)acetic acid-modified [D-Glu1]-minigastrin. Bioconjug Chem. 2004;15(4):864–71.CrossRefGoogle Scholar
  67. 67.
    Babich JW, Solomon H, Pike MC, Kroon D, Graham W, Abrams MJ, et al. Technetium-99m-labeled hydrazino nicotinamide derivatized chemotactic peptide analogs for imaging focal sites of bacterial infection. J Nucl Med. 1993;34(11):1964–74.PubMedGoogle Scholar
  68. 68.
    Faintuch BL, Santos RLSR, Souza ALFM, Hoffman TJ, Greeley M, Smith CJ. 99mTc-HYNIC-Bombesin (7–14)NH2: Radiochemical evaluation with co-ligands EDDA (EDDA = ethylenediamine-N,N ′-diacetic acid), tricine, and nicotinic acid. Synth React Inorg Met Org Chem. 2005;35(1):43–51.CrossRefGoogle Scholar
  69. 69.
    Vito A, Alarabi H, Czorny S, Beiraghi O, Kent J, Janzen N, et al. A 99mTc-labelled tetrazine for bioorthogonal chemistry. synthesis and biodistribution studies with small molecule trans-cyclooctene derivatives. PLoS One. 2016;11(12):e0167425.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    von Guggenberg E, Sarg B, Lindner H, Alafort LM, Mather SJ, Moncayo R, et al. Preparation via coligand exchange and characterization of [99mTc-EDDA-HYNIC-D-Phe1,Tyr3]octreotide (99mTc-EDDA/HYNIC-TOC). J Label Compd Radiopharm. 2003;46(4):307–18.CrossRefGoogle Scholar
  71. 71.
    Alberto R, Schibli R, Schubiger AP, Abram U, Pietzsch HJ, Johannsen B. First application of fac-[99mTc(OH2)3(CO)3]+ in bioorganometallic chemistry: design, structure, and in vitro affinity of a 5-HT1A receptor ligand labeled with 99mTc. J Am Chem Soc. 1999;121(25):6076–7.CrossRefGoogle Scholar
  72. 72.
    Bilton HA, Ahmad Z, Janzen N, Czorny S, Valliant JF. Preparation and evaluation of 99mTc-labeled tridentate chelates for pre-targeting using bioorthogonal chemistry. J Vis Exp. 2017;120:e55188.Google Scholar
  73. 73.
    Goffin KE, Joniau S, Tenke P, Slawin K, Klein EA, Stambler N, et al. Phase 2 study of 99mTc-trofolastat SPECT/CT to identify and localize prostate cancer in intermediate- and high-risk patients undergoing radical prostatectomy and extended pelvic LN dissection. J Nucl Med. 2017;58(9):1408–13.PubMedCrossRefGoogle Scholar
  74. 74.
    Banerjee SR, Levadala MK, Lazarova N, Wei L, Valliant JF, Stephenson KA, et al. Bifunctional single amino acid chelates for labeling of biomolecules with the {Tc(CO)3}+ and {Re(CO)3}+ Cores. Crystal and molecular structures of [ReBr(CO)3(H2NCH2C5H4N)], [ReCO)3{(C5H4NCH2)2NH}]Br, [Re(CO)3{(C5H4NCH2)2NCH2CO2H}]Br, [Re(CO)3{X(Y)NCH2CO2CH2CH3}]Br (X =Y = 2-pyridylmethyl; X = 2-pyridylmethyl, Y = 2-(1-methylimidazolyl)methyl; X = Y ) 2-(1-methylimidazolyl)methyl), [ReBr(CO)3{(C5H4NCH2)NH(CH2C4H3S)}], and [Re(CO)3{(C5H4NCH2)N(CH2C4H3S)(CH2CO2)}]. Inorg Chem. 2002;41(24):6417–6425.Google Scholar
  75. 75.
    Bayly SR, Fisher CL, Storr T, Adam MJ, Orvig C. Carbohydrate conjugates for molecular imaging and radiotherapy: Tc-99m(I) and Re-186(I) tricarbonyl complexes of N-(2′-hydroxybenzyl)-2-amino-2-deoxy-D-glucose. Bioconjug Chem. 2004;15(4):923–6.PubMedCrossRefGoogle Scholar
  76. 76.
    Karagiorgou O, Patsis G, Pelecanou M, Raptopoulou CP, Terzis A, Siatra-Papastaikoudi T, et al. (S)-(2-(2′-Pyridyl)ethyl)cysteamine and (S)-(2-(2′-pyridyl)ethyl)-d,l-homocysteine as ligands for the “fac-[M(CO)3]+” (M = Re, 99mTc) core. Inorg Chem. 2005;44(12):4118–20.PubMedCrossRefGoogle Scholar
  77. 77.
    Lazarova N, Babich J, Valliant J, Schaffer P, James S, Zubieta J. Thiol- and thioether-based bifunctional chelates for the [M(CO)3]+ core (M = Tc, Re). Inorg Chem. 2005;44(19):6763–70.PubMedCrossRefGoogle Scholar
  78. 78.
    Liu Y, Pak JK, Schmutz P, Bauwens M, Mertens J, Knight H, et al. Amino acids labeled with [99mTc(CO)3]+ and recognized by the L-type amino acid transporter LAT1. J Am Chem Soc. 2006;128(50):15996–7.PubMedCrossRefGoogle Scholar
  79. 79.
    Schweinsberg C, Maes V, Brans L, Blauenstein P, Tourwe DA, Schubiger PA, et al. Novel glycated [99mTc(CO)3]-labeled bombesin analogues for improved targeting of gastrin-releasing peptide receptor-positive tumors. Bioconjug Chem. 2008;19(12):2432–9.PubMedCrossRefGoogle Scholar
  80. 80.
    Banerjee SR, Pullambhatla M, Foss CA, Falk A, Byun Y, Nimmagadda S, et al. Effect of chelators on the pharmacokinetics of Tc-99m-labeled imaging agents for the prostate-specific membrane antigen (PSMA). J Med Chem. 2013;56(15):6108–21.PubMedCentralCrossRefPubMedGoogle Scholar
  81. 81.
    Hillier SM, Maresca KP, Lu G, Merkin RD, Marquis JC, Zimmerman CN, et al. 99mTc-labeled small-molecule inhibitors of prostate-specific membrane antigen for molecular imaging of prostate cancer. J Nucl Med. 2013;54(8):1369–76.PubMedCrossRefGoogle Scholar
  82. 82.
    Jiang H, Kasten BB, Liu H, Qi S, Liu Y, Tian M, et al. Novel, cysteine-modified chelation strategy for the incorporation of [MI(CO)3]+(M = Re, 99mTc) in an α-MSH peptide. Bioconjug Chem. 2012;23(11):2300–12.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Alberto R, Ortner K, Wheatley N, Schibli R, Schubiger AP. Synthesis and properties of boranocarbonate: a convenient in situ co source for the aqueous preparation of [99mTc(OH2)3(CO)3]+. J Am Chem Soc. 2001;123(13):3135–6.PubMedCrossRefGoogle Scholar
  84. 84.
    Wilson AA, Jin L, Garcia A, DaSilva JN, Houle S. An admonition when measuring the lipophilicity of radiotracers using counting techniques. Appl Radiat Isot. 2001;54(2):203–8.PubMedCrossRefGoogle Scholar
  85. 85.
    Stein WH, Moore S. The free amino acids of human blood plasma. J Biol Chem. 1954;211(2):915–26.PubMedGoogle Scholar
  86. 86.
    Schibli R, La Bella R, Alberto R, Garcia-Garayoa E, Ortner K, Abram U, et al. Influence of the denticity of ligand systems on the in vitro and in vivo behavior of 99mtc(i)-tricarbonyl complexes: a hint for the future functionalization of biomolecules. Bioconjug Chem. 2000;11(3):345–51.PubMedCrossRefGoogle Scholar
  87. 87.
    Eckelman WC, Kilbourn MR, Joyal JL, Labiris R, Valliant JF. Justifying the number of animals for each experiment. Nucl Med Biol. 2007;34(3):229–32.PubMedCrossRefGoogle Scholar
  88. 88.
    Jones AG, Abrams MJ, Davison A, Brodack JW, Toothaker AK, Adelstein SJ, et al. Biological studies of a new class of technetium complexes: the hexakis(alkylisonitrile)technetium(I) cations. Int J Nucl Med Biol. 1984;11(3–4):225–34.PubMedCrossRefGoogle Scholar
  89. 89.
    Brown RP, Delp MD, Lindstedt SL, Rhomberg LR, Beliles RP. Physiological parameter values for physiologically based pharmacokinetic models. Toxicol Ind Health. 1997;13(4):407–84.PubMedCrossRefGoogle Scholar
  90. 90.
    Psimadas D, Baldi G, Ravagli C, Bouziotis P, Xanthopoulos S, Franchini MC, et al. Preliminary evaluation of a 99mTc labeled hybrid nanoparticle bearing a cobalt ferrite core: in vivo biodistribution. J Biomed Nanotechnol. 2012;8(4):575–85.PubMedCrossRefGoogle Scholar
  91. 91.
    Kendi AT, Moncayo VM, Nye JA, Galt JR, Halkar R, Schuster DM. Radionuclide therapies in molecular imaging and precision medicine. PET clin. 2017;12(1):93–103.PubMedCrossRefGoogle Scholar
  92. 92.
    Banerjee SR, Foss CA, Castanares M, Mease RC, Byun Y, Fox JJ, et al. Synthesis and evaluation of technetium-99m- and rhenium-labeled inhibitors of the prostate-specific membrane antigen (PSMA). J Med Chem. 2008;51(15):4504–17.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Mindt TL, Struthers H, Brans L, Anguelov T, Schweinsberg C, Maes V, et al. “Click to chelate”: synthesis and installation of metal chelates into biomolecules in a single step. J Am Chem Soc. 2006;128(47):15096–7.PubMedCrossRefGoogle Scholar
  94. 94.
    Morais M, Oliveira BL, Correia JD, Oliveira MC, Jimenez MA, Santos I, et al. Influence of the bifunctional chelator on the pharmacokinetic properties of 99mTc(CO)3-labeled cyclic a-melanocyte stimulating hormone analog. J Med Chem. 2013;56(5):1961–73.PubMedCrossRefGoogle Scholar
  95. 95.
    Scherr D, Karnes J, Slawin K, Keane T, Trabulsi E, Ellis W, et al. A phase 2 study with MIP-1404 in men with high-risk PC scheduled for RP and EPLND compared to histopathology. 2012. Acceessed 8 Apr 2018.
  96. 96.
    Vallabhajosula S, Nikolopoulou A, Babich JW, Osborne JR, Tagawa ST, Lipai I, et al. 99mTc-labeled small-molecule inhibitors of prostate-specific membrane antigen: pharmacokinetics and biodistribution studies in healthy subjects and patients with metastatic prostate cancer. J Nucl Med. 2014;55(11):1791–8.PubMedCrossRefGoogle Scholar
  97. 97.
    Altman DG, Bland JM. Diagnostic tests. 1: sensitivity and specificity. BMJ. 1994;308(6943):1552.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Robu S, Schottelius M, Eiber M, Maurer T, Gschwend J, Schwaiger M, et al. Preclinical evaluation and first patient application of 99mTc-PSMA-I&S for SPECT imaging and radioguided surgery in prostate cancer. J Nucl Med. 2017;58(2):235–42.PubMedCrossRefGoogle Scholar
  99. 99.
    Buchmann I, Henze M, Engelbrecht S, Eisenhut M, Runz A, Schafer M, et al. Comparison of 68Ga-DOTATOC PET and 111In-DTPAOC (Octreoscan) SPECT in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2007;34(10):1617–26.PubMedCrossRefGoogle Scholar
  100. 100.
    Shi W, Johnston CF, Buchanan KD, Ferguson WR, Laird JD, Crothers JG, et al. Localization of neuroendocrine tumours with [111In] DTPA-octreotide scintigraphy (Octreoscan): a comparative study with CT and MR imaging. QJM. 1998;91(4):295–301.PubMedCrossRefGoogle Scholar
  101. 101.
    Srirajaskanthan R, Kayani I, Quigley AM, Soh J, Caplin ME, Bomanji J. The role of 68Ga-DOTATATE PET in patients with neuroendocrine tumors and negative or equivocal findings on 111In-DTPA-octreotide scintigraphy. J Nucl Med. 2010;51(6):875–82.PubMedCrossRefGoogle Scholar
  102. 102.
    Wild D, Bomanji JB, Benkert P, Maecke H, Ell PJ, Reubi JC, et al. Comparison of 68Ga-DOTANOC and 68Ga-DOTATATE PET/CT within patients with gastroenteropancreatic neuroendocrine tumors. J Nucl Med. 2013;54(3):364–72.PubMedCrossRefGoogle Scholar
  103. 103.
    Behera A, De K, Chandra S, Chattopadhyay S, Misra M. Synthesis, radiolabelling and biodistribution of HYNIC-Tyr3 octreotide: a somatostatin receptor positive tumour imaging agent. J Radioanal Nucl Chem. 2011;290(1):123–9.CrossRefGoogle Scholar
  104. 104.
    Gao S, Ma Q, Wen Q, Jia B, Liu Z, Chen Z, et al. 99mTc-3P4-RGD2 radiotracers for SPECT/CT of esophageal tumor. Nucl Sci Tech. 2013;24(4):040302.Google Scholar
  105. 105.
    Huang C, Zheng Q, Miao W. Study of novel molecular probe 99mTc-3PRGD2 in the diagnosis of rheumatoid arthritis. Nucl Med Commun. 2015;36(12):1208–14.PubMedCrossRefGoogle Scholar
  106. 106.
    Ma Q, Chen B, Gao S, Ji T, Wen Q, Song Y, et al. 99mTc-3P4-RGD2 scintimammography in the assessment of breast lesions: comparative study with 99mTc-MIBI. PLoS One. 2014;9(9):e108349.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Jia B, Liu Z, Zhu Z, Shi J, Jin X, Zhao H, et al. Blood clearance kinetics, biodistribution, and radiation dosimetry of a kit-formulated integrin αvβ3-selective radiotracer 99mTc-3PRGD2 in non-human primates. Mol Imaging Biol. 2011;13(4):730–6.PubMedCrossRefGoogle Scholar
  108. 108.
    Chen B, Zhao G, Ma Q, Ji B, Ji T, Xin H, et al. 99mTc-3P-RGD2 SPECT to monitor early response to bevacizumab therapy in patients with advanced non-small cell lung cancer. Int J Clin Exp Pathol. 2015;8(12):16064–72.PubMedPubMedCentralGoogle Scholar
  109. 109.
    Xu X, Zhang J, Hu S, He S, Bao X, Ma G, et al. 99mTc-labeling and evaluation of a HYNIC modified small-molecular inhibitor of prostate-specific membrane antigen. Nucl Med Biol. 2017;48:69–75.PubMedCrossRefGoogle Scholar
  110. 110.
    Li L, Wu Y, Wang Z, Jia B, Hu Z, Dong C, et al. SPECT/CT imaging of the novel HER2-targeted peptide probe 99mTc-HYNIC-H6F in breast cancer mouse models. J Nucl Med. 2017;58(5):821–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Stephanie M. Rathmann
    • 1
  • Zainab Ahmad
    • 1
  • Samantha Slikboer
    • 1
  • Holly A. Bilton
    • 1
  • Denis P. Snider
    • 1
  • John F. Valliant
    • 1
    Email author
  1. 1.Department of Chemistry and Chemical BiologyMcMaster UniversityHamiltonCanada

Personalised recommendations