Advertisement

Resource-Aware Virtually Timed Ambients

  • Einar Broch Johnsen
  • Martin Steffen
  • Johanna Beate Stumpf
  • Lars Tveito
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11023)

Abstract

Virtually timed ambients is a calculus of nested virtualization, which models timing and resource consumption for hierarchically structured virtual machines. This structure may change dynamically to support load-balancing, migration, and scaling. This paper introduces resource-awareness for virtually timed ambients, which enables processes to actively query the system about the resources necessary for a task and to reconfigure accordingly. Technically we extend virtually timed ambients with context-expressions using modal logic operators, give a formal semantics for the extension, and define bisimulation for resource-aware virtually timed systems. The paper also provides a proof of concept implementation in Maude and a case study involving dynamic auto scaling.

References

  1. 1.
    Amazon Web Services. Auto Scaling User Guide. http://docs.aws.amazon.com/autoscaling/latest/userguide/as-dg.pdf. Accessed 21 June 2017
  2. 2.
    Ben-Yehuda, M., et al.: The Turtles project: design and implementation of nested virtualization. In: Proceedings 9th USENIX Symposium on Operating Systems Design and Implementation (OSDI 2010), pp. 423–436. USENIX Association (2010)Google Scholar
  3. 3.
    Cardelli, L., Gordon, A.D.: Mobile ambients. Theor. Comput. Sci. 240(1), 177–213 (2000)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cardelli, L., Gordon, A.D.: Equational properties of mobile ambients. Math. Struct. Comput. Sci. 13(3), 371–408 (2003)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Clavel, M., et al. (eds.): All About Maude - A High-Performance Logical Framework, How to Specify, Program and Verify Systems in Rewriting Logic. LNCS, vol. 4350. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-71999-1CrossRefzbMATHGoogle Scholar
  6. 6.
    Fibonacci: Greedy Algorithm for Egyptian Fractions. https://en.wikipedia.org/wiki/Greedy_algorithm_for_Egyptian_fractions
  7. 7.
    Goldberg, R.P.: Survey of virtual machine research. IEEE Comput. 7(6), 34–45 (1974)CrossRefGoogle Scholar
  8. 8.
    Gordon, A.D.: V for virtual. Electron. Notes Theor. Comput. Sci. 162, 177–181 (2006)CrossRefGoogle Scholar
  9. 9.
    Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: Integrating deployment architectures and resource consumption in timed object-oriented models. J. Log. Algebr. Methods Program. 84(1), 67–91 (2015)CrossRefGoogle Scholar
  10. 10.
    Johnsen, E.B., Steffen, M., Stumpf, J.B.: A calculus of virtually timed ambients. In: James, P., Roggenbach, M. (eds.) WADT 2016. LNCS, vol. 10644, pp. 88–103. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-72044-9_7CrossRefGoogle Scholar
  11. 11.
    Johnsen, E.B., Steffen, M., Stumpf, J.B.: Virtually timed ambients: a calculus of nested virtualization. J. Log. Algebr. Methods Program. 94, 109–127 (2018)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Johnsen, E.B., Steffen, M., Stumpf, J.B., Tveito, L.: Checking modal contracts for virtually timed ambients. In: Fischer, B., Uustalu, T. (eds.) ICTAC 2018. LNCS. Springer (2018, to appear)Google Scholar
  13. 13.
    Merro, M., Hennessy, M.: A bisimulation-based semantic theory of safe ambients. ACM Trans. Program. Lang. Syst. 28(2), 290–330 (2006)CrossRefGoogle Scholar
  14. 14.
    Merro, M., Nardelli, F.Z.: Behavioral theory for mobile ambients. J. ACM 52(6), 961–1023 (2005)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Meseguer, J.: Twenty years of rewriting logic. J. Log. Algebr. Program. 81(7–8), 721–781 (2012)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Milner, R., Sangiorgi, D.: Barbed bisimulation. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 685–695. Springer, Heidelberg (1992).  https://doi.org/10.1007/3-540-55719-9_114CrossRefGoogle Scholar
  17. 17.
    Ölveczky, P.C.: Designing Reliable Distributed Systems - A Formal Methods Approach Based on Executable Modeling in Maude. Undergraduate Topics in Computer Science. Springer, London (2018).  https://doi.org/10.1007/978-1-4471-6687-0CrossRefzbMATHGoogle Scholar
  18. 18.
    Rosa-Velardo, F., Segura, C., Verdejo, A.: Typed mobile ambients in Maude. Electron. Notes Theor. Comput. Sci. 147(1), 135–161 (2006). (In: Proceedings of the 6th International Workshop on Rule-Based Programming)CrossRefGoogle Scholar
  19. 19.
    Sangiorgi, D.: Bisimulation for higher-order process calculi. Inf. Comput. 131(2), 141–178 (1996)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Sangiorgi, D., Walker, D.: The Pi-Calculus: A Theory of Mobile Processes. Cambridge University Press, Cambridge (2001)zbMATHGoogle Scholar
  21. 21.
    Siewe, F., Zedan, H., Cau, A.: The calculus of context-aware ambients. J. Comput. Syst. Sci. 77(4), 597–620 (2011)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Williams, D., Jamjoom, H., Weatherspoon, H.: The Xen-Blanket: virtualize once, run everywhere. In: Proceedings of 7th European Conference on Computer Systems (EuroSys 2012), pp. 113–126. ACM (2012)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Einar Broch Johnsen
    • 1
  • Martin Steffen
    • 1
  • Johanna Beate Stumpf
    • 1
  • Lars Tveito
    • 1
  1. 1.University of OsloOsloNorway

Personalised recommendations