Nanoparticles as Radiopharmaceutical Vectors

  • Anyanee KamkaewEmail author
  • Emily B. Ehlerding
  • Weibo CaiEmail author


This chapter summarizes the use of nanoparticles for the delivery of radionuclides for nuclear imaging and therapy. Due to their modularity and flexibility, radiolabeled nanoparticles have the potential to play a key role in the diagnosis and management of cancer in the near future. Currently, however, the development and clinical implementation of radiolabeled nanoparticles faces several major challenges, including improving their targeting efficiency, developing robust methods for both the encapsulation/integration of radionuclides and the conjugation of targeting ligands, achieving favorable safety profiles, and overcoming regulatory concerns. When nanoparticles are able to overcome these roadblocks, they have the chance to become integral tools in the landscape of nuclear medicine.


Nanoparticle Radionuclide Radiopharmaceutical Drug delivery Cancer Therapy Imaging Theranostics Intrinsically radiolabeled nanoparticles Biocompatibility 


  1. 1.
    Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther. 2008;83(5):761–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res. 2016;33(10):2373–87.PubMedCrossRefGoogle Scholar
  3. 3.
    Hu Q, Tuck C, Wildman R, Hague R. Application of nanoparticles in manufacturing. In: Aliofkhazraei M, editor. Handbook of nanoparticles. Cham: Springer International; 2015. p. 1–53.Google Scholar
  4. 4.
    Niemeyer CM. Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Edit. 2001;40(22):4128–58.CrossRefGoogle Scholar
  5. 5.
    Kabalan I, Lebeau B, Nouali H, Toufaily J, Hamieh T, Koubaissy B, et al. New generation of zeolite materials for environmental applications. J Phys Chem C. 2016;120(5):2688–97.CrossRefGoogle Scholar
  6. 6.
    Patil SS, Shedbalkar UU, Truskewycz A, Chopade BA, Ball AS. Nanoparticles for environmental clean-up: a review of potential risks and emerging solutions. Environ Technol Innov. 2016;5:10–21.CrossRefGoogle Scholar
  7. 7.
    Raimondi F, Scherer GG, Kötz R, Wokaun A. Nanoparticles in energy technology: examples from electrochemistry and catalysis. Angew Chem Int Ed Engl. 2005;44(15):2190–209.PubMedCrossRefGoogle Scholar
  8. 8.
    Lai X, Halpert JE, Wang D. Recent advances in micro-/nano-structured hollow spheres for energy applications: from simple to complex systems. Energy Environ Sci. 2012;5(2):5604–18.CrossRefGoogle Scholar
  9. 9.
    Darr JA, Zhang J, Makwana NM, Weng X. Continuous hydrothermal synthesis of inorganic nanoparticles: applications and future directions. Chem Rev. 2017;117(17):11125–38.PubMedCrossRefGoogle Scholar
  10. 10.
    Miller L, Winter G, Baur B, Witulla B, Solbach C, Reske S, et al. Synthesis, characterization, and biodistribution of multiple 89Zr-labeled pore-expanded mesoporous silica nanoparticles for PET. Nanoscale. 2014;6(9):4928–35.PubMedCrossRefGoogle Scholar
  11. 11.
    Ehlerding EB, Grodzinski P, Cai W, Liu CH. Big potential from small agents: nanoparticles for imaging-based companion diagnostics. ACS Nano. 2018;12(3):2106–21.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Pelaz B, Alexiou C, Alvarez-Puebla RA, Alves F, Andrews AM, Ashraf S, et al. Diverse applications of nanomedicine. ACS Nano. 2017;11(3):2313–81.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2017;17(1):20–37.PubMedCrossRefGoogle Scholar
  14. 14.
    Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941–51.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Kumar R, Roy I, Ohulchanskky TY, Vathy LA, Bergey EJ, Sajjad M, et al. In vivo biodistribution and clearance studies using multimodal organically modified silica nanoparticles. ACS Nano. 2010;4(2):699–708.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Hardonk MJ, Harms G, Koudstaal J. Zonal heterogeneity of rat hepatocytes in the in vivo uptake of 17 nm colloidal gold granules. Histochemistry. 1985;83(5):473–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Sadauskas E, Danscher G, Stoltenberg M, Vogel U, Larsen A, Wallin H. Protracted elimination of gold nanoparticles from mouse liver. Nanomedicine. 2009;5(2):162–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Gad SC, Sharp KL, Montgomery C, Payne JD, Goodrich GP. Evaluation of the toxicity of intravenous delivery of auroshell particles (gold-silica nanoshells). Int J Toxicol. 2012;31(6):584–94.PubMedCrossRefGoogle Scholar
  19. 19.
    Behzadi S, Serpooshan V, Tao W, Hamaly MA, Alkawareek MY, Dreaden EC, et al. Cellular uptake of nanoparticles: journey inside the cell. Chem Soc Rev. 2017;46(14):4218–44.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Zhang S, Li J, Lykotrafitis G, Bao G, Suresh S. Size-dependent endocytosis of nanoparticles. Adv Mater. 2009;21:419–24.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Albanese A, Tang PS, Chan WC. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng. 2012;14:1–16.PubMedCrossRefGoogle Scholar
  22. 22.
    Kinnear C, Moore TL, Rodriguez-Lorenzo L, Rothen-Rutishauser B, Petri-Fink A. Form follows function: nanoparticle shape and its implications for nanomedicine. Chem Rev. 2017;117(17):11476–521.PubMedCrossRefGoogle Scholar
  23. 23.
    Fish MB, Thompson AJ, Fromen CA, Eniola-Adefeso O. Emergence and utility of nonspherical particles in biomedicine. Ind Eng Chem Res. 2015;54(16):4043–59.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Weissleder R, Kelly K, Sun EY, Shtatland T, Josephson L. Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat Biotechnol. 2005;23(11):1418–23.PubMedCrossRefGoogle Scholar
  25. 25.
    Yu M, Zheng J. Clearance pathways and tumor targeting of imaging nanoparticles. ACS Nano. 2015;9(7):6655–74.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Salatin S, Maleki Dizaj S, Yari Khosroushahi A. Effect of the surface modification, size, and shape on cellular uptake of nanoparticles. Cell Biol Int. 2015;39(8):881–90.PubMedCrossRefGoogle Scholar
  27. 27.
    Fröhlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine. 2012;7:5577–91.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Zhang X. Gold nanoparticles: recent advances in the biomedical applications. Cell Biochem Biophys. 2015;72(3):771–5.PubMedCrossRefGoogle Scholar
  29. 29.
    Sperling RA, Rivera Gil P, Zhang F, Zanella M, Parak WJ. Biological applications of gold nanoparticles. Chem Soc Rev. 2008;37(9):1896–908.PubMedCrossRefGoogle Scholar
  30. 30.
    Shah M, Badwaik VD, Dakshinamurthy R. Biological applications of gold nanoparticles. J Nanosci Nanotechnol. 2014;14(1):344–62.PubMedCrossRefGoogle Scholar
  31. 31.
    Cai W, Gao T, Hong H, Sun J. Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol Sci Appl. 2008;1:17–32.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Chen F, Goel S, Hernandez R, Graves SA, Shi S, Nickles RJ, et al. Dynamic positron emission tomography imaging of renal clearable gold nanoparticles. Small. 2016;12(20):2775–82.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Karmani L, Labar D, Valembois V, Bouchat V, Nagaswaran PG, Bol A, et al. Antibody-functionalized nanoparticles for imaging cancer: influence of conjugation to gold nanoparticles on the biodistribution of 89Zr-labeled cetuximab in mice. Contrast Media Mol Imaging. 2013;8(5):402–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Erathodiyil N, Ying JY. Functionalization of inorganic nanoparticles for bioimaging applications. Acc Chem Res. 2011;44(10):925–35.PubMedCrossRefGoogle Scholar
  35. 35.
    Conde J, Dias JT, Grazu V, Moros M, Baptista PV, de la Fuente JM. Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine. Front Chem. 2014;2:48.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Banerjee R, Katsenovich Y, Lagos L, McIintosh M, Zhang X, Li CZ. Nanomedicine: magnetic nanoparticles and their biomedical applications. Curr Med Chem. 2010;17(27):3120–41.PubMedCrossRefGoogle Scholar
  37. 37.
    Amirfazli A. Nanomedicine: magnetic nanoparticles hit the target. Nat Nanotechnol. 2007;2(8):467–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Gupta AK, Naregalkar RR, Vaidya VD, Gupta M. Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine (Lond). 2007;2(1):23–39.CrossRefGoogle Scholar
  39. 39.
    Tietze R, Alexiou C. Improving cancer imaging with magnetic nanoparticles: where are we now? Nanomedicine (Lond). 2017;12(3):167–70.CrossRefGoogle Scholar
  40. 40.
    Shubayev VI, Pisanic TR 2nd, Jin S. Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev. 2009;61(6):467–77.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Zhu L, Zhou Z, Mao H, Yang L. Magnetic nanoparticles for precision oncology: theranostic magnetic iron oxide nanoparticles for image-guided and targeted cancer therapy. Nanomedicine (Lond). 2017;12(1):73–87.CrossRefGoogle Scholar
  42. 42.
    Ai F, Ferreira CA, Chen F, Cai W. Engineering of radiolabeled iron oxide nanoparticles for dual-modality imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016;8(4):619–30.PubMedCrossRefGoogle Scholar
  43. 43.
    Li C, Li L, Keates AC. Targeting cancer gene therapy with magnetic nanoparticles. Oncotarget. 2012;3(4):365–70.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Madru R, Kjellman P, Olsson F, Wingardh K, Ingvar C, Stahlberg F, et al. 99mTc-labeled superparamagnetic iron oxide nanoparticles for multimodality SPECT/MRI of sentinel lymph nodes. J Nucl Med. 2012;53(3):459–63.PubMedCrossRefGoogle Scholar
  45. 45.
    Tang Y, Zhang C, Wang J, Lin X, Zhang L, Yang Y, et al. MRI/SPECT/fluorescent tri-modal probe for evaluating the homing and therapeutic efficacy of transplanted mesenchymal stem cells in a rat ischemic stroke model. Adv Funct Mater. 2015;25(7):1024–34.PubMedCrossRefGoogle Scholar
  46. 46.
    Chen J, Zhu S, Tong L, Li J, Chen F, Han Y, et al. Superparamagnetic iron oxide nanoparticles mediated (131)I-hVEGF siRNA inhibits hepatocellular carcinoma tumor growth in nude mice. BMC Cancer. 2014;14:114.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Jarrett BR, Gustafsson B, Kukis DL, Louie AY. Synthesis of 64Cu-labeled magnetic nanoparticles for multimodal imaging. Bioconjug Chem. 2008;19(7):1496–504.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Yang X, Hong H, Grailer JJ, Rowland IJ, Javadi A, Hurley SA, et al. cRGD-functionalized, DOX-conjugated, and (6)(4)Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging. Biomaterials. 2011;32(17):4151–60.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Torres Martin de Rosales R, Tavaré R, Paul RL, Jauregui-Osoro M, Protti A, Glaria A, et al. Synthesis of 64cu(II)–bis(dithiocarbamatebisphosphonate) and its conjugation with superparamagnetic iron oxide nanoparticles: in vivo evaluation as dual-modality PET–MRI agent. Angew Chem Int Ed Engl. 2011;50(24):5509–13.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Devaraj NK, Keliher EJ, Thurber GM, Nahrendorf M, Weissleder R. 18F labeled nanoparticles for in vivo PET-CT imaging. Bioconjug Chem. 2009;20(2):397–401.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Boros E, Bowen AM, Josephson L, Vasdev N, Holland JP. Chelate-free metal ion binding and heat-induced radiolabeling of iron oxide nanoparticles. Chem Sci. 2015;6(1):225–36.PubMedCrossRefGoogle Scholar
  52. 52.
    Chakravarty R, Valdovinos HF, Chen F, Lewis CM, Ellison PA, Luo H, et al. Intrinsically germanium-69-labeled iron oxide nanoparticles: synthesis and in-vivo dual-modality PET/MR imaging. Adv Mater. 2014;26(30):5119–23.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Chen F, Ellison PA, Lewis CM, Hong H, Zhang Y, Shi S, et al. Chelator-free synthesis of a dual-modality PET/MRI agent. Angew Chem Int Ed Engl. 2013;52(50):13319–23.PubMedCrossRefGoogle Scholar
  54. 54.
    Chatterton N, Bretonniere Y, Pecaut J, Mazzanti M. An efficient design for the rigid assembly of four bidentate chromophores in water-stable highly luminescent lanthanide complexes. Angew Chem Int Ed Engl. 2005;44(46):7595–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Larson SM, Carrasquillo JA, Cheung NK, Press OW. Radioimmunotherapy of human tumours. Nat Rev Cancer. 2015;15(6):347–60.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Park JY, Chang Y, Lee GH. Multi-modal imaging and cancer therapy using lanthanide oxide nanoparticles: current status and perspectives. Curr Med Chem. 2015;22(5):569–81.PubMedCrossRefGoogle Scholar
  57. 57.
    Yang Y, Sun Y, Liu Y, Peng JJ, Wu YQ, Zhang YJ, et al. Long-term in vivo biodistribution and toxicity of Gd(OH)(3) nanorods. Biomaterials. 2013;34(2):508–15.PubMedCrossRefGoogle Scholar
  58. 58.
    Peng J, Sun Y, Zhao L, Wu Y, Feng W, Gao Y, et al. Polyphosphoric acid capping radioactive/upconverting NaLuF4:Yb,Tm,153Sm nanoparticles for blood pool imaging in vivo. Biomaterials. 2013;34(37):9535–44.PubMedCrossRefGoogle Scholar
  59. 59.
    Yang Y, Sun Y, Cao TY, Peng JJ, Liu Y, Wu YQ, et al. Hydrothermal synthesis of NaLuF4:Sm-153,Yb,Tm nanoparticles and their application in dual-modality upconversion luminescence and SPECT bioimaging. Biomaterials. 2013;34(3):774–83.PubMedCrossRefGoogle Scholar
  60. 60.
    Cao T, Yang Y, Sun Y, Wu Y, Gao Y, Feng W, et al. Biodistribution of sub-10 nm PEG-modified radioactive/upconversion nanoparticles. Biomaterials. 2013;34(29):7127–34.PubMedCrossRefGoogle Scholar
  61. 61.
    Liu Y, Sun Y, Cao C, Yang Y, Wu Y, Ju D, et al. Long-term biodistribution in vivo and toxicity of radioactive/magnetic hydroxyapatite nanorods. Biomaterials. 2014;35(10):3348–55.PubMedCrossRefGoogle Scholar
  62. 62.
    Cheng L, Shen S, Jiang D, Jin Q, Ellison PA, Ehlerding EB, et al. Chelator-free labeling of metal oxide nanostructures with zirconium-89 for positron emission tomography imaging. ACS Nano. 2017;11(12):12193–1220.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Vivero-Escoto JL, Huxford-Phillips RC, Lin W. Silica-based nanoprobes for biomedical imaging and theranostic applications. Chem Soc Rev. 2012;41(7):2673–85.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Phillips E, Penate-Medina O, Zanzonico PB, Carvajal RD, Mohan P, Ye Y, et al. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci Transl Med. 2014;6(260):260ra149.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Ma K, Mendoza C, Hanson M, Werner-Zwanziger U, Zwanziger J, Wiesner U. Control of ultrasmall sub-10 nm ligand-functionalized fluorescent core–shell silica nanoparticle growth in water. Chem Mater. 2015;27(11):4119–33.CrossRefGoogle Scholar
  66. 66.
    Chen F, Ma K, Zhang L, Madajewski B, Zanzonico P, Sequeira S, et al. Target-or-clear zirconium-89 labeled silica nanoparticles for enhanced cancer-directed uptake in melanoma: a comparison of radiolabeling strategies. Chem Mater. 2017;29(19):8269–81.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Tang F, Li L, Chen D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater. 2012;24(12):1504–34.PubMedCrossRefGoogle Scholar
  68. 68.
    Vallet-Regi M, Rámila A, del Real RP, Pérez-Pariente J. A new property of MCM-41: drug delivery system. Chem Mater. 2001;13(2):308–11.CrossRefGoogle Scholar
  69. 69.
    Lee SB, Kim HL, Jeong H-J, Lim ST, Sohn M-H, Kim DW. Mesoporous silica nanoparticle pretargeting for pet imaging based on a rapid bioorthogonal reaction in a living body. Angew Chem Int Ed Engl. 2013;125(40):10743–6.CrossRefGoogle Scholar
  70. 70.
    Chen F, Goel S, Valdovinos HF, Luo H, Hernandez R, Barnhart TE, et al. In vivo integrity and biological fate of chelator-free zirconium-89-labeled mesoporous silica nanoparticles. ACS Nano. 2015;9(8):7950–9.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE. C60: Buckminsterfullerene. Nature. 1985;318:162–3.CrossRefGoogle Scholar
  72. 72.
    Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56–8.CrossRefGoogle Scholar
  73. 73.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666–9.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc. 2004;126(40):12736–7.PubMedCrossRefGoogle Scholar
  75. 75.
    Baker SN, Baker GA. Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed Engl. 2010;49(38):6726–44.PubMedCrossRefGoogle Scholar
  76. 76.
    Mochalin VN, Shenderova O, Ho D, Gogotsi Y. The properties and applications of nanodiamonds. Nat Nanotechnol. 2012;7(1):11–23.CrossRefGoogle Scholar
  77. 77.
    Hong G, Diao S, Antaris AL, Dai H. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem Rev. 2015;115(19):10816–906.PubMedCrossRefGoogle Scholar
  78. 78.
    Wang H, Wang J, Deng X, Sun H, Shi Z, Gu Z, et al. Biodistribution of carbon single-wall carbon nanotubes in mice. J Nanosci Nanotechnol. 2004;4(8):1019–24.PubMedCrossRefGoogle Scholar
  79. 79.
    Singh R, Pantarotto D, Lacerda L, Pastorin G, Klumpp C, Prato M, et al. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci U S A. 2006;103(9):3357–62.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Guo J, Zhang X, Li Q, Li W. Biodistribution of functionalized multiwall carbon nanotubes in mice. Nucl Med Biol. 2007;34(5):579–83.PubMedCrossRefGoogle Scholar
  81. 81.
    Rong P, Yang K, Srivastan A, Kiesewetter DO, Yue X, Wang F, et al. Photosensitizer loaded nano-graphene for multimodality imaging guided tumor photodynamic therapy. Theranostics. 2014;4(3):229–39.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Yang K, Feng L, Hong H, Cai W, Liu Z. Preparation and functionalization of graphene nanocomposites for biomedical applications. Nat Protoc. 2013;8(12):2392–402.PubMedCrossRefGoogle Scholar
  83. 83.
    Yang K, Feng L, Shi X, Liu Z. Nano-graphene in biomedicine: theranostic applications. Chem Soc Rev. 2013;42(2):530–47.PubMedCrossRefGoogle Scholar
  84. 84.
    Chan WC, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S. Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol. 2002;13(1):40–6.PubMedCrossRefGoogle Scholar
  85. 85.
    Ghasemi Y, Peymani P, Afifi S. Quantum dot: magic nanoparticle for imaging, detection and targeting. Acta Biomed. 2009;80(2):156–65.PubMedGoogle Scholar
  86. 86.
    Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science. 1998;281(5385):2013–6.PubMedCrossRefGoogle Scholar
  87. 87.
    Goel S, England CG, Chen F, Cai W. Positron emission tomography and nanotechnology: a dynamic duo for cancer theranostics. Adv Drug Deliv Rev. 2017;113:157–76.PubMedCrossRefGoogle Scholar
  88. 88.
    Sun M, Hoffman D, Sundaresan G, Yang L, Lamichhane N, Zweit J. Synthesis and characterization of intrinsically radiolabeled quantum dots for bimodal detection. Am J Nucl Med Mol Imaging. 2012;2(2):122–35.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Sun X, Huang X, Guo J, Zhu W, Ding Y, Niu G, et al. Self-illuminating 64Cu-doped CdSe/ZnS nanocrystals for in vivo tumor imaging. J Am Chem Soc. 2014;136(5):1706–9.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Kennel SJ, Woodward JD, Rondinone AJ, Wall J, Huang Y, Mirzadeh S. The fate of MAb-targeted Cd125mTe/ZnS nanoparticles in vivo. Nucl Med Biol. 2008;35(4):501–14.PubMedCrossRefGoogle Scholar
  91. 91.
    Cai W, Hong H. In a “nutshell”: intrinsically radio-labeled quantum dots. Am J Nucl Med Mol Imaging. 2012;2(2):136–40.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Sharma VK, McDonald TJ, Sohn M, Anquandah GAK, Pettine M, Zboril R. Assessment of toxicity of selenium and cadmium selenium quantum dots: a review. Chemosphere. 2017;188:403–13.PubMedCrossRefGoogle Scholar
  93. 93.
    Mo D, Hu L, Zeng G, Chen G, Wan J, Yu Z, et al. Cadmium-containing quantum dots: properties, applications, and toxicity. Appl Microbiol Biotechnol. 2017;101(7):2713–33.PubMedCrossRefGoogle Scholar
  94. 94.
    Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):102.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    van der Geest T, Laverman P, Metselaar JM, Storm G, Boerman OC. Radionuclide imaging of liposomal drug delivery. Expert Opin Drug Deliv. 2016;13(9):1231–42.PubMedCrossRefGoogle Scholar
  96. 96.
    Jensen AI, Severin GW, Hansen AE, Fliedner FP, Eliasen R, Parhamifar L, et al. Remote-loading of liposomes with manganese-52 and in vivo evaluation of the stabilities of 52Mn-DOTA and 64Cu-DOTA using radiolabelled liposomes and PET imaging. J Control Release. 2018;269:100–9.PubMedCrossRefGoogle Scholar
  97. 97.
    Khadka P, Ro J, Kim H, Kim I, Kim JT, Kim H, et al. Pharmaceutical particle technologies: an approach to improve drug solubility, dissolution and bioavailability. Asian J Pharm Sci. 2014;9(6):304–16.CrossRefGoogle Scholar
  98. 98.
    Kalepu S, Nekkanti V. Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm Sin B. 2015;5(5):442–53.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Starmans LW, Hummelink MA, Rossin R, Kneepkens EC, Lamerichs R, Donato K, et al. (89) Zr- and fe-labeled polymeric micelles for dual modality pet and t1 -weighted mr imaging. Adv Healthc Mater. 2015;4(14):2137–45.PubMedCrossRefGoogle Scholar
  100. 100.
    Jensen AI, Binderup T, Kumar Ek P, Kjær A, Rasmussen PH, Andresen TL. Positron emission tomography based analysis of long-circulating cross-linked triblock polymeric micelles in a u87mg mouse xenograft model and comparison of dota and cb-te2a as chelators of copper-64. Biomacromolecules. 2014;15(5):1625–33.PubMedCrossRefGoogle Scholar
  101. 101.
    Xu L, Zhang H, Wu Y. Dendrimer advances for the central nervous system delivery of therapeutics. ACS Chem Neurosci. 2014;5(1):2–13.PubMedCrossRefGoogle Scholar
  102. 102.
    Noriega-Luna B, Godnez LA, Rodriguez FJ, Rodriguez A, Zaldvar-Lelo de Larrea G, Sosa-Ferreyra CF, et al. Applications of dendrimers in drug delivery agents, diagnosis, therapy, and detection. J Nanomater. 2014;2014:19.CrossRefGoogle Scholar
  103. 103.
    Rai AK, Tiwari R, Maurya P, Yadav P. Dendrimers: a potential carrier for targeted drug delivery system. Pharm Biol Eval. 2016;3(3):275–87.Google Scholar
  104. 104.
    Zhao L, Zhu M, Li Y, Xing Y, Zhao J. Radiolabeled dendrimers for nuclear medicine applications. Molecules. 2017;22(9):pii: E1350.CrossRefGoogle Scholar
  105. 105.
    Sarko D, Eisenhut M, Haberkorn U, Mier W. Bifunctional chelators in the design and application of radiopharmaceuticals for oncological diseases. Curr Med Chem. 2012;19(17):2667–88.PubMedCrossRefGoogle Scholar
  106. 106.
    Almutairi A, Rossin R, Shokeen M, Hagooly A, Ananth A, Capoccia B, et al. Biodegradable dendritic positron-emitting nanoprobes for the noninvasive imaging of angiogenesis. Proc Natl Acad Sci U S A. 2009;106(3):685–90.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    McDonald DM, Choyke PL. Imaging of angiogenesis: from microscope to clinic. Nat Med. 2003;9(6):713–25.PubMedCrossRefGoogle Scholar
  108. 108.
    Fang J, Nakamura H, Maeda H. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev. 2011;63(3):136–51.PubMedCrossRefGoogle Scholar
  109. 109.
    Maeda H, Takeshita J, Kanamaru R. A lipophilic derivative of neocarzinostatin. A polymer conjugation of an antitumor protein antibiotic. Int J Pept Protein Res. 1979;14(2):81–7.PubMedCrossRefGoogle Scholar
  110. 110.
    Maeda H, Matsumoto T, Konno T, Iwai K, Ueda M. Tailor-making of protein drugs by polymer conjugation for tumor targeting: a brief review on smancs. J Protein Chem. 1984;3(2):181–93.CrossRefGoogle Scholar
  111. 111.
    Greish K. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol Biol. 2010;624:25–37.PubMedCrossRefGoogle Scholar
  112. 112.
    Hansen AE, Petersen AL, Henriksen JR, Boerresen B, Rasmussen P, Elema DR, et al. Positron emission tomography based elucidation of the enhanced permeability and retention effect in dogs with cancer using copper-64 liposomes. ACS Nano. 2015;9(7):6985–95.PubMedCrossRefGoogle Scholar
  113. 113.
    Hong H, Zhang Y, Sun J, Cai W. Molecular imaging and therapy of cancer with radiolabeled nanoparticles. Nano Today. 2009;4(5):399–413.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Ngoune R, Peters A, von Elverfeldt D, Winkler K, Pütz G. Accumulating nanoparticles by EPR: a route of no return. J Control Release. 2016;238:58–70.PubMedCrossRefGoogle Scholar
  115. 115.
    Byrne JD, Betancourt T, Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev. 2008;60(15):1615–26.PubMedCrossRefGoogle Scholar
  116. 116.
    Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology(). Adv Drug Deliv Rev. 2014;66:2–25.PubMedCrossRefGoogle Scholar
  117. 117.
    Chen F, Hong H, Zhang Y, Valdovinos HF, Shi S, Kwon GS, et al. In vivo tumor targeting and image-guided drug delivery with antibody-conjugated, radiolabeled mesoporous silica nanoparticles. ACS Nano. 2013;7(10):9027–39.PubMedCrossRefGoogle Scholar
  118. 118.
    Matter A. Tumor angiogenesis as a therapeutic target. Drug Discov Today. 2001;6(19):1005–24.PubMedCrossRefGoogle Scholar
  119. 119.
    Cai W, Chen K, Li ZB, Gambhir SS, Chen X. Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature. J Nucl Med. 2007;48(11):1862–70.PubMedCrossRefGoogle Scholar
  120. 120.
    Liu Z, Cai W, He L, Nakayama N, Chen K, Sun X, et al. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol. 2007;2(1):47–52.PubMedCrossRefGoogle Scholar
  121. 121.
    Yang S, Gao H. Nanoparticles for modulating tumor microenvironment to improve drug delivery and tumor therapy. Pharmacol Res. 2017;126(Suppl C):97–108.PubMedCrossRefGoogle Scholar
  122. 122.
    Miao L, Huang L. Exploring the tumor microenvironment with nanoparticles. Cancer Treat Res. 2015;166:193–226.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Chen B, Dai W, He B, Zhang H, Wang X, Wang Y, et al. Current multistage drug delivery systems based on the tumor microenvironment. Theranostics. 2017;7(3):538–58.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Feng L, Dong Z, Tao D, Zhang Y, Liu Z. The acidic tumor microenvironment: a target for smart cancer nano-theranostics. Natl Sci Rev. 2018;5(2):269–86.CrossRefGoogle Scholar
  125. 125.
    Gao H, Liu X, Tang W, Niu D, Zhou B, Zhang H, et al. 99mTc-conjugated manganese-based mesoporous silica nanoparticles for SPECT, pH-responsive MRI and anti-cancer drug delivery. Nanoscale. 2016;8(47):19573–80.PubMedCrossRefGoogle Scholar
  126. 126.
    Palner M, Shen B, Jeon J, Lin J, Chin FT, Rao J. Preclinical kinetic analysis of the caspase-3/7 PET tracer 18F-C-SNAT: quantifying the changes in blood flow and tumor retention after chemotherapy. J Nucl Med. 2015;56(9):1415–21.PubMedCrossRefGoogle Scholar
  127. 127.
    Perez-Campana C, Gomez-Vallejo V, Martin A, San Sebastian E, Moya SE, Reese T, et al. Tracing nanoparticles in vivo: a new general synthesis of positron emitting metal oxide nanoparticles by proton beam activation. Analyst. 2012;137(21):4902–6.PubMedCrossRefGoogle Scholar
  128. 128.
    Wang L, Zhao Z, Meyer MB, Saha S, Yu M, Guo A, et al. CARM1 methylates chromatin remodeling factor BAF155 to enhance tumor progression and metastasis. Cancer Cell. 2014;25(1):21–36.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Burke BP, Clemente GS, Archibald SJ. Recent advances in chelator design and labelling methodology for 68Ga radiopharmaceuticals. J Labelled Comp Radiopharm. 2014;57(4):239–43.PubMedCrossRefGoogle Scholar
  130. 130.
    Deri MA, Zeglis BM, Francesconi LC, Lewis JS. PET imaging with (89)Zr: from radiochemistry to the clinic. Nucl Med Biol. 2013;40(1):3–14.PubMedCrossRefGoogle Scholar
  131. 131.
    Goel S, Chen F, Ehlerding EB, Cai W. Intrinsically radiolabeled nanoparticles: an emerging paradigm. Small. 2014;10(19):3825–30.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Beberwyck BJ, Surendranath Y, Alivisatos AP. Cation exchange: a versatile tool for nanomaterials synthesis. J Phys Chem C. 2013;117(39):19759–70.CrossRefGoogle Scholar
  133. 133.
    Goel S, Chen F, Luan S, Valdovinos HF, Shi S, Graves SA, et al. Engineering intrinsically Zirconium-89 radiolabeled self-destructing mesoporous silica nanostructures for in vivo biodistribution and tumor targeting studies. Adv Sci (Weinh). 2016;3(11):1600122.CrossRefGoogle Scholar
  134. 134.
    Gottstein C, Wu G, Wong BJ, Zasadzinski JA. Precise quantification of nanoparticle internalization. ACS Nano. 2013;7(6):4933–45.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Gonzalez-Rodriguez D, Barakat AI. Dynamics of receptor-mediated nanoparticle internalization into endothelial cells. PLoS One. 2015;10(4):e0122097.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Almutary A, Sanderson BJS. The MTT and crystal violet assays: potential confounders in nanoparticle toxicity testing. Int J Toxicol. 2016;35(4):454–62.PubMedCrossRefGoogle Scholar
  137. 137.
    Mortelmans K, Zeiger E. The Ames Salmonella/microsome mutagenicity assay. Mutat Res. 2000;455(1–2):29–60.PubMedCrossRefGoogle Scholar
  138. 138.
    Edmondson R, Broglie JJ, Adcock AF, Yang L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol. 2014;12(4):207–18.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Zamboni WC, Torchilin V, Patri AK, Hrkach J, Stern S, Lee R, et al. Best practices in cancer nanotechnology: Perspective from NCI Nanotechnology Alliance. Clin Cancer Res. 2012;18:3229–41.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Ehlerding EB, Chen F, Cai W. Biodegradable and renal clearable inorganic nanoparticles. Adv Sci (Weinh). 2016;3(2):pii: 1500223.CrossRefGoogle Scholar
  141. 141.
    Dobrovolskaia MA. Pre-clinical immunotoxicity studies of nanotechnology-formulated drugs: challenges, considerations and strategy. J Control Release. 2015;220(Pt B):571–83.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Wolfram J, Zhu M, Yang Y, Shen J, Gentile E, Paolino D, et al. Safety of nanoparticles in medicine. Curr Drug Targets. 2015;16(14):1671–81.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Prabhakar U, Maeda H, Jain RK, Sevick-Muraca EM, Zamboni W, Farokhzad OC, et al. Challenges and key considerations of the enhanced permeability and retention (EPR) effect for nanomedicine drug delivery in oncology. Cancer Res. 2013;73(8):2412–7.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Chemistry, Institute of ScienceSuranaree University of TechnologyNakhon RatchasimaThailand
  2. 2.Department of Medical PhysicsUniversity of Wisconsin – MadisonMadisonUSA
  3. 3.Department of RadiologyUniversity of Wisconsin – MadisonMadisonUSA

Personalised recommendations