Advertisement

Approximate Computing and Its Application to Hardware Security

  • Weiqiang Liu
  • Chongyan Gu
  • Gang Qu
  • Máire O’Neill
Chapter

Abstract

The demand for high speed and low power in nanoscale integrated circuits (ICs) for many applications, such as image and multimedia data processing, artificial intelligence, and machine learning, where results of the highest accuracy may not be needed, has motivated the development of approximate computing. Approximate circuits, in particular approximate arithmetic units, have been studied extensively and made significant impact on the power performance of such systems. The first goal of this chapter is to review both the existing approximate arithmetic circuitries, which include adders, multipliers, and dividers, and popular approximate algorithms. The second goal of this chapter is to explore broader applications of approximate computing. As an example, we review two case studies, one on a lightweight device authentication scheme based on erroneous adders and the other one on information hiding behind a newly proposed approximate data format. This approach of applying approximate computing in security is interesting and promising in the Internet of things (IoT) domain where the devices are extremely resource constrained and cannot afford conventional cryptographic solutions to provide data security and user privacy. We also discuss the potential of approximate computing in building hardware security primitives for cyber physical system (CPS) and IoT devices.

Notes

Acknowledgements

This work was partly supported by the National Natural Science Foundation of China (61871216 and 61771239), by Nature Science Foundation of Jiangsu Province (BK20151477), by Six Talent Peaks Project in Jiangsu Province (2018XYDXX-009), by the Institute for Information and Communications Technology Promotion (IITP) grant funded by the Korean government (MSIT) (No. 2016-0-00399, Study on secure key hiding technology for IoT devices [KeyHAS Project]), and by the Engineering and Physical Sciences Research Council (EPSRC) (EP/N508664/-CSIT2).

References

  1. 1.
    J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N.E. Jerger, A. Moshovos, Cnvlutin: ineffectual-neuron-free deep neural network computing, in Proceedings of ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA’16) (IEEE, New York, 2016), pp. 1–13Google Scholar
  2. 2.
    H. Almurib, N. Kumar, F. Lombardi, Inexact designs for approximate low power addition by cell replacement, in Proceedings of IEEE Design, Automation & Test in Europe Conference & Exhibition (DATE) (2016), pp. 660–665Google Scholar
  3. 3.
    M. Arafin, M. Gao, G. Qu, VOLtA: voltage over-scaling based lightweight authentication for IoT applications, in Proceedings of 22nd Asia and South Pacific Design Automation Conference (ASP-DAC) (2017), pp. 336–341.  https://doi.org/10.1109/ASPDAC.2017.7858345
  4. 4.
    G.T. Becker, On the pitfalls of using arbiter-PUFs as building blocks. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(8), 1295–1307 (2015)CrossRefGoogle Scholar
  5. 5.
    G.T. Becker, The gap between promise and reality: on the insecurity of XOR arbiter PUFs, in Proceedings of International Workshop on Cryptographic Hardware and Embedded Systems (CHES’15) (Springer, Berlin, 2015), pp. 535–555zbMATHGoogle Scholar
  6. 6.
    V. Camus, J. Schlachter, C. Enz, A low-power carry cut-back approximate adder with fixed-point implementation and floating-point precision, in Proceedings of 53rd Annual Design Automation Conference (DAC) (2016), p. 127Google Scholar
  7. 7.
    T. Cao, W. Liu, C. Wang, X. Cui, F. Lombardi, Design of approximate redundant binary multipliers, in Proceedings of IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH) (2016), pp. 31–36. https://doi.org/10.1145/2950067.2950094
  8. 8.
    L. Chang, Cognitive data-centric systems, in Proceedings of Great Lakes Symposium on VLSI (GLSVLSI) (2017), pp 1–1. http://doi.acm.org/10.1145/3060403.3060491
  9. 9.
    S. Cheemalavagu, P. Korkmaz, K. Palem, B. Akgul, L. Chakrapani, A probabilistic CMOS switch and its realization by exploiting noise, in Proceeding of IFIP International Conference on VLSI (2005), pp. 535–541Google Scholar
  10. 10.
    W. Chen, J. Wilson, S. Tyree, K. Weinberger, Y. Chen, Compressing neural networks with the hashing trick, in Proceeding of International Conference on Machine Learning (2015), pp. 2285–2294Google Scholar
  11. 11.
    L. Chen, J. Han, W. Liu, F. Lombardi, Design of approximate unsigned integer non-restoring divider for inexact computing, in Proceedings of ACM 25th Edition on Great Lakes Symposium on VLSI (GLSVLSI) (2015), pp. 51–56. http://doi.acm.org/10.1145/2742060.2742063
  12. 12.
    L. Chen, J. Han, W. Liu, F. Lombardi, On the design of approximate restoring dividers for error-tolerant applications. IEEE Trans. Comput. 65(8), 2522–2533 (2016). https://doi.org/10.1109/TC.2015.2494005 MathSciNetCrossRefGoogle Scholar
  13. 13.
    L. Chen, F. Lombardi, P. Montuschi, J. Han, W. Liu, Design of approximate high-radix dividers by inexact binary signed-digit addition, in Proceedings of Great Lakes Symposium on VLSI (GLSVLSI), New York (2017), pp. 293–298. http://doi.acm.org/10.1145/3060403.3060404
  14. 14.
    V. Chippa, S. Chakradhar, K. Roy, A. Raghunathan, Analysis and characterization of inherent application resilience for approximate computing, in Proceedings of 50th Annual Design Automation Conference (DAC) (2013), p. 113Google Scholar
  15. 15.
    M. Courbariaux, Y. Bengio, J.-P. David, Binaryconnect: training deep neural networks with binary weights during propagations, in Advances in Neural Information Processing Systems (2015), pp. 3123–3131Google Scholar
  16. 16.
    M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, Y. Bengio, Binarized neural networks: training deep neural networks with weights and activations constrained to +1 or −1 (2016). http://arxiv.org/abs/1602.02830. 1602.02830
  17. 17.
    K. Du, P. Varman, K. Mohanram, High performance reliable variable latency carry select addition, in Proceedings of Design, Automation & Test in Europe Conference & Exhibition (DATE) (IEEE, New York, 2012), pp. 1257–1262Google Scholar
  18. 18.
    D. Esposito, D.D. Caro, E. Napoli, N. Petra, A.G.M. Strollo, Variable latency speculative Han-Carlson adder. IEEE Trans. Circuits Syst. Regul. Pap. 62(5), 1353–1361 (2015).  https://doi.org/10.1109/TCSI.2015.2403036 CrossRefGoogle Scholar
  19. 19.
    M. Gao, Q. Wang, M.T. Arafin, Y. Lyu, G. Qu, Approximate computing for low power and security in the internet of things. Computer 50(6), 27–34 (2017). https://doi.org/10.1109/MC.2017.176 CrossRefGoogle Scholar
  20. 20.
    R. Gilmore, N. Hanley, M. O’Neill, Neural network based attack on a masked implementation of AES, in Proceedings of IEEE International Symposium on Hardware Oriented Security and Trust (HOST) (2015), pp. 106–111.  https://doi.org/10.1109/HST.2015.7140247
  21. 21.
    I. Goiri, R. Bianchini, S. Nagarakatte, T. Nguyen, ApproxHadoop: bringing approximations to mapreduce frameworks, in Proceedings of ACM SIGARCH Computer Architecture News, vol. 43 (ACM, New York, 2015), pp. 383–397Google Scholar
  22. 22.
    C. Gu, N. Hanley, M. O’Neill, Improved reliability of FPGA-based PUF identification generator design. ACM Trans. Reconfig. Technol. Syst. 10(3), 20:1–20:23 (2017). http://doi.acm.org/10.1145/3053681 CrossRefGoogle Scholar
  23. 23.
    J. Guajardo, S.S. Kumar, G.J. Schrijen, P. Tuyls FPGA intrinsic PUFs and their use for IP protection. Vienna (2007)Google Scholar
  24. 24.
    V. Gupta, D. Mohapatra, A. Raghunathan, K. Roy, Low-power digital signal processing using approximate adders. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 32(1), 124–137 (2013)CrossRefGoogle Scholar
  25. 25.
    J. Han, M. Orshansky, Approximate computing: an emerging paradigm for energy-efficient design, in Proceedings of the 18th IEEE European Test Symposium (ETS) (2013), pp. 1–6.  https://doi.org/10.1109/ETS.2013.6569370
  26. 26.
    S. Han, J. Pool, J. Tran, W. Dally, Learning both weights and connections for efficient neural network, in Proceedings of Advances in Neural Information Processing Systems (2015), pp. 1135–1143Google Scholar
  27. 27.
    K. Hasegawa, M. Oya, M. Yanagisawa, N. Togawa, Hardware trojans classification for gate-level netlists based on machine learning, in Proceedings of IEEE 22nd International Symposium on On-Line Testing and Robust System Design (IOLTS) (2016), pp. 203–206.  https://doi.org/10.1109/IOLTS.2016.7604700
  28. 28.
    K. Hasegawa, M. Yanagisawa, N. Togawa, Hardware trojans classification for gate-level netlists using multi-layer neural networks, in Proceedings of IEEE 23rd International Symposium on On-Line Testing and Robust System Design (IOLTS) (2017), pp. 227–232.  https://doi.org/10.1109/IOLTS.2017.8046227
  29. 29.
    S. Hashemi, R. Bahar, S. Reda, Drum: a dynamic range unbiased multiplier for approximate applications, in Proceedings of IEEE/ACM International Conference on Computer-Aided Design (IEEE Press, New York, 2015), pp. 418–425Google Scholar
  30. 30.
    S. Hashemi, R.I. Bahar, S. Reda, A low-power dynamic divider for approximate applications, in Proceedings of 53rd Annual Design Automation Conference (DAC), New York (2016), pp. 105:1–105:6. http://doi.acm.org/10.1145/2897937.2897965
  31. 31.
    A. Heuser, M. Zohner, Intelligent machine homicide, in Proceeding of International Workshop on Constructive Side-Channel Analysis and Secure Design (Springer, New York, 2012), pp. 249–264Google Scholar
  32. 32.
    I. Hong, D. Kirovski, G. Qu, M. Potkonjak, M.B. Srivastava, Power optimization of variable-voltage core-based systems. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 18(12), 1702–1714 (1999). https://doi.org/10.1109/43.811318 CrossRefGoogle Scholar
  33. 33.
    G. Hospodar, B. Gierlichs, E. De Mulder, I. Verbauwhede, J. Vandewalle, Machine learning in side-channel analysis: a first study. J. Cryptogr. Eng. 1(4), 293 (2011). https://doi.org/10.1007/s13389-011-0023-x CrossRefGoogle Scholar
  34. 34.
    J. Hruska, Nvidia’s CEO declares Moore’s law dead (2017). https://www.extremetech.com/computing/256558-nvidias-ceo-declares-moores-law-dead
  35. 35.
    S. Hua, G. Qu, S.S. Bhattacharyya, An energy reduction technique for multimedia application with tolerance to deadline misses, in Proceedings of Design Automation Conference (IEEE, New York, 2003), pp. 131–136Google Scholar
  36. 36.
    S. Hua, G. Qu, S.S. Bhattacharyya, Probabilistic design of multimedia embedded systems. ACM Trans. Embed. Comput. Syst. 6(3) (2007). http://doi.acm.org/10.1145/1275986.1275987 CrossRefGoogle Scholar
  37. 37.
    IEEE Standard for Floating-Point Arithmetic (2008). IEEE Std 754-2008, pp. 1–70.  https://doi.org/10.1109/IEEESTD.2008.4610935
  38. 38.
    Y. Ikezaki, Y. Nozaki, M. Yoshikawa, Deep learning attack for physical unclonable function, in 2016 IEEE 5th Global Conference on Consumer Electronics (2016), pp. 1–2.  https://doi.org/10.1109/GCCE.2016.7800478
  39. 39.
    ITRS 2.0 home page (Last accessed 16 January 2018). http://www.itrs2.net/
  40. 40.
    H. Jiang, J. Han, F. Qiao, F. Lombardi, Approximate radix-8 booth multipliers for low-power and high-performance operation. IEEE Trans. Comput. 65(8), 2638–2644 (2016)MathSciNetCrossRefGoogle Scholar
  41. 41.
    H. Jiang, C. Liu, L. Liu, F. Lombardi, J. Han, A review, classification, and comparative evaluation of approximate arithmetic circuits. Emerg. Technol. Comput. Syst. 13(4), 60:1–60:34 (2017). http://doi.acm.org/10.1145/3094124 CrossRefGoogle Scholar
  42. 42.
    N. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers, In-datacenter performance analysis of a tensor processing unit, in Proceeding of 44th Annual International Symposium on Computer Architecture (ACM, New York, 2017), pp. 1–12Google Scholar
  43. 43.
    A.B. Kahng, S. Kang, Accuracy-configurable adder for approximate arithmetic designs, in Proceedings of 49th Annual Design Automation Conference (DAC) (2012), pp. 820–825Google Scholar
  44. 44.
    Y. Kim, Y. Zhang, P. Li, An energy efficient approximate adder with carry skip for error resilient neuromorphic VLSI systems, in Proceedings of the International Conference on Computer-Aided Design (IEEE Press, New York, 2013), pp. 130–137Google Scholar
  45. 45.
    S.R. Kuang, J.P. Wang, C.Y. Guo, Modified booth multipliers with a regular partial product array. IEEE Trans. Circuits Syst. Express Briefs 56(5), 404–408 (2009).  https://doi.org/10.1109/TCSII.2009.2019334 CrossRefGoogle Scholar
  46. 46.
    P. Kulkarni, P. Gupta, M. Ercegovac, Trading accuracy for power with an underdesigned multiplier architecture, in Proceedings of 24th IEEE International Conference on VLSI Design (2011), pp. 346–351Google Scholar
  47. 47.
    A. Kulkarni, Y. Pino, T. Mohsenin, SVM-based real-time hardware trojan detection for many-core platform, in Proceedings of 17th International Symposium on Quality Electronic Design (ISQED) (2016), pp. 362–367.  https://doi.org/10.1109/ISQED.2016.7479228
  48. 48.
    K. Kyaw, W. Goh, K. Yeo, Low-power high-speed multiplier for error-tolerant application, in Proceedings of IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC) (IEEE, New York, 2010), pp. 1–4Google Scholar
  49. 49.
    L. Lerman, G. Bontempi, O. Markowitch, A machine learning approach against a masked aes. J. Cryptogr. Eng. 5(2), 123–139 (2015). https://doi.org/10.1007/s13389-014-0089-3 CrossRefGoogle Scholar
  50. 50.
    L. Lerman, R. Poussier, O. Markowitch, F.X. Standaert, Template attacks versus machine learning revisited and the curse of dimensionality in side-channel analysis: extended version. J. Cryptogr. Eng. (2017). https://doi.org/10.1007/s13389-017-0162-9 CrossRefGoogle Scholar
  51. 51.
    W. Liu, L. Chen, C. Wang, M. O’Neill, F. Lombardi, Design and analysis of inexact floating-point adders. IEEE Trans. Comput. 65(1), 308–314 (2016). https://doi.org/10.1109/TC.2015.2417549 MathSciNetCrossRefGoogle Scholar
  52. 52.
    W. Liu, L. Qian, C. Wang, H. Jiang, J. Han, F. Lombardi, Design of approximate radix-4 booth multipliers for error-tolerant computing. IEEE Trans. Comput. 66(8), 1435–1441 (2017). https://doi.org/10.1109/TC.2017.2672976 MathSciNetCrossRefGoogle Scholar
  53. 53.
    W. Liu, J. Xu, D. Wang, C. Wang, P. Montuschi, F. Lombardi, Design and evaluation of approximate logarithmic multipliers for low power error-tolerant applications. IEEE Trans. Circuits Syst. Regul. Pap. 65(9), 2856–2868 (2018)CrossRefGoogle Scholar
  54. 54.
    S.L. Lu, Speeding up processing with approximation circuits. Computer 37(3), 67–73 (2004)MathSciNetCrossRefGoogle Scholar
  55. 55.
    Y. Ma, N. Suda, Y. Cao, J. Seo, S. Vrudhula, Scalable and modularized RTL compilation of convolutional neural networks onto FPGA, in Proceedings of 26th International Conference on Field Programmable Logic and Applications (FPL) (IEEE, New York, 2016), pp. 1–8Google Scholar
  56. 56.
    H. Maghrebi, T. Portigliatti, E. Prouff, Breaking cryptographic implementations using deep learning techniques, in Proceedings of International Conference on Security, Privacy, and Applied Cryptography Engineering (Springer, Berlin, 2016), pp. 3–26CrossRefGoogle Scholar
  57. 57.
    H. Mahdiani, A. Ahmadi, S. Fakhraie, C. Lucas, Bio-inspired imprecise computational blocks for efficient VLSI implementation of soft-computing applications. IEEE Trans. Circuits Syst. Regul. Pap. 57(4), 850–862 (2010)MathSciNetCrossRefGoogle Scholar
  58. 58.
    J. Mitchell, Computer multiplication and division using binary logarithms. IRE Trans. Electron. Comput. EC-11(4), 512–517 (1962)MathSciNetCrossRefGoogle Scholar
  59. 59.
    D. Modha, R. Ananthanarayanan, S. Esser, A. Ndirango, A. Sherbondy, R. Singh, Cognitive computing. Commun. ACM 54(8), 62–71 (2011)CrossRefGoogle Scholar
  60. 60.
    D. Mohapatra, V. Chippa, A. Raghunathan, K. Roy, Design of voltage-scalable meta-functions for approximate computing, in Proceedings of Design, Automation & Test in Europe Conference & Exhibition (DATE) (IEEE, New York, 2011), pp. 1–6Google Scholar
  61. 61.
    A. Momeni, J. Han, P. Montuschi, F. Lombardi, Design and analysis of approximate compressors for multiplication. IEEE Trans. Comput. 64(4), 984–994 (2015)MathSciNetCrossRefGoogle Scholar
  62. 62.
    A. Nordrum, Popular internet of things forecast of 50 billion devices by 2020 is outdated (2016). https://spectrum.ieee.org/tech-talk/telecom/internet/popular-internet-of-things-forecast-of-50-/billion-devices-by-2020-is-outdated
  63. 63.
    S. Nowick, Design of a low-latency asynchronous adder using speculative completion. IEEE Proc. Comput. Digital Technol. 143(5), 301–307 (1996)CrossRefGoogle Scholar
  64. 64.
    B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs (Oxford University Press, Oxford, 2000)Google Scholar
  65. 65.
    C. Peter, ARM’s lead engineer discusses inexact processing EE Times (2013). https://www.eetimes.com/author.asp?section_id=36&doc_id=1318829
  66. 66.
    G. Qu, L. Yuan, Design things for the internet of things: an eda perspective, in 2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD) (2014), pp. 411–416.  https://doi.org/10.1109/ICCAD.2014.7001384
  67. 67.
    J. Rajendran, Y. Pino, O. Sinanoglu, R. Karri, Security analysis of logic obfuscation, in Proceedings of Design Automation Conference (DAC) (2012), pp. 83–89. https://doi.org/10.1145/2228360.2228377
  68. 68.
    U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, J. Schmidhuber, Modeling attacks on physical unclonable functions, in Proceedings of 17th ACM Conference on Computer and Communications Security(CCS’10), Chicago (2010), pp. 237–249Google Scholar
  69. 69.
    U. Rührmair, J. Sölter, F. Sehnke, X. Xu, A. Mahmoud, V. Stoyanova, G. Dror, J. Schmidhuber, W. Burleson, S. Devadas, PUF modeling attacks on simulated and silicon data. IEEE Trans. Inf. Forensics Secur. 8(11), 1876–1891 (2013)CrossRefGoogle Scholar
  70. 70.
    M. Samadi, S. Mahlke, CPU-GPU collaboration for output quality monitoring, in Proceedings of 1st Workshop on Approximate Computing Across the System Stack (2014), pp. 1–3Google Scholar
  71. 71.
    M. Shafique, W. Ahmad, R. Hafiz, J. Henkel, A low latency generic accuracy configurable adder, in Proceedings of 52nd Design Automation Conference (DAC) (2015), pp 1–6. https://doi.org/10.1145/2744769.2744778
  72. 72.
    T. Simonite, (Last accessed 12 January 2018) This chip is hardwired to make mistakes but could help computers understand the world. https://www.technologyreview.com/s/601263/why-a-chip-thats-bad-at-math-can-help-computers/-tackle-harder-problems/
  73. 73.
    V. Sze, Y. Chen, T. Yang, J. Emer, Efficient processing of deep neural networks: a tutorial and survey. Proc. IEEE 105(12), 2295–2329 (2017).  https://doi.org/10.1109/JPROC.2017.2761740 CrossRefGoogle Scholar
  74. 74.
    Y. Tian, Q. Zhang, T. Wang, F. Yuan, Q. Xu, ApproxMA: approximate memory access for dynamic precision scaling, in Proceedings of 25th Edition on Great Lakes Symposium on VLSI (GLSVLSI) (2015), pp. 337–342. http://doi.acm.org/10.1145/2742060.2743759
  75. 75.
    J. Tobisch, G.T. Becker, On the scaling of machine learning attacks on PUFs with application to noise bifurcation, in Proceedings of International Workshop on Radio Frequency Identification: Security and Privacy Issues (Springer, Berlin, 2015), pp. 17–31Google Scholar
  76. 76.
    TrustHub (Last accessed 12 January 2018) Trusthub.org. http://trust-hub.org/
  77. 77.
    S. Venkataramani, S.T. Chakradhar, K. Roy, A. Raghunathan, Approximate computing and the quest for computing efficiency, in Proceedings of 52nd Annual Design Automation Conference (DAC) (2015), pp. 120:1–120:6. http://doi.acm.org/10.1145/2744769.2751163
  78. 78.
    A. Verma, P. Brisk, P. Ienne, Variable latency speculative addition: a new paradigm for arithmetic circuit design, in Proceedings of the Conference on Design, Automation and Test in Europe (DATE), pp. 1250–1255 (2008)Google Scholar
  79. 79.
    X. Xie, Y. Sun, H. Chen, Y. Ding, Hardware trojans classification based on controllability and observability in gate-level netlist. IEICE Electronics Express (2017).  https://doi.org/10.1587/elex.14.20170682 CrossRefGoogle Scholar
  80. 80.
    Q. Xu, T. Mytkowicz, N. Kim Approximate computing: a survey. IEEE Design Test 33(1), 8–22 (2016).  https://doi.org/10.1109/MDAT.2015.2505723 CrossRefGoogle Scholar
  81. 81.
    Z. Yang, A. Jain, J. Liang, J. Han, F. Lombardi, Approximate XOR/XNOR-based adders for inexact computing, in Proceedings of 13th IEEE Conference on Nanotechnology (IEEE-NANO) (IEEE, New York, 2013), pp 690–693Google Scholar
  82. 82.
    A. Yazdanbakhsh, D. Mahajan, H. Esmaeilzadeh, P. Lotfi-Kamran AxBench: a multiplatform benchmark suite for approximate computing. IEEE Design Test 34(2), 60–68 (2017).  https://doi.org/10.1109/MDAT.2016.2630270 CrossRefGoogle Scholar
  83. 83.
    R. Ye, T. Wang, F. Yuan, R. Kumar, Q. Xu, On reconfiguration-oriented approximate adder design and its application, in Proceedings of IEEE International Conference on Computer-Aided Design (IEEE Press, New York, 2013), pp. 48–54Google Scholar
  84. 84.
    W.C. Yeh, C.W. Jen, High-speed booth encoded parallel multiplier design. IEEE Trans. Comput. 49(7), 692–701 (2000). https://doi.org/10.1109/12.863039 MathSciNetCrossRefGoogle Scholar
  85. 85.
    T. Yeh, P. Faloutsos, M. Ercegovac, S. Patel, G. Reinman, The art of deception: adaptive precision reduction for area efficient physics acceleration, in Proceedings of 40th Annual IEEE/ACM International Symposium on Microarchitecture (IEEE, New York, 2007), pp. 394–406Google Scholar
  86. 86.
    G. Zervakis, K. Tsoumanis, S. Xydis, N. Axelos, K. Pekmestzi, Approximate multiplier architectures through partial product perforation: power-area tradeoffs analysis, in Proceedings of 25th Edition on Great Lakes Symposium on VLSI (GLSVLSI) (ACM, New York, 2015), pp. 229–232Google Scholar
  87. 87.
    A. Zhou, A. Yao, Y. Guo, L. Xu, Y. Chen, Incremental network quantization: towards lossless CNNs with low-precision weights. CoRR abs/1702.03044 (2017). http://arxiv.org/abs/1702.03044. http://1702.03044
  88. 88.
    N. Zhu, W.L. Goh, K.S. Yeo, An enhanced low-power high-speed adder for error-tolerant application, in Proceedings of 12th IEEE International Symposium on Integrated Circuits (IEEE, New York, 2009), pp. 69–72Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Weiqiang Liu
    • 1
  • Chongyan Gu
    • 2
  • Gang Qu
    • 3
  • Máire O’Neill
    • 2
  1. 1.College of Electronic and Information EngineeringNanjing University of Aeronautics and Astronautics (NUAA)JiangsuChina
  2. 2.Centre for Secure Information Technologies (CSIT)Institute of Electronics, Communications & Information Technology (ECIT), Queen’s University Belfast (QUB)BelfastUK
  3. 3.Department of Electrical and Computer Engineering and Institute for Systems ResearchUniversity of MarylandCollege ParkUSA

Personalised recommendations