Advertisement

Hierarchical Clustering Analysis: The Best-Performing Approach at PAN 2017 Author Clustering Task

  • Helena Gómez-Adorno
  • Carolina Martín-del-Campo-Rodríguez
  • Grigori Sidorov
  • Yuridiana Alemán
  • Darnes Vilariño
  • David Pinto
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11018)

Abstract

The author clustering problem consists in grouping documents written by the same author so that each group corresponds to a different author. We described our approach to the author clustering task at PAN 2017, which resulted in the best-performing system at the aforementioned task. Our method performs a hierarchical clustering analysis using document features such as typed and untyped character n-grams, word n-grams, and stylometric features. We experimented with two feature representation methods, log-entropy model, and TF-IDF, while tuning minimum frequency threshold values to reduce the feature dimensionality. We identified the optimal number of different clusters (authors) dynamically for each collection using the Caliński Harabasz score. The implementation of our system is available open source (https://github.com/helenpy/clusterPAN2017).

Keywords

Author clustering Hierarchical clustering Authorship-link ranking 

Notes

Acknowledgments

This work was partially supported by the Mexican Government (CONACYT projects 240844 and 002225 SNI, COFAA-IPN, SIP-IPN).

References

  1. 1.
    Amigó, E., Gonzalo, J., Artiles, J., Verdejo, F.: A comparison of extrinsic clustering evaluation metrics based on formal constraints. Inf. Retr. 12(4), 461–486 (2009)CrossRefGoogle Scholar
  2. 2.
    Bagnall, D.: Authorship clustering using multi-headed recurrent neural networks—notebook for PAN at CLEF 2016. In: Balog, K., Cappellato, L., Ferro, N., Macdonald, C. (eds.) CLEF 2016 Evaluation Labs and Workshop - Working Notes Papers, Évora, Portugal, 5–8 September 2016Google Scholar
  3. 3.
    Caliński, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat. 3(1), 1–27 (1974)MathSciNetzbMATHGoogle Scholar
  4. 4.
    García-Mondeja, Y., Castro-Castro, D., Lavielle-Castro, V., Muñoz, R.: Discovering author groups using a \(\beta \)-compact graph-based clustering. In: CLEF (Working Notes), CEUR Workshop Proceedings, vol. 1866. CEUR-WS.org (2017)Google Scholar
  5. 5.
    Gómez-Adorno, H., Aleman, Y., Vilariño, D., Sanchez-Perez, M.A., Pinto, D., Sidorov, G.: Author clustering using hierarchical clustering analysis. In: CLEF 2017 Working Notes. CEUR Workshop Proceedings (2017)Google Scholar
  6. 6.
    Kocher, M.: UniNE at CLEF 2016: author clustering—notebook for PAN at CLEF 2016. In: Balog, K., Cappellato, L., Ferro, N., Macdonald, C. (eds.) CLEF 2016 Evaluation Labs and Workshop - Working Notes Papers, Évora, Portugal, 5–8 September 2016Google Scholar
  7. 7.
    Layton, R., Watters, P., Dazeley, R.: Automated unsupervised authorship analysis using evidence accumulation clustering. Nat. Lang. Eng. 19, 95–101 (2013)CrossRefGoogle Scholar
  8. 8.
    Lee, M.D., Navarro, D.J., Nikkerud, H.: An empirical evaluation of models of text document similarity. In: Proceedings of the Cognitive Science Society, vol. 27 (2005)Google Scholar
  9. 9.
    Manning, C.D., Raghavan, P., Schütze, H., et al.: Introduction to Information Retrieval, vol. 1. Cambridge University Press, Cambridge (2008)CrossRefGoogle Scholar
  10. 10.
    Markov, I., Gómez-Adorno, H., Sidorov, G.: Language- and subtask-independent feature selection and classifier parameter tuning for author profiling. In: Cappellato, L., Ferro, N., Goeuriot, L., Mandl, T. (eds.) Working Notes Papers of the CLEF 2017 Evaluation Labs, CEUR Workshop Proceedings. CLEF and CEUR-WS.org (2017)Google Scholar
  11. 11.
    Markov, I., Stamatatos, E., Sidorov, G.: Improving cross-topic authorship attribution: the role of pre-processing. In: Proceedings of the 18th International Conference on Computational Linguistics and Intelligent Text Processing, CICLing 2017. Springer, Heidelberg (2017)Google Scholar
  12. 12.
    Pincombe, B.: Comparison of human and latent semantic analysis (LSA) judgements of pairwise document similarities for a news corpus. Technical report, Defense Science and Technology Organization Salisbury (Australia) Info Science Lab (2004)Google Scholar
  13. 13.
    Posadas-Durán, J., Gómez-Adorno, H., Sidorov, G., Batyrshin, I., Pinto, D., Chanona-Hernández, L.: Application of the distributed document representation in the authorship attribution task for small corpora. Soft. Comput. 21, 627–639 (2016)CrossRefGoogle Scholar
  14. 14.
    Potthast, M., Gollub, T., Rangel, F., Rosso, P., Stamatatos, E., Stein, B.: Improving the reproducibility of PAN’s shared tasks: plagiarism detection, author identification, and author profiling. In: Information Access Evaluation meets Multilinguality, Multimodality, and Visualization. 5th International Conference of the CLEF Initiative. CLEF 2014, pp. 268–299 (2014)Google Scholar
  15. 15.
    Rosso, P., Rangel, F., Potthast, M., Stamatatos, E., Tschuggnall, M., Stein, B.: Overview of PAN’16—new challenges for authorship analysis: cross-genre profiling, clustering, diarization, and obfuscation. In: Fuhr, N., et al. (eds.) Experimental IR Meets Multilinguality, Multimodality, and Interaction, 7th International Conference of the CLEF Initiative (CLEF 2016), Heidelberg (2016)Google Scholar
  16. 16.
    Sanchez-Perez, M.A., Gelbukh, A., Sidorov, G.: Adaptive algorithm for plagiarism detection: the best-performing approach at PAN 2014 text alignment competition. In: Mothe, J., et al. (eds.) CLEF 2015. LNCS, vol. 9283, pp. 402–413. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24027-5_42CrossRefGoogle Scholar
  17. 17.
    Sapkota, U., Bethard, S., Montes-y-Gómez, M., Solorio, T.: Not all character n-grams are created equal: a study in authorship attribution. In: Proceedings of the 2015 Annual Conference of the North American Chapter of the ACL: Human Language Technologies. NAACL-HLT 2015, pp. 93–102. Association for Computational Linguistics (2015)Google Scholar
  18. 18.
    Stamatatos, E., et al.: Overview of the author identification task at PAN 2015. In: Cappellato, L., Ferro, N., Jones, G., San Juan, E. (eds.) CLEF 2015 Evaluation Labs and Workshop - Working Notes Papers (2015)Google Scholar
  19. 19.
    Tschuggnall, M., et al.: Overview of the author identification task at PAN 2017: style breach detection and author clustering. In: Cappellato, L., Ferro, N., Goeuriot, L., Mandl, T. (eds.) Working Notes Papers of the CLEF 2017 Evaluation Labs, CEUR Workshop Proceedings (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Helena Gómez-Adorno
    • 1
    • 2
  • Carolina Martín-del-Campo-Rodríguez
    • 2
  • Grigori Sidorov
    • 2
  • Yuridiana Alemán
    • 3
  • Darnes Vilariño
    • 3
  • David Pinto
    • 3
  1. 1.Engeneering Institute (II)Universidad Nacional Autónoma de México (UNAM)Mexico CityMexico
  2. 2.Instituto Politécnico Nacional (IPN)Center for Computing Research (CIC)Mexico CityMexico
  3. 3.Faculty of Computer Science (FCC)Benemérita Universidad Autónoma de Puebla (BUAP)PueblaMexico

Personalised recommendations