Skip to main content

The Radiopharmaceutical Chemistry of Carbon-11: Tracers and Applications

  • Chapter
  • First Online:
Radiopharmaceutical Chemistry

Abstract

In this chapter, several different aspects of carbon-11 radiochemistry are discussed, including general and technical considerations surrounding the setup for 11C-radiosyntheses and specific radiolabeling routes for the preparation of 11C-labeled radiotracers. Both equipment and procedures have to be thoroughly optimized for the radiosynthesis and quality control testing of radiopharmaceuticals labeled with the short-lived radionuclide carbon-11. In particular, special attention has to be paid to time reduction in all processes while concomitantly maintaining accuracy and reproducibility. The synthetic possibilities for 11C-labeled radiotracers resemble a multicolored bouquet of flowers, with methods ranging from gas-phase reactions to in-loop syntheses and from rather simple 11C-methylations to more complex 11C-carbonylations or even tricky multistep Grignard reactions. A variety of synthons—including [11C]CH3I, [11C]HCN, [11C]CS2, and [11C]CO—can be used to prepare a plethora of radiotracers containing 11C-labels at desired positions in the target molecule without altering its physicochemical and biological properties. This may seem to be a heaven for radiochemists where only the sky is the limit. However, the reality is unfortunately quite different, as several critical limitations are placed upon 11C-radiochemists, including time constraints as well as the need for sufficient yields and molar activities. Nevertheless, you will find plenty of examples within this chapter in which scientists have overcome these obstacles and were able to set up feasible synthetic routes that demonstrate the beauty of 11C-radiochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shao X, Hoareau R, Runkle AC, Tluczek LJM, Hockley BG, Henderson BD, et al. Highlighting the versatility of the Tracerlab synthesis modules. Part 2: fully automated production of [11C]-labeled radiopharmaceuticals using a Tracerlab FX C-pro. J Label Compd Radiopharm. 2011;54(14):819–38.

    Article  CAS  Google Scholar 

  2. European Directorate for the Quality of Medicines (EDQM). Parenteral Preparations. In: European Pharmacopoeia, 9th Edition. Strasbourg: Council of Europe; 2015. pp. 871–3.

    Google Scholar 

  3. Gómez-Vallejo V, Llop J. Specific activity of [11C]CH3I synthesized by the “wet” method: main sources of non-radioactive carbon. Appl Radiat Isotop. 2009;67(1):111–4.

    Article  Google Scholar 

  4. Långström B, Lundqvist H. The preparation of 11C-methyl iodide and its use in the synthesis of 11C-methyl-L-methionine. Int J Appl Radiat Isot. 1976;27(7):357–63.

    Article  Google Scholar 

  5. Larsen P, Ulin J, Dahlstrom K, Jensen M. Synthesis of [11C]iodomethane by iodination of [11C]methane. Appl Radiat Isotop. 1997;48(2):153–7.

    Article  CAS  Google Scholar 

  6. Jewett DM. A simple synthesis of [11C]methyl triflate. Int J Radiat Appl Instrum A. 1992;43(11):1383–5.

    Article  CAS  Google Scholar 

  7. Ermert J, Coenen HH. Methods for 11C- and 18F-labelling of amino acids and derivatives for positron emission tomography imaging. J Label Compd Radiopharm. 2013;56(3–4):225–36.

    Article  CAS  Google Scholar 

  8. Crippa F, Alessi A, Serafini GL. PET with radiolabeled aminoacid. Q J Nucl Med Mol Imaging. 2012;56(2):151–62.

    CAS  PubMed  Google Scholar 

  9. Visser AKD, van Waarde A, Willemsen ATM, Bosker FJ, Luiten PGM, den Boer JA, et al. Measuring serotonin synthesis: from conventional methods to PET tracers and their (pre)clinical implications. Eur J Nucl Med Mol Imaging. 2011;38(3):576–91.

    Article  CAS  Google Scholar 

  10. Diksic M, Nagahiro S, Sourkes TL, Yamamoto YL. A new method to measure brain serotonin synthesis in vivo. I. Theory and basic data for a biological model. J Cereb Blood Flow Metab. 1990;10(1):1–12.

    Article  CAS  Google Scholar 

  11. Huang X, Xiao X, Gillies RJ, Tian H. Design and automated production of 11C-alpha-methyl-l-tryptophan (11C-AMT). Nucl Med Biol. 2016;43(5):303–8.

    Article  CAS  Google Scholar 

  12. Chakraborty PK, Mangner TJ, Chugani DC, Muzik O, Chugani HT. A high-yield and simplified procedure for the synthesis of α-[11C]methyl-l-tryptophan. Nucl Med Biol. 1996;23(8):1005–8.

    Article  CAS  Google Scholar 

  13. Reske SN, Blumstein NM, Neumaier B, Gottfried H-W, Finsterbusch F, Kocot D, et al. Imaging prostate cancer with 11C-choline PET/CT. J Nucl Med. 2006;47(8):1249–54.

    CAS  PubMed  Google Scholar 

  14. Engkvist O, Wrede P, Rester U. Prediction of CNS activity of compound libraries using substructure analysis. J Chem Inf Comput Sci. 2003 Jan 1;43(1):155–60.

    Article  CAS  Google Scholar 

  15. Cohen AD, Klunk WE. Early detection of Alzheimer’s disease using PiB and FDG PET. Neurobiol Dis. 2014;72(Pt A):117–22.

    Article  CAS  Google Scholar 

  16. Philippe C, Haeusler D, Mitterhauser M, Ungersboeck J, Viernstein H, Dudczak R, et al. Optimization of the radiosynthesis of the Alzheimer tracer 2-(4-N[11C]methylaminophenyl)-6-hydroxybenzothiazole ([11C]PIB). Appl Radiat Isot. 2011;69(9):1212–7.

    Article  CAS  Google Scholar 

  17. Haeusler D, Mien L-K, Nics L, Ungersboeck J, Philippe C, Lanzenberger RR, et al. Simple and rapid preparation of [11C]DASB with high quality and reliability for routine applications. Appl Radiat Isot. 2009;67(9):1654–60.

    Article  CAS  Google Scholar 

  18. Philippe C, Zeilinger M, Mitterhauser M, Dumanic M, Lanzenberger R, Hacker M, et al. Parameter evaluation and fully-automated radiosynthesis of [11C]harmine for imaging of MAO-A for clinical trials. Appl Radiat Isot. 2015;97:182–7.

    Article  CAS  Google Scholar 

  19. Rotstein BH, Liang SH, Holland JP, Collier TL, Hooker JM, Wilson AA, Vasdev N. 11CO2 fixation: a renaissance in PET radiochemistry. Chem Commun (Camb). 2013;49(59):5621–9.

    Article  CAS  Google Scholar 

  20. Mossine AV, Brooks AF, Jackson IM, Quesada CA, Sherman P, Cole EL, et al. Synthesis of diverse 11C-labelled PET radiotracers via direct incorporation of [11C]CO2. Bioconjug Chem. 2016;27(5):1382–9.

    Article  CAS  Google Scholar 

  21. Pike VW, Eakins MN, Allan RM, Selwyn AP. Preparation of [1−11C]acetate—an agent for the study of myocardial metabolism by positron emission tomography. Int J Appl Radiat Isot. 1982;33(7):505–12.

    Article  CAS  Google Scholar 

  22. Rami-Mark C, Unbergsboek J, Haeusler D, Nics L, Philippe C, Mitterhauser M, et al. Reliable set-up for in-loop 11C-carboxylations using Grignard reactions for the preparation of [carbonyl-11C]WAY-100635 and [11C]-(+)-PHNO. Appl Radiat Isot. 2013;82:75–80.

    Article  CAS  Google Scholar 

  23. Mitterhauser M, Wadsak W, Krcal A, Schmaljohann J, Bartosch E, Eidherr H, et al. New aspects on the preparation of [11C]acetate—a simple and fast approach via distillation. Appl Radiat Isot. 2004;61(6):1147–50.

    Article  CAS  Google Scholar 

  24. Soloviev D, Tamburella C. Captive solvent [11C]acetate synthesis in GMP conditions. Appl Radiat Isot. 2006;64(9):995–1000.

    Article  CAS  Google Scholar 

  25. Plisson C, Huiban M, Pampols-Maso S, Singleton G, Hill SP, Passchier J. Automated preparation of the dopamine D2/3 receptor agonist ligand [11C]-(+)-PHNO for human PET imaging studies. Appl Radiat Isot. 2012;70(2):380–7.

    Article  CAS  Google Scholar 

  26. Wilson AA, McCormick P, Kapur S, Willeit M, Garcia A, Hussey D, et al. Radiosynthesis and evaluation of [ 11 C]-(+)-4-Propyl-3,4,4a,5,6,10b-hexahydro-2 H -naphtho[1,2- b ][1,4]oxazin-9-ol as a potential radiotracer for in vivo imaging of the dopamine D2 high-affinity state with positron emission tomography. J Med Chem. 2005;48(12):4153–60.

    Article  CAS  Google Scholar 

  27. Oya S, Joseph SK, Carberry P, Divgi CR, Koren AO. Preparation of [11C]-(+)-PHNO using an automated synthesizer coupled with a stand-alone system for making [11C]propionyl chloride. J Label Compd Radiopharm. 2013;56:466.

    Google Scholar 

  28. Dahl K, Halldin C, Schou M. New methodologies for the preparation of carbon-11 labeled radiopharmaceuticals. Clin Transl Imaging. 2017;5(3):275–89.

    Article  Google Scholar 

  29. Kealey S, Gee A, Miller PW. Transition metal mediated [11C]carbonylation reactions: recent advances and applications. J Label Compd Radiopharm. 2014;57(4):195–201.

    Article  CAS  Google Scholar 

  30. Hooker JM, Schönberger M, Schieferstein H, Fowler JS. A simple, rapid method for the preparation of [11C]formaldehyde. Angew Chem Int Ed Engl. 2008;47(32):5989–92.

    Article  CAS  Google Scholar 

  31. Wu C, Li R, Dearborn D, Wang Y. Reductive amination with [11C]formaldehyde: a versatile approach to radiomethylation of amines. Int J Org Chem. 2012;2(3):202–23.

    Article  CAS  Google Scholar 

  32. Ogawa M, Takada Y, Suzuki H, Nemoto K, Fukumura T. Simple and effective method for producing [11C]phosgene using an environmental CCl4 gas detection tube. Nucl Med Biol. 2010;37(1):73–6.

    Article  CAS  Google Scholar 

  33. Roger G, Dollé F, de Bruin B, Liu X, Besret L, Bramoullé Y, et al. Radiosynthesis and pharmacological evaluation of [11C]EMD-95885: a high affinity ligand for NR2B-containing NMDA receptors. Bioorg Med Chem. 2004;12(12):3229–37.

    Article  CAS  Google Scholar 

  34. Scott PJH. Radiochemical syntheses. Volume 2: further radiopharmaceuticals for positron emission tomography and new strategies for their production. Hoboken: John Wiley & Sons; 2015.

    Book  Google Scholar 

  35. Ma L, Placzek MS, Hooker JM, Vasdev N, Liang SH. [11C]Cyanation of arylboronic acids in aqueous solutions. Chem Commun (Camb). 2017;53(49):6597–600.

    Article  CAS  Google Scholar 

  36. Haywood T, Kealey S, Sánchez-Cabezas S, Hall JJ, Allott L, Smith G, et al. Carbon-11 radiolabelling of organosulfur compounds: 11C synthesis of the progesterone receptor agonist tanaproget. Chem Eur J. 2015;21:9034–8.

    Article  CAS  Google Scholar 

  37. Pascali C, Bogni A, Iwata R, Cambiè M, Bombardieri E. [11C]Methylation on a C18 Sep-Pak cartridge: a convenient way to produce [N-methyl-11C]choline. J Labelled Comp Radiopharm. 2000;43:195–203.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Wadsak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pichler, V., Berroterán-Infante, N., Ozenil, M., Pfaff, S., Philippe, C., Wadsak, W. (2019). The Radiopharmaceutical Chemistry of Carbon-11: Tracers and Applications. In: Lewis, J., Windhorst, A., Zeglis, B. (eds) Radiopharmaceutical Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-98947-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98947-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98946-4

  • Online ISBN: 978-3-319-98947-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics