Advertisement

The Radiopharmaceutical Chemistry of the Radionuclides of Gallium and Indium

  • Julia E. Blower
  • Maggie S. Cooper
  • Cinzia Imberti
  • Michelle T. Ma
  • Christopher Marshall
  • Jennifer D. Young
  • Philip J. BlowerEmail author
Chapter

Abstract

Gallium-68, and indium-111 share the same group in the periodic table and can be harnessed for a range of applications in nuclear medicine, including scintigraphy, SPECT, PET and targeted radiotherapy. Indium-111 and gallium-67 are gamma-emitting radionuclides with long half-lives (67.3 h and 78.3 h, respectively), while gallium-68 is a positron-emitting radionuclide with a very short half-life (68 min). All three radiometals can be conjugated to biomolecular vectors using bifunctional chelators. Despite the chemical parallels between the three isotopes, their applications in nuclear medicine vary widely. Indium-111 is principally used in conjunction with vectors with longer in vivo pharmacokinetic profiles such as cells and monoclonal antibodies. In contrast, the use of gallium-67 has centred upon exploiting the biological behaviour of the free Ga3+ ion, specifically for the imaging of tumours and infection. Finally, gallium-68 typically serves as a radiolabel for small molecules with rapid pharmacokinetic profiles, such as peptides. Both indium-111 and gallium-67 emit Auger electrons as well as photons, leading to their potential use for radionuclide therapy. Chelators and bifunctional chelators for gallium and indium share common features but are not interchangeable. While gallium-67 and indium-111 were foundational nuclides for the field, they currently have diminished profiles, whereas the use of gallium-68 is burgeoning. The design of chelators for gallium has advanced markedly in the last decade, stimulated by the need for chelators that can be labeled with gallium-68 quickly under mild conditions using a radiopharmaceutical “kit”.

Keywords

Gallium-67 Gallium-68 Indium-111 Chelators Peptides Antibodies Cell labeling Generators Radiopharmaceutical kits 

References

  1. 1.
    Velikyan I. Ga-68-based radiopharmaceuticals: production and application relationship. Molecules. 2015;20(7):12913–43.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Paik CH, Herman DE, Eckelman WC, Reba RC. Synthesis, plasma-clearance, and in vitro stability of protein containing a conjugated In-111 chelate. J Radioanal Chem. 1980;57(2):553–64.CrossRefGoogle Scholar
  3. 3.
    Segal AW, Arnot RN, Thakur ML, Lavender JP. Indium-111-labeled leukocytes for localization of abscesses. Lancet. 1976;2(7994):1056–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Kotze HF, Heyns AD, Lotter MG, Pieters H, Roodt JP, Sweetlove MA, et al. Comparison of oxine and tropolone methods for labeling human platelets with indium-111. J Nucl Med. 1991;32(1):62–6.PubMedGoogle Scholar
  5. 5.
    Weiner RE. The mechanism of Ga-67 localization in malignant disease. Nucl Med Biol. 1996;23(6):745–51.PubMedCrossRefGoogle Scholar
  6. 6.
    Price EW, Orvig C. Matching chelators to radiometals for radiopharmaceuticals. Chem Soc Rev. 2014;43(1):260–90. ReviewPubMedCrossRefGoogle Scholar
  7. 7.
    Young JD, Abbate V, Imberti C, Meszaros LK, Ma MT, Terry SYA, et al. Ga-68-THP-PSMA: a PET imaging agent for prostate cancer offering rapid, room-temperature, 1-step kit-based radiolabeling. J Nucl Med. 2017;58(8):1270–7.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Hicks RJ. Ga-67SPECT: ave atque vale! Or have we bid a premature farewell to a trusted friend? Leuk Lymphoma. 2006;47(12):2440–2.PubMedCrossRefGoogle Scholar
  9. 9.
    Petrik M, Haas H, Dobrozemsky G, Lass-Florl C, Helbok A, Blatzer M, et al. Ga-68-siderophores for PET imaging of invasive pulmonary aspergillosis: proof of principle. J Nucl Med. 2010;51(4):639–45.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Othman MF, Mitry NR, Lewington VJ, Blower PJ, Terry SY. Re-assessing gallium-67 as a therapeutic radionuclide. Nucl Med Biol. 2017;46:12–8.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Jonkhoff AR, Plaizier MA, Ossenkoppele GJ, Teule GJ, Huijgens PC. High-dose gallium-67 therapy in patients with relapsed acute leukaemia: a feasibility study. Br J Cancer. 1995;72(6):1541–6.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Michel RB, Brechbiel MW, Mattes MJ. A comparison of 4 radionuclides conjugated to antibodies for single-cell kill. J Nucl Med. 2003;44(4):632–40.PubMedGoogle Scholar
  13. 13.
    Ochakovskaya R, Osorio L, Goldenberg DM, Mattes MJ. Therapy of disseminated B-cell lymphoma xenografts in severe combined immunodeficient mice with an anti-CD74 antibody conjugated with 111indium, 67gallium, or 90yttrium. Clin Cancer Res. 2001;7(6):1505–10.PubMedGoogle Scholar
  14. 14.
    van de Watering FC, Rijpkema M, Perk L, Brinkmann U, Oyen WJ, Boerman OC. Zirconium-89 labeled antibodies: a new tool for molecular imaging in cancer patients. Biomed Res Int. 2014;2014:203601.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Charoenphun P, Meszaros LK, Chuamsaamarkkee K, Sharif-Paghaleh E, Ballinger JR, Ferris TJ, et al. [89Zr]oxinate4 for long-term in vivo cell tracking by positron emission tomography. Eur J Nucl Med Mol Imaging. 2015;42(2):278–87.PubMedCrossRefGoogle Scholar
  16. 16.
    Krenning EP, Kooij PP, Bakker WH, Breeman WA, Postema PT, Kwekkeboom DJ, et al. Radiotherapy with a radiolabeled somatostatin analogue, [111In-DTPA-D-Phe1]-octreotide. A case history. Ann N Y Acad Sci. 1994;733:496–506.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Wood SA, Samson IM. The aqueous geochemistry of gallium, germanium, indium and scandium. Ore Geol Rev. 2006;28(1):57–102.CrossRefGoogle Scholar
  18. 18.
    Berry DJ, Ma Y, Ballinger JR, Tavare R, Koers A, Sunassee K, et al. Efficient bifunctional gallium-68 chelators for positron emission tomography: tris(hydroxypyridinone) ligands. Chem Commun (Camb). 2011;47(25):7068–70.CrossRefGoogle Scholar
  19. 19.
    Viola NA, Rarig RS, Ouellette W, Doyle RP. Synthesis, structure and thermal analysis of the gallium complex of 1,4,7,10-tetraazacyclo-dodecane-N,N ',N “,N “'-tetraacetic acid (DOTA). Polyhedron. 2006;25(18):3457–62.Google Scholar
  20. 20.
    Sun YZ, Anderson CJ, Pajeau TS, Reichert DE, Hancock RD, Motekaitis RJ, et al. Indium(III) and gallium(III) complexes of bis(aminoethanethiol) ligands with different denticities: Stabilities, molecular modeling, and in vivo behavior. J Med Chem. 1996;39(2):458–70.PubMedCrossRefGoogle Scholar
  21. 21.
    Simecek J, Hermann P, Wester HJ, Notni J. How is Ga-68 labeling of macrocyclic chelators influenced by metal ion contaminants in Ge-68/Ga-68 generator eluates? ChemMedChem. 2013;8(1):95–103.PubMedCrossRefGoogle Scholar
  22. 22.
    Tsionou MI, Knapp CE, Foley CA, Munteanu CR, Cakebread A, Imberti C, et al. Comparison of macrocyclic and acyclic chelators for gallium-68 radiolabelling. RSC Adv. 2017;7(78):49586–99.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Govindan SV, Michel RB, Griffiths GL, Goldenberg DM, Mattes MJ. Deferoxamine as a chelator for Ga-67 in the preparation of antibody conjugates. Nucl Med Biol. 2005;32(5):513–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Nawaz S, Mullen GED, Sunassee K, Bordoloi J, Blower PJ, Ballinger JR. Simple, mild, one-step labelling of proteins with gallium-68 using a tris(hydroxypyridinone) bifunctional chelator: a Ga-68-THP-scFv targeting the prostate-specific membrane antigen. EJNMMI Res. 2017;7(1):86.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Knetsch PA, Zhai CY, Rangger C, Blatzer M, Haas H, Kaeopookum P, et al. [Ga-68]FSC-(RGD)3 a trimeric RGD peptide for imaging alphavbeta3 integrin expression based on a novel siderophore derived chelating scaffold-synthesis and evaluation. Nucl Med Biol. 2015;42(2):115–22.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Maecke HR, Riesen A, Ritter W. The molecular-structure of indium-DTPA. J Nucl Med. 1989;30(7):1235–9.PubMedGoogle Scholar
  27. 27.
    Brechbiel MW, Gansow OA, Atcher RW, Schlom J, Esteban J, Simpson DE, et al. Synthesis of 1-(para-isothiocyanatobenzyl) derivatives of DTPA and EDTA – antibody labeling and tumor-imaging studies. Inorg Chem. 1986;25(16):2772–81.CrossRefGoogle Scholar
  28. 28.
    Camera L, Kinuya S, Garmestani K, Pai LH, Brechbiel MW, Gansow OA, et al. Evaluation of a new DTPA-derivative chelator – comparative biodistribution and imaging studies of In-111 labeled B3 monoclonal-antibody in athymic mice bearing human epidermoid carcinoma xenografts. Nucl Med Biol. 1993;20(8):955–62.PubMedCrossRefGoogle Scholar
  29. 29.
    Meares CF, Moi MK, Diril H, Kukis DL, Mccall MJ, Deshpande SV, et al. Macrocyclic chelates of radiometals for diagnosis and therapy. Br J Cancer. 1990;62(Suppl 10):21–6.Google Scholar
  30. 30.
    Kozak RW, Raubitschek A, Mirzadeh S, Brechbiel MW, Junghaus R, Gansow OA, et al. Nature of the bifunctional chelating agent used for radioimmunotherapy with Y-90 monoclonal-antibodies – critical factors in determining in vivo survival and organ toxicity. Cancer Res. 1989;49(10):2639–44.PubMedGoogle Scholar
  31. 31.
    Gleason GI. A positron cow. Int J Appl Radiat Isot. 1960;8:90–4.PubMedCrossRefGoogle Scholar
  32. 32.
    Yano Y, Anger HO. A gallium-68 positron cow for medical use. J Nucl Med. 1964;5:484–7.PubMedGoogle Scholar
  33. 33.
    Tworowska I, Ranganathan D, Thamake S, Delpassand E, Mojtahedi A, Schultz MK, et al. Radiosynthesis of clinical doses of 68Ga-DOTATATE (GalioMedix) and validation of organic-matrix-based 68Ge/68Ga generators. Nucl Med Biol. 2016;43(1):19–26.PubMedCrossRefGoogle Scholar
  34. 34.
    Meyer GJ, Macke H, Schuhmacher J, Knapp WH, Hofmann M. 68Ga-labelled DOTA-derivatised peptide ligands. Eur J Nucl Med Mol Imaging. 2004;31(8):1097–104.PubMedCrossRefGoogle Scholar
  35. 35.
    Zhernosekov KP, Filosofov DV, Baum RP, Aschoff P, Bihl H, Razbash AA, et al. Processing of generator-produced 68Ga for medical application. J Nucl Med. 2007;48(10):1741–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Eppard E, Wuttke M, Nicodemus PL, Rosch F. Ethanol-based post-processing of generator-derived 68Ga toward kit-type preparation of 68Ga-radiopharmaceuticals. J Nucl Med. 2014;55(6):1023–8.PubMedCrossRefGoogle Scholar
  37. 37.
    He P, Burke BP, Clemente GS, Brown N, Pamme N, Archibald SJ. Monolith-based Ga-68 processing: a new strategy for purification to facilitate direct radiolabelling methods. React Chem Eng. 2016;1(4):361–5.CrossRefGoogle Scholar
  38. 38.
    Lin M, Mukhopadhyay U, Waligorski G, Balatoni J, Gonzalez-Lepera C. Production of Curie quantities of Ga-68 with a medical cyclotron via the Zn-68(p, n)Ga-68 reaction (abstract). J Nucl Med. 2017;58:336.Google Scholar
  39. 39.
    Pandey MK, Engelbrecht HP, Byrne JF, Packard AB, DeGrado TR. Production of Zr-89 via the Y-89(p,n)Zr-89 reaction in aqueous solution: Effect of solution composition on in-target chemistry. Nucl Med Biol. 2014;41(4):309–16.PubMedCrossRefGoogle Scholar
  40. 40.
    Haji-Saeid M, Pillai MRA, Ruth TJ, Schlyer DJ, Van den Winkel P, Vora MM. Cyclotron produced radionuclides: physical characteristics and production methods. Vienna: International Atomic Energy Agency; 2009.Google Scholar
  41. 41.
    Harris WR, Pecoraro VL. Thermodynamic binding constants for gallium transferrin. Biochemistry. 1983;22(2):292–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Palestro CJ. The current role of gallium imaging in infection. Semin Nucl Med. 1994;24(2):128–41.PubMedCrossRefGoogle Scholar
  43. 43.
    Krenning EP, Bakker WH, Kooij PP, Breeman WA, Oei HY, de Jong M, et al. Somatostatin receptor scintigraphy with indium-111-DTPA-D-Phe-1-octreotide in man: metabolism, dosimetry and comparison with iodine-123-Tyr-3-octreotide. J Nucl Med. 1992;33(5):652–8.PubMedGoogle Scholar
  44. 44.
    Macke HR, Smith-Jones P, Maina T, Stolz B, Albert R, Bruns C, et al. New octreotide derivatives for in vivo targeting of somatostatin receptor-positive tumors for single photon emission computed tomography (SPECT) and positron emission tomography (PET). Horm Metab Res Suppl. 1993;27:12–7.PubMedGoogle Scholar
  45. 45.
    Hofmann M, Maecke H, Borner AR, Weckesser E, Schoffski P, Oei ML, et al. Biokinetics and imaging with the somatostatin receptor PET radioligand Ga-68-DOTATOC: preliminary data. Eur J Nucl Med. 2001;28(12):1751–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Afshar-Oromieh A, Zechmann CM, Malcher A, Eder M, Eisenhut M, Linhart HG, et al. Comparison of PET imaging with a Ga-68-labelled PSMA ligand and F-18-choline-based PET/CT for the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2014;41(1):11–20.PubMedCrossRefGoogle Scholar
  47. 47.
    Benešová M, Schäfer M, Bauder-Wüst U, Afshar-Oromieh A, Kratochwil C, Mier W, et al. Preclinical evaluation of a tailor-made DOTA-conjugated psma inhibitor with optimized linker moiety for imaging and endoradiotherapy of prostate cancer. J Nucl Med. 2015;56(6):914–20.PubMedCrossRefGoogle Scholar
  48. 48.
    Weineisen M, Schottelius M, Simecek J, Baum RP, Yildiz A, Beykan S, et al. Ga-68- and Lu-177-labeled PSMA I&T: optimization of a PSMA-targeted theranostic concept and first proof-of-concept human studies. J Nucl Med. 2015;56(8):1169–76.PubMedCrossRefGoogle Scholar
  49. 49.
    Hofman MS, Eu P, Jackson P, Hong E, Binns D, Iravani A, et al. Cold Kit PSMA PET imaging: Phase I study of 68Ga-THP-PSMA PET/CT in patients with prostate cancer. J Nucl Med. 2018;59(4):625–31.PubMedCrossRefGoogle Scholar
  50. 50.
    Hofman MS, Hicks RJ. Gallium-68 EDTA PET/CT for renal imaging. Semin Nucl Med. 2016;46(5):448–61.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Julia E. Blower
    • 1
  • Maggie S. Cooper
    • 1
  • Cinzia Imberti
    • 1
  • Michelle T. Ma
    • 1
  • Christopher Marshall
    • 2
  • Jennifer D. Young
    • 1
  • Philip J. Blower
    • 1
    Email author
  1. 1.School of Biomedical Engineering & Imaging Sciences, King’s College LondonSt. Thomas’ HospitalLondonUK
  2. 2.Wales Research and Diagnostic PET Imaging Centre, University Hospital of Wales, School of MedicineCardiff UniversityCardiffUK

Personalised recommendations