Advertisement

The Radiopharmaceutical Chemistry of Fluorine-18: Electrophilic Fluorinations

  • Michael Wagner
  • Frank WuestEmail author
Chapter

Abstract

Electrophilic radiofluorinations were among the first labeling methods used for the preparation of some of the most important 18F-labeled radiopharmaceuticals, including 2-[18F]fluorodeoxyglucose (2-[18F]FDG) and 6-[18F]fluoro-3,4-dihydroxy-L-phenylalanine (6-[18F]F-DOPA). Despite recent advances in conventional electrophilic fluorination chemistry with 19F, several technical challenges associated with fluorine-18 have limited the application of these approaches to electrophilic radiofluorinations. Along these lines, two particularly important obstacles are the production of 18F-labeled radiopharmaceuticals with low molar activity and the maximum theoretical radiochemical yield of only 50% for electrophilic radiofluorinations starting from [18F]F2 or secondary labeling precursors. Over the last 20 years, a great deal of work has been dedicated to improving the utility of electrophilic radiofluorination chemistry, with special emphasis on (1) developing novel 18F-labeled electrophilic fluorination agents with improved reactivity-selectivity profiles and (2) increasing the specific activity of 18F-labeled compounds produced via electrophilic radiofluorination chemistry. The chapter will provide an overview of the fundamentals of electrophilic radiofluorination chemistry, followed by an introduction to typical electrophilic labeling agents as well as the use of these reagents for electrophilic 18F-radiofluorinations and 18F-fluorodemetallation reactions. The final part of the chapter will discuss recent developments based on the umpolung of high molar activity nucleophilic [18F]F into electrophilic 18F+-based synthons to expand the scope and utility of electrophilic 18F-fluorination chemistry.

Keywords

Fluorine-18 Electrophilic radiofluorinations Umpolung Radiopharmaceuticals 

References

  1. 1.
    Ido T, Wan CN, Casella V, Fowler JS, Wolf AP. Labeled 2-deoxy-D-glucose analogs. 18F-labeled 2-deoxy-2-fluoro-D-glucose, 2-deoxy-2-fluoro-D-mannose and 14C-2-deoxy-2-fluoro-D-glucose. J Labelled Comp Radiopharm. 1978;14(2):175–83.CrossRefGoogle Scholar
  2. 2.
    Garnett ES, Firnau G, Nahmias C. Dopamine visualized in the basal ganglia of living man. Nature. 1983;305(5930):137–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Qaim SM. Cyclotron production of medical radionuclides. In: Vértes A, Nagy S, Klencsár Z, Lovas RG, Rösch F, editors. Handbook of nuclear chemistry, vol. 4. 2nd ed. Dordrecht: Springer Science+Business Media BV; 2011. p. 1903–34.CrossRefGoogle Scholar
  4. 4.
    Hess E, Blessing G, Coenen HH, Qaim SM. Improved target system for production of high purity [18F]fluorine via the 18O(p,n)18F reaction. Appl Radiat Isot. 2000;52(6):1431–40.PubMedCrossRefGoogle Scholar
  5. 5.
    Blessing G, Coenen HH, Franken K, Qaim SM. Production of [18F]F2, H18F and 18F aq using the 20Ne(d, α)18F process. Appl Radiat Isot. 1986;37(11):1135–9.CrossRefGoogle Scholar
  6. 6.
    Kim DW. Bioorthogonal click chemistry for fluorine-18 labeling protocols under physiologically friendly reaction condition. J Fluor Chem. 2015;174:142–7.CrossRefGoogle Scholar
  7. 7.
    Liang T, Neumann CN, Ritter T. Introduction of fluorine and fluorine-containing functional groups. Angew Chem Int Ed Engl. 2013;52(32):8214–64.PubMedCrossRefGoogle Scholar
  8. 8.
    Hollingworth C, Gouverneur V. Transition metal catalysis and nucleophilic fluorination. Chem Commun (Camb). 2012;48(24):2929–42.CrossRefGoogle Scholar
  9. 9.
    Lerman O, Rozen S. Acetyl hypofluorite, a new moderating carrier of elemental fluorine and its use in fluorination of 1,3-dicarbonyl derivatives. J Org Chem. 1983;48(5):724–7.CrossRefGoogle Scholar
  10. 10.
    Ehrenkaufer RE, MacGregor RR. Synthesis of [18F]perchloryl fluoride and its reaction with functionalized aryl lithiums. Int J Appl Radiat Isot. 1983;34(3):613–5.CrossRefGoogle Scholar
  11. 11.
    Hiller A, Fischer C, Jordanova A, Patt JT, Steinbach J. Investigations to the synthesis of n.c.a. [18F]FClO3 as electrophilic fluorination agent. Appl Radiat Isot. 2008;66:152–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Neirincx RD, Lambrecht RM, Wolf AP. Cyclotron isotopes and radiopharmaceuticals – XXV. An anhydrous 18F-fluorinating intermediate: Trifluormethyl hypofluorite. Int J Appl Radiat Isot. 1978;29:323–7.CrossRefGoogle Scholar
  13. 13.
    Oberdorfer F, Hofmann E, Maier-Borst W. Preparation of 18F-labeled N-fluoropyridinium triflate. J Label Compd Radiopharm. 1988;25(9):999–1005.CrossRefGoogle Scholar
  14. 14.
    Oberdorfer F, Hofmann E, Maier-Borst W. Preparation of a new 18F-labelled precursor: 1-[18F]fluoro-2-pyridone. Appl Radiat Isot. 1988;39(7):685–8.CrossRefGoogle Scholar
  15. 15.
    Satyamurthy N, Bida GT, Phelps ME, Barrio JR. N-[18F]Fluoro-N-alkylsulfonamides: Novel reagents for mild and regioselective radiofluorination. Appl Radiat Isot. 1990;41(8):733–8.CrossRefGoogle Scholar
  16. 16.
    Schrobilgen G, Firnau G, Chirakal R, Garnett ES. Synthesis of [18F]XeF2, a novel agent for the preparation of 18F-radiopharmaceuticals. J Chem Soc Chem Commun. 1981;4:198–9.Google Scholar
  17. 17.
    Constantinou M, Aigbirhio FI, Smith RG, Ramsden CA, Pike VW. Xenon difluoride exchanges fluoride: a simple preparation of [18F]xenon difluoride for PET and mechanistic studies. J Am Chem Soc. 2001;123:1780–1.PubMedCrossRefGoogle Scholar
  18. 18.
    Lu S, Pike VW. Synthesis of [18F]xenon difluoride as a radiolabeling reagent from [18F]fluoride ion in a micro-reactor and at a production scale. J Fluor Chem. 2010;131:1032–8.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Teare H, Robins EG, Årstad E, Luthra SK, Gouverneur V. Synthesis and reactivity of [18F]-N-Fluorobenzenesulfonimide. Chem Commun. 2007;22:2330–2.Google Scholar
  20. 20.
    Stenhagen ISR, Kirjavainen AK, Forsback SJ, Jørgensen CG, Robins EG, Luthra SK, et al. [18F]Fluorination of an arylboronic ester using [18F]selectfluor bis(triflate): application to 6-[18F]fluoro-L-DOPA. Chem Commun. 2013;49:1386–8.CrossRefGoogle Scholar
  21. 21.
    Teare H, Robins EG, Kirjavainen A, Forsback S, Sandford G, Solin O, et al. Radiosynthesis and evaluation of [18F]selectfluor bis(triflate). Angew Chem Int Ed. 2010;49:6821–4.CrossRefGoogle Scholar
  22. 22.
    Firnau G, Chirakal R, Garnett ES. Aromatic radiofluorination with [18F]fluorine gas: 6-[18F]fluoro-L-dopa. J Nucl Med. 1984;25(11):1228–33.PubMedGoogle Scholar
  23. 23.
    Ogawa M, Hatano K, Oishi S, Kawasumi Y, Fujii N, Kawaguchi M, Doi R, Imamura M, Yamamoto M, Ajito K, Mukai T, Saji H, Ito K. Direct electrophilic radiofluorination of a cyclic RGD peptide for in vivo alpha(v)beta3 integrin related tumor imaging. Nucl Med Biol. 2003;30(1):1–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Coenen HH, Moerlein SM. Regiospecific aromatic fluorodemetallation of group IVb metalloarenes using elemental fluorine or acetyl hypofluoride. J Fluor Chem. 1987;36:63–75.CrossRefGoogle Scholar
  25. 25.
    Adam MJ, Jivan S. Synthesis and purification of L-6-[18F]fluorodopa. Int J Rad Appl Instrum A. 1988;39(12):1203–6.CrossRefGoogle Scholar
  26. 26.
    Luxen A, Perlmutter M, Bida GT, Van Moffaert G, Cook JS, Satyamurthy N, Phelps ME, Barrio JR. Remote, semiautomated production of 6-[18F]fluoro-L-dopa for human studies with PET. Int J Rad Appl Instrum A. 1990;41(3):275–81.PubMedCrossRefGoogle Scholar
  27. 27.
    Dolle F, Demphel S, Hinnen F, Fournier D, Vaufrey F, Crouzel C. 6-[18F]Fluoro-L-DOPA by radio-fluorodestannylation: A short and simple synthesis of a new labelling precursor. J Labelled Comp Radiopharm. 1998;41:105.CrossRefGoogle Scholar
  28. 28.
    de Vries EF, Luurtsema G, Brüssermann M, Elsinga PH, Vaalburg W. Fully automated synthesis module for the high yield one-pot preparation of 6-[18F]fluoro-L-DOPA. Appl Radiat Isot. 1999;51:389–94.CrossRefGoogle Scholar
  29. 29.
    Namavari M, Bishop A, Satyamurthy N, Bida G, Barrio JR. Regioselective radiofluorodestannylation with [18F]F2 and [18F]CH3COOF: A high yield synthesis of 6-[18F]fluoro-L-dopa. Int J Rad Appl Instrum A. 1992;43:989–96.PubMedCrossRefGoogle Scholar
  30. 30.
    Eskola O, Grönroos T, Bergman J, Haaparanta M, Marjamäki P, Lehikoinen P, et al. A novel electrophilic synthesis and evaluation of medium specific radioactivity (1R,2S)-4-[18F]fluorometaraminol, a tracer for the assessment of cardiac sympathetic nerve integrity with PET. Nucl Med Biol. 2004;31(1):103–10.PubMedCrossRefGoogle Scholar
  31. 31.
    Hess E, Sichler S, Kluge A, Coenen HH. Synthesis of 2-[18F]fluoro-L-tyrosine via regiospecific fluoro-de-stannylation. Appl Radiat Isot. 2002;57(2):185–91.PubMedCrossRefGoogle Scholar
  32. 32.
    Lemaire C, Libert L, Franci X, Genon JL, Kuci S, Giacomelli F, Luxen A. Automated production at the curie level of no-carrier-added 6-[(18)F]fluoro-L-dopa and 2-[(18)F]fluoro-L-tyrosine on a FASTlab synthesizer. J Labelled Comp Radiopharm. 2015;58(7):281–90.PubMedCrossRefGoogle Scholar
  33. 33.
    Brown GD, Hernan AG, Wadsworth H, Kilburn JD, Gibson A, Brady F, Luthra SK. Solid phase [18F]fluorodemetallation reactions. J Labelled Comp Radiopharm. 2003;46:S152.Google Scholar
  34. 34.
    Shiue C-Y, To K-C, Wolf AP. A rapid synthesis of 2-deoxy-2-fluoro-D-glucose from xenon difluoride suitable for labeling with 18F. J Labelled Comp Radiopharm. 1983;20(2):157–62.CrossRefGoogle Scholar
  35. 35.
    Shiue CY, Salvadori PA, Wolf AP, Fowler JS, MacGregor RR. A new improved synthesis of 2-deoxy-2-[18F]fluoro-d-glucose from 18F-labeled acetyl hypofluorite. J Nucl Med. 1982;23(10):899–903.PubMedGoogle Scholar
  36. 36.
    Dolbier WR Jr, Li AR, Koch CJ, Shiue CY, Kachur AV. [18F]-EF5, a marker for PET detection of hypoxia: synthesis of precursor and a new fluorination procedure. Appl Radiat Isot. 2001;54(1):73–80.PubMedCrossRefGoogle Scholar
  37. 37.
    Adam MJ, Ruth TJ, Grierson JR, Abeysekara B, Pate BD. Routine synthesis of L-[18F]6-fluorodopa with fluorine-18 acetyl hypochlorite. J Nucl Med. 1986;27:1462–6.PubMedGoogle Scholar
  38. 38.
    Fowler JS, Finn RD, Lambrecht RM, Wolf AP. The synthesis of 18F-5-fluorouracil. VII J Nucl Med. 1973;14(1):63–4.PubMedGoogle Scholar
  39. 39.
    Vine EN, Young D, Vine WH, Wolf W. An improved synthesis of 18F-5-fluorouracil. Int J Appl Radiat Isot. 1979;30(7):401–5.PubMedCrossRefGoogle Scholar
  40. 40.
    Diksic M, Farrokhzad S, Yamamoto YL, Feindel W. A simple synthesis of 18F-labelled 5-fluorouracil using acetylhypofluorite. Int J Nucl Med Biol. 1984;11(2):141–2.PubMedCrossRefGoogle Scholar
  41. 41.
    Ishiwata K, Ido T, Mejia AA, Ichihashi M, Mishima Y. Synthesis and radiation dosimetry of 4-borono-2-[18F]fluoro-D,L-phenylalanine: a target compound for PET and boron neutron capture therapy. Appl Radiat Isot. 1991;42(4):325–8.CrossRefGoogle Scholar
  42. 42.
    Ishiwata K, Ido T, Mieko K, Kubota K, Ichihashi M, Mishima Y. 4-Borono-2-[18F]fluoro-D,L-phenylalanine as a target compound for boron neutron capture therapy: tumor imaging potential with positron emission tomography. Nucl Med Biol. 1991;18(7):745–51.Google Scholar
  43. 43.
    Namavari M, Barrio JR, Toyokuni T, Gambhir SS, Cherry SR, Herschman HR, Phelps ME, Satyamurthy N. Synthesis of 8-[(18)F]fluoroguanine derivatives: in vivo probes for imaging gene expression with positron emission tomography. Nucl Med Biol. 2000;27(2):157–62.PubMedCrossRefGoogle Scholar
  44. 44.
    Haaparanta M, Bergman J, Laakso A, Hietala J, Solin O. [18F]CFT ([18F]WIN 35,428), a radioligand to study the dopamine transporter with PET: biodistribution in rats. Synapse. 1996;23(4):321–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Bergman J, Solin O. Fluorine-18-labeled fluorine gas for synthesis of tracer molecules. Nucl Med Biol. 1997;24(7):677–83.PubMedCrossRefGoogle Scholar
  46. 46.
    Krzyczmonik A, Keller T, Kirjavainen AK, Forsback S, Solin O. Vacuum ultraviolet photon-mediated production of [(18) F]F(2). J Labelled Comp Radiopharm. 2017;60(4):186–93.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Cortés González MA, Nordeman P, Bermejo Gómez A, Meyer DN, Antoni G, Schou M, Szabó KJ. [(18)F]fluoro-benziodoxole: a no-carrier-added electrophilic fluorinating reagent. Rapid, simple radiosynthesis, purification and application for fluorine-18 labelling. Chem Commun (Camb). 2018;54(34):4286–9.CrossRefGoogle Scholar
  48. 48.
    Kamlet AS, Neumann CN, Lee E, Carlin SM, Moseley CK, Stephenson N, et al. Application of palladium-mediated 18F-fluorination to PET radiotracer development: overcoming hurdles to translation. PLoS ONE. 2013;8(3):e59187.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Campbell MG, Ritter T. Late-stage fluorination: from fundamentals to application. Org Process Res Dev. 2014;18:474–80.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Tredwell M, Preshlock SM, Taylor NJ, Gruber S, Huiban M, Passchier J, Mercier J, Génicot C, Gouverneur V. A general copper-mediated nucleophilic 18F fluorination of arenes. Angew Chem Int Ed Engl. 2014;53(30):7751–5.PubMedCrossRefGoogle Scholar
  51. 51.
    Mossine AV, Brooks AF, Makaravage KJ, Miller JM, Ichiishi N, Sandford MS, Scott PJ. Synthesis of [18F]arenes via the copper-mediated [18F]fluorination of boronic acids. Org Lett. 2015;17(23):5780–3.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Ye Y, Schimler SD, Hanley PS, Sandford MS. Cu(OTf)2-mediated fluorination of aryltrifluoroborates with potassium fluoride. J Am Chem Soc. 2013;135:16292–5.PubMedCrossRefGoogle Scholar
  53. 53.
    Zischler J, Kolks N, Modemann D, Neumaier B, Zlatopolskiy BD. Alcohol-enhanced Cu-mediated radiofluorination. Chem Eur J. 2017;23:3251–6.PubMedCrossRefGoogle Scholar
  54. 54.
    Mossine AV, Brooks AF, Bernard-Gauthier V, Bailey JJ, Ichiiski N, Schirrmacher R, et al. Automated synthesis of PET radiotracers by copper-mediated 18F-fluorination of organoborons: Importance of the order of addition and competing protodeborylation. J Label Compd Radiopharm. 2018;61:228–36.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of OncologyUniversity of AlbertaEdmontonCanada

Personalised recommendations