Advertisement

Grain Legumes for the Sustainability of European Farming Systems

  • Faisal Mahmood
  • Tanvir Shahzad
  • Sabir Hussain
  • Muhammad Shahid
  • Muhammad Azeem
  • Jacques Wery
Chapter
Part of the Sustainable Agriculture Reviews book series (SARV, volume 32)

Abstract

Grain legumes offer many agronomic, environmental and socio-economic benefits when grown in succession with cereals. They can increase the yields of following crops in the rotation. They fix indirectly atmospheric nitrogen, which makes them economical and environmentally friendly. Globally grain legumes are cultivated on an area of 201,728 thousand ha with a total production of 383,728 thousand tones. In Europe, grain legumes are cultivated on an area of 5726 thousand ha, which represents only 1.8% of total arable lands in Europe. Cultivated area of grain legumes is very low as compared to other words countries and, consequently, Europe imports yearly 20 million tons of soybean meals and 12 million tons of soybean grain. Farmers show lack of interest in cultivating grain legumes due to many climatic, soils, technical, agronomic and economic constraints. These constraints can be removed by technological innovations, provision of more premiums, increasing the sale price and grain yield, and reduction in yield variability of grain legumes.

Keywords

Grain legumes Biological N fixation Alternative crops Sustainable agriculture Crop rotations 

References

  1. AEP (ed) (2004) Grain legumes and the environment: how to assess benefits and impacts? Zurich, November 18–19, 2004. AEP and FAL, pp 67–72Google Scholar
  2. Alpmann D, Braun J, Schäfer BC, (2013) Analyse einer Befragung unter erfolgreichen Körnerleguminosenanbauern im konventionellen Landbau. Erste Ergebnisse aus dem Forschungsprojekt LeguAN. In: Wintertagung DLG (ed) Im Fokus: Heimische Körnerleguminosen vom Anbau bis zur Nutzung Berlin, p 20Google Scholar
  3. Anonymous (1984) Legume inoculants and their use. FAO, Rome, pp 1–63Google Scholar
  4. Bachinger J, Zander J (2007) ROTOR, a tool for generating and evaluating crop rotations for organic farming systems. Eur J Agron 26:130–143CrossRefGoogle Scholar
  5. Baddeley JA, Jones S, Topp CFE, Watson CA, Helming J, Stoddard FL (2014) Integrated analysis of biological nitrogen fixation (BNF) in Europe. Legume futures deliverable report 1.5 ppGoogle Scholar
  6. Beaver JS, Rosas JC, Myers J, Acosta J, Kelly JD, Nchimbi-Msolla S, Misangu R, Bokosi J, Temple S, Arnaud-Santana E (2003) Contributions of the bean/cowpea CRSP program to cultivar and germplasm development in common bean. Field Crop Res 82:87–102CrossRefGoogle Scholar
  7. Bertoglio JC, Calvo MA, Hancke JL, Burgos RA, Riva A, Morazzoni P, Ponzone C, Magni C, Duranti M (2011) Hypoglycemic effect of lupin seed γ-conglutin in experimental animals and healthy human subjects. Fitoterapia 82:933–938PubMedCrossRefGoogle Scholar
  8. Bouwman AF (1996) Direct emission of nitrous oxide from agricultural soils. Nutr Cycl Agroecosyst 46:53–70CrossRefGoogle Scholar
  9. Bruce RR, Wilkinson SR, Langdale GW (1987) Legume effects on soil erosion and productivity. In: Power JF (ed) The role of legumes in conservation tillage systems. Soil Conservation Society of America, Ankeny, pp 127–138Google Scholar
  10. Bues A, Preissel S, Reckling M, Zander P, Kuhlmann T, Topp K, Watson C, Lindström K, Stoddard FL, Murphy-Bokern D (2013) The environ- mental role of protein crops in the new common agricultural policy. In: directorate general for internal policies (ed) Agriculture and Rural Devel- opment, European Union Brussels, pp 113Google Scholar
  11. Bulson HAJ, Snaydon RW, Stopes CE (1997) Effects of plant density on intercropped wheat and field beans in an organic farming system. J Agric Sci 128:59–71CrossRefGoogle Scholar
  12. Burris RH, Roberts GP (1993) Biological nitrogen fixation. Annu Rev Nutr 13:317–335PubMedCrossRefGoogle Scholar
  13. Byerlee D, White R (2000) Agricultural intensification and diversification through food legumes: technological and policy options. In: Knight R (ed) Linking Research and Marketing Opportunities for Pulses in the 21st Century. Kluwer Academic Publishers, Dordrecht, pp 31–46CrossRefGoogle Scholar
  14. Campbell BM, Costanza R, Van den Belt M (2000) Land use options in dry tropical woodland ecosystems in Zimbabwe: introduction, overview and synthesis. Ecol Econ 33:341–352CrossRefGoogle Scholar
  15. Carrouée B, Aveline A, Biarnes V, Charles R, Crozat Y, Jensen ES, Laurent F, Munier-Jolain N, Thévenet G, Viaux P (2002) Effets environnementaux des protéagineux dans les rotations de grandes cultures. Working document, UNIP, ITCF, INRA, ESA, Paris, p 32Google Scholar
  16. Carrouée B, Crépon K, Peyronnet C (2003) Les protéagineux: intérêt dans les systèmes de production fourragers français et européens. Fourrages 174:163–182Google Scholar
  17. Cassman KG, Dobermann A, Walters D (2002) Agroeco- systems, nitrogen-use efficiency, and nitrogen management. Ambio 31:132–140PubMedCrossRefGoogle Scholar
  18. Cernay C, Ben-ari T, Pelzer E, Meynard J, Makowski D (2015) Estimating variability in grain legume yields across Europe and the Americas. Sci Rep 5:11171PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chalk PM (1998) Dynamics of biologically fixed N in legume-cereal rotations: a review. Aust J Agric Res 49:303–316CrossRefGoogle Scholar
  20. Chamber of Agriculture Ariege (2009) Annual agricultural statistics region Midi-Pyrenees. Agreste in the region, France, p 09Google Scholar
  21. Conrad R, Seiler W, Bunse G (1983) Factors influencing the loss of fertilizer nitrogen in the atmosphere as N2O. J Geophys Res 88:6709–6718CrossRefGoogle Scholar
  22. Coyne DP, Steadman JR, Godoy-Lutz G, Gilbertson R, Arnaud-Santana EA, Beaver JS, Myers JR (2003) Contributions of the bean/cowpea CRSP to the management of bean diseases. Field Crop Res 82:155–168CrossRefGoogle Scholar
  23. Crews TE, Peoples MB (2004) Legume versus fertilizer sources of nitrogen: ecological tradeoffs and human needs. Agric Ecosyst Environ 102:279–297CrossRefGoogle Scholar
  24. Dakora FD, Aboyinga RA, Mahama Y, Apaseku J (1987) Assessment of N2 fixation in groundnut (Arachis hypogea L.) and cowpea (Vigna unguiculata L. Walp.) and their relative N contribution to a succeeding maize crop in Northern Ghana. MIRCEN J 3:389–399CrossRefGoogle Scholar
  25. Dinnes DL, Karlen DL, Jaynes DB, Kaspar TC, Hatfield JL, Colvin TS, Cambardella CA (2002) Nitrogen management strategies to reduce nitrate leaching in tile-drained Midwestern soils. Agron J 94:153–171CrossRefGoogle Scholar
  26. Drinkwater LE, Wagoner P, Sarrantonio M (1998) Legume-based cropping systems have reduced carbon and nitrogen losses. Nature 396:262–264CrossRefGoogle Scholar
  27. Evans J, Scott G, Lemerle D, Kaiser A, Orchard B, Murray GM, Armstrong EL (2003) Impact of legume ‘break’ crops on the yield and grain quality of wheat and relationship with soil mineral N and crop N content. Aust J Agric Res 54:777–788CrossRefGoogle Scholar
  28. Fillery IRP (2001) The fate of biologically fixed nitrogen in legume-based dry land farming systems: a review. Aust J Exp Agric 41:361–381CrossRefGoogle Scholar
  29. Giambalvo D, Stringi L, Durante G, Amato G, Frenda AS (2004) Nitro- gen efficiency component analysis in wheat under rainfed Mediter- ranean conditions: effects of crop rotation and nitrogen fertilisation. In: Cantero-Martínez C, Gabina D (eds) Mediterranean rainfed agricul- ture: strategies for sustainability. Mediterranean Agronomic Institute of Zaragoza, pp 169–173Google Scholar
  30. Gierus M, Kleen J, Loges R, Taube F (2012) Forage legume species determine the nutritional quality of binary mixtures with perennial ryegrass in the first production year. Anim Feed Sci Technol 172:150–161CrossRefGoogle Scholar
  31. Giller KE (2001) Nitrogen fixation in tropical cropping systems. CABI Publishing, WallingfordCrossRefGoogle Scholar
  32. Glendining MJ, Powlson DS (1995) The effects of long continued applications of inorganic nitrogen fertilizer on soil organic nitrogen, a review. In: Lal R, Stewart BA (eds) Soil management, experimental basis for sustainability and environmental quality. CRC Press, Boca Raton, pp 385–446Google Scholar
  33. GL-Pro partners (2007) Guidelines for growing grain legumes in Europe. GL-Pro concerted action, p 8Google Scholar
  34. Graham PH, Vance CP (2003) Legumes: importance and constraints to greater utilization. Plant Physiol 131:872–877PubMedPubMedCentralCrossRefGoogle Scholar
  35. Gueguen J, Duc G, Boutin JP, Dronne Y, Munier-Jolain N, Sève B, Tivoli B (2008) La filière protéagineuse, quels défis pour la recherche ? Rencontre au Salon International de l‘Agriculture. INRA, Paris, p 6Google Scholar
  36. Haque I, Powell JM, Ehui SK (1995) Improved crop-livestock production strategies for sustainable soil management in tropical Africa. In: Lal R, Stewart BA (eds) Soil management: experimental basis for sustainability and environmental quality. CRC Press, Boca Raton, pp 293–345Google Scholar
  37. Harland JI, Haffner TA (2008) Systematic review, meta-analysis and regression of randomised controlled trials reporting an association between an intake of circa 25g soya protein per day and blood cholesterol. Atherosclerosis 200:13–27PubMedCrossRefGoogle Scholar
  38. Hayer F, Bonnin E, Carrouée B, Gaillard G, Nemecek T, Schneider A, Vivier C (2012) Designing sustainable crop rotations using life cycle assessment of crop sequences. In: Corson MS, van der Werf HMG (eds) Proceedings of the 8th International Conference on Life Cycle Assessment in the Agri-Food Sector, 1–4 October 2012. INRA, Saint Malo, pp 828–829Google Scholar
  39. Jeanneret P, Baumgartner D, Freiermuth R, Gaillard G (2006) Méthod d‘évaluation de l‘impact des activités sur la biodiversité dans les bilans écologiqueses- SALCA-BD. Agroscope FAL Reck-enholz, p 67Google Scholar
  40. Jensen ES (1997) The role of grain legume N2 fixation in the nitrogen cycling of temperate cropping systems. Risø National Laboratory, Roskilde, p 107Google Scholar
  41. Jensen ES, Hauggaard-Nielsen H (2003) How can increased use of biological N2 fixation in agriculture benefit the environment? Plant Soil 252:177–186CrossRefGoogle Scholar
  42. Jensen CR, Joernsgaard B, Andersen MN, Christiansen JL, Mogensen VO, Friis P, Petersen CT (2004) The effect of lupins as compared with peas and oats on the yield of the subsequent winter barley crop. Eur J Agron 20:405–418CrossRefGoogle Scholar
  43. Jensen ES, Peoples MB, Boddey RM, Gresshoff PM, Hauggaard-Nielsen H, Bjr A, Morrison MJ (2011) Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries: a review. Agron Sustain Dev 32:329–364CrossRefGoogle Scholar
  44. Jeuffroy MH (2006) The ecological services of protein crops: the basis of sustainable farming systems. Meeting organized by the National institute of agricultural research at the international agricultural show, France. 6pGoogle Scholar
  45. Jeuffroy MH, Ney B (1997) Crop physiology and productivity. Field Crop Res 53:3–16CrossRefGoogle Scholar
  46. Joshi PK, Birthal PS, Bourai VA (2002) Socioeconomic constraints and opportunities in rainfed rabi cropping in rice fallow areas of India. Patancheru 502 324, Andhra Pradesh, India: international crops research institute for the semi-arid tropics, p 58Google Scholar
  47. Kabagambe EK, Baylin A, Ruiz-Narvarez E, Siles X, Campos H (2005) Decreased consumption of dried mature beans is positively associated with urbanization and nonfatal acute myocardial infarction. J Nutr 135:1770–1775PubMedCrossRefGoogle Scholar
  48. Kennedy IR, Cocking EC (1997) Biological nitrogen fixation: the global challenge and future needs. Rockefeller foundation Bellagio conference proceedings. SUN Fix Press, University of Sydney, Sydney, p 83Google Scholar
  49. Kirkegaard JA, Christen O, Krupinsky J, Layzell D (2008) Break crop benefits in temperate wheat production. Field Crop Res 107:185–195CrossRefGoogle Scholar
  50. Lal R (2004) Carbon Emissions from Farm Operations. Environ Int 30:981–990PubMedCrossRefGoogle Scholar
  51. Lal R, Wilson GF, Okigbo BN (1978) No-till farming after various grasses and leguminous cover crops in tropical alfisol. i. crop performance. Field Crop Res 1:71–84CrossRefGoogle Scholar
  52. Le syndicat agricole (2009) Les nouvelles aides 2010. [Consulté en Janvier 2010]. http://www.syndicatagricole.com/actualites/vie-pratique-pac-les-nouvelles-aides-2010&fldSearch=:FXZ5S215.html
  53. Legume Futures (2014) Legume-supported cropping systems for Europe. General project project report. Available at www.legumefutures.de
  54. Liebman M, Dyck E (1993) Crop rotation and intercropping strategies for weed management. Ecol Appl 3:92–122PubMedCrossRefGoogle Scholar
  55. LMC International (2009) Evaluation of measures applied under the Common Agricultural Policy to the protein crop sector. Final report. http://ec.europa.eu/agriculture/eval/reports/protein_crops/(2013-02-25)
  56. López-Fando C, Almendros G (1995) Interactive effects of tillage and crop Rota- tions on yield and chemical properties of soils in semi-arid Central Spain. Soil Tillage Res 36:45–57CrossRefGoogle Scholar
  57. Luetke-Entrup N, Schneider M, Stemann G, Gröblinghoff F-F, Heißenhuber A, Pahl H, Hülsbergen K-J, Maidl FX, Herr H, Sommer C, Korte K, Brunotte J, Kreye H, Lindwedel V, Zieseniß H, Gienapp C, Schulz RR, Propp J (2006) Bewertung von neuen Systemen der Bodenbewirtschaftung in erweiterten Fruchtfolgen mit Körnerraps und Körnerleguminosen. Abschlussbericht über die Versuchsjahre 2001–2005. Fachhochschule Südwestfalen, Fachbereich Agrarwirtschaft, SoestGoogle Scholar
  58. Magrini MB, Anton M, Cholez C, Corre-Hellou G, Duc G, Jeuffroy MH, Meynard JM, Pelzer E, Voisin AS, Walrand S (2016) Why are grain-legumes rarely present in cropping systems despite their environmental and nutritional benefits? Analyzing lock-in in the French agrifood system. Ecol Econ 126:152–162CrossRefGoogle Scholar
  59. Mahmood F (2011) Analysis of the conditions for the development of grain legumes in the midi-Pyrénées region (France), using the APES-FSSIM-indicators modeling chain. In: Systèmes Intégrés En Biologie, Agronomie, Géosciences, hydro- sciences et Environnement (SIBAGHE). Ecole National Supérieure Agronomique de de Montpellier, Montpellier, p 168Google Scholar
  60. Marchesi C, Paradis P, Schiffrin EL (2008) Role of the renin–angiotensin system in vascular inflammation. Trends Pharmacol Sci 29:367–374PubMedCrossRefGoogle Scholar
  61. McEwen J, Darby RJ, Hewitt MV, Yeoman DP (1989) Effects of field beans, fallow, lupins, oats, oilseed rape, peas, ryegrass, sunflowers and wheat on nitrogen residues in the soil and on the growth of a subsequent wheat crop. J Agric Sci 115:209–219CrossRefGoogle Scholar
  62. Miller PR, McConkey BG, Clayton GW, Brandt SA, Staricka JA, Johnston AM, Lafond GP, Schatz BG, Baltensperger DD, Neill KE (2002) Pulse crop adaptation in the northern great plains. Agron J 94:261–272CrossRefGoogle Scholar
  63. MP3-Grain Legumes (2010) Enhanced food and feed security, nutritional balance, economic growth and soil health for smallholder farmers, CGIAR consortium boardGoogle Scholar
  64. Mudahar MS, Hignett TP (1987) Energy requirements, technology, and resources in the fertilizer sector. In: Helsel ZR (ed) Energy in plant nutrition and Pest control, vol 2. Elsevier, Amsterdam, pp 26–61Google Scholar
  65. Munier-Jolain N, Collard A (2006) Grain legumes and weed management in crop rotations: opportunities and methodologies for reducing environmental impacts of weed control. In: AEP (ed) Grain legumes and the environment: how to assess benefits and impacts? Zurich, November 18–19, 2004. AEP and FAL, pp 67–72Google Scholar
  66. Mvondo H, Owona S, Mvondo Ondoua J, Essono J (2007) Tectonic evolution of the Yaoundé segment of the Neoproterozoic Central African orogenic belt in southern Cameroon. Can J Earth Sci 44:433–444CrossRefGoogle Scholar
  67. Mwanamwenge J, Loss SP, Siddique KHM, Cocks PS (1998) Growth, seed yield and water use of faba bean (Vicia faba L.) in a shortseason Mediter- raneantype environment. Aust J Exp Agric 38:171–180CrossRefGoogle Scholar
  68. Ncube B, Dimes J, Vanwijk M, Twomlow S, Giller K (2009) Productivity and residual benefits of grain legumes to sorghum under semi-arid conditions in South-Western Zimbabwe: unraveling the effects of water and nitrogen using a simulation model. Field Crop Res 110:173–184CrossRefGoogle Scholar
  69. Nemecek T, Erzinger S (2005) Modelling representative life cycle inventories for Swiss arable crops. Int J LCA 10:68–76CrossRefGoogle Scholar
  70. Nemecek T, GL-Pro partners (2006) Economic and environmental value of European cropping systems that include grain legumes. Grain Legumes No. 45 – 1st quarter 2006Google Scholar
  71. Nemecek T, von Richthofen JS, Dubois G, Casta P, Charles R, Pahl H (2008) Environmental impacts of introducing grain legumes into European crop rotations. Eur J Agron 28:380–393CrossRefGoogle Scholar
  72. Ondersteijn CJM, Harsh SB, Giesen GWJ, Beldman ACG, Huirne RBM (2002) Management strategies on Dutch dairy farms to meet environment regulations; a multi case study. Netherlands J Agric Sci 50:47–65Google Scholar
  73. Owens LB, Edwards WM, Van Keuren RW (1994) Groundwater nitrate levels under fertilized grass and grass- legume pastures. J Environ Qual 23:752–758CrossRefGoogle Scholar
  74. Pappa VA, Rees RM, Walker RL, Baddeley JA, Watson CA (2012) Legumes intercropped with spring barley contribute to increased biomass production and carry-over effects. J Agric Sci 150:584–594CrossRefGoogle Scholar
  75. Paustian K, Andren O, Janzen HH, Lal R, Smith G, Tian H, Tiesen M, Noordwijk V, Woomer P (1997b) Agricultural soil as a sink to offset CO2 emissions. Soil Use Manag 13:230–244CrossRefGoogle Scholar
  76. Paustian K, Colins HP, Paul EA (1997c) Management controls on soil carbon. In: Paul EA, Paustian K, Elliott ET, Cole CV (eds) Soil organic matter in temperate agro-ecosystems: long-term experiments in North America. CRC Press, Boca Raton, pp 15–49Google Scholar
  77. Peoples MB, Crasswell ET (1992) Biological nitrogen fixation: investments, expectations and actual contributions to agriculture. Plant Soil 141:13–39CrossRefGoogle Scholar
  78. Peoples MB, Herridge DF, Ladha JK (1995) Biological nitrogen fixation: an efficient source of nitrogen for sustainable agricultural production? Plant Soil 174:3–28CrossRefGoogle Scholar
  79. Peoples MB, Hauggaard-Nielsen H, Jensen ES (2009) The potential environmental benefits and risks derived from legumes in rotations. In: Nitrogen fixation in crop production. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, pp 349–385Google Scholar
  80. Peoples M, Swan T, Goward L, Hunt J, Li G, Harris R, Ferrier D, Browne C, Craig S, van Rees H, Mwendwa J (2015) Legume effects on soil N dynamics-comparisons of crop response to legume and fertiliser N. Grains Research and Development Corporation, Government of Australia. Available at: http://grdc.com.au/Research-and-Development/GRDC-Update-Papers/2015/02/Legumeeffects-on-soil-N-dynamics%2D%2Dcomparisons-of-cropresponse-to-legume-and-fertiliser-N#sthash.9ncTiq1C.dpuf
  81. Poss R, Saragoni H (1992) Leaching of nitrate. Fertil Res 33:123–133CrossRefGoogle Scholar
  82. Preissel S, Reckling M, Schläfke N, Zander P (2015) Field crops research magnitude and farm-economic value of grain legume pre-crop benefits in Europe: a review. Field Crop Res 175:64–79CrossRefGoogle Scholar
  83. Prew RD, Dyke GV (1979) Experiments comparing break crops as a preparation for winter-wheat followed by spring barley. J Agric Sci 92:189–201CrossRefGoogle Scholar
  84. Rao MR, Mathuva MN (1999) Legumes for improving maize yields and income in semi-arid Kenya. Agric Ecosyst Environ 78:123–137CrossRefGoogle Scholar
  85. Rao JK, Dart PJ, Sastry PV (1983) Residual effect of pigeonpea (Cajanus cajan) on yield and nitrogen response of maize. Exp Agric 19(2):131–141CrossRefGoogle Scholar
  86. Rao IM, Borrero V, Ricaurte J, Garcia R, Ayarza MA (1996) Adaptive attributes of tropical forage species to acid soils II. Differences in shoot and root growth responses to varying phosphorus supply and soil type. J Plant Nutr 19(2):323–352CrossRefGoogle Scholar
  87. Reckling M, Hecker JM, Schläfke N, Bachinger J, Zander P, Bergkvist G, Walker R, Maire J, Eory V, Topp CFA, Rees RA, Toncea I, Pristeri A, Stoddard FL (2014) Agronomic analysis of cropping strategies for each agroclimatic region. Legume Futures Report 1(4):75Google Scholar
  88. Reckling M, Hecker JM, Bergkvist G, Watson CA, Zander P, Schläfke N, Stoddard FL, Eory V, Topp CF, Maire J, Bachinger J (2016) A cropping system assessment framework-evaluating effects of introducing legumes into crop rotations. Eur J Agron 76:186–197CrossRefGoogle Scholar
  89. Rego TJ, Seeling B (1996) Long-term effects of legume-based cropping systems on soil nitrogen status and mineralization in Vertisols. In: Ito et al (eds) Roots and nitrogen in cropping systems of the Semi-arid Tropics. JIRCAS, pp 469–479Google Scholar
  90. Ribet J, Drevon JJ (1996) The phosphorus requirement of N2 fixing and urea-fed Acacia mangium. New Phytol 132:383–390PubMedCrossRefGoogle Scholar
  91. Roberts TL (2009) The role of fertilizer in growing the world’s food. Better Crops 93(2):12–15Google Scholar
  92. Robson MC, Fowler SM, Lampkin NH, Leifert C, Leitch M, Robinson D, Watson CA, Litterick AM (2002) The agronomic and economic potential of break crops for ley/arable rotations in temperate organic agriculture. Adv Agron 77:369–427CrossRefGoogle Scholar
  93. Rochester IJ, Peoples MB, Constable GA, Gault RR (1998) Fababeans and other legumes add nitrogen to irrigated cotton cropping systems. Aust J Exp Agric 38:253–260CrossRefGoogle Scholar
  94. Roman GV, Epure LI, Toader M, Lombardi AR (2016) Grain legumes - main source of vegetal proteins for European consumption. Agro Life Sci J 5:178–183Google Scholar
  95. Salez P, Martin F (1992) Evolution de la production et de la fertilité du sol dans des rotations culturales incluant du sorgho, des légumineuses et du cotonnier. Document agronomique, n°3. p 17Google Scholar
  96. Salisbury F, Ross C (1978) Nitrogen fixation. In: plant physiology, 2nd edn. W. Pub. Co., Ca., pp 195–198Google Scholar
  97. Sanchez PA, Euhara G (1980) Management considerations for acid soils with high phosphorus fixation capacity. In: Khasawneh FE, Sample EC, Kamprath EJ (eds) The role of phosphorus in agriculture. American Society of Agronomy, Madison, pp 471–514Google Scholar
  98. Schneider A (2008) The dynamics controlling the grain legume sector – analysis of past trends helps to focus on future challenges. (AEP European association for grain legume research, www.grainlegumes.com)
  99. Schreuder R, De Visser C (2014) Raport EIP-AGRI focus group on protein crops, BruxellesGoogle Scholar
  100. Sinclair TR, Cassman KG (1999) Green revolution still too green. Nature 398:556CrossRefGoogle Scholar
  101. Sinclair TR, Muchow RC, Bennet JM, Hammond LC (1987) Relative sensitivity of nitrogen and biomass accumulation to drought in field-grown soyabean. Agron J 79:986–991CrossRefGoogle Scholar
  102. Singh RJ, Chung GH, Nelson RL (2007) Landmark research in legumes. Genome 50:525–537PubMedCrossRefGoogle Scholar
  103. Sirtori CR, Mombelli G, Triolo M, Laaksonen R (2012) Clinical response to statins: mechanism (s) of variable activity and adverse effects. Ann Med 44:419–432PubMedCrossRefGoogle Scholar
  104. Smil V (1999) Nitrogen in crop production. An account of global flows. Global Biogeochem Cycles 13:647–662CrossRefGoogle Scholar
  105. Smil V (2001) Enriching the earth. MIT Press, Cambridge, MAGoogle Scholar
  106. Stevenson FC, van Kessel C (1997) Nitrogen contribution of pea residue in a hum- mocky terrain. Soil Sci Soc Am J 61:494–503CrossRefGoogle Scholar
  107. Tharanathan RN, Mahadevamma S (2003) Grain legumes a boon to human nutrition. Trends Food Sci Technol 14:507–518CrossRefGoogle Scholar
  108. UNIP (2009) Les chiffres clés: Protéagineux, FranceGoogle Scholar
  109. UNIP/Arvalis-Institut du Végétal (2008) Se refaire un avis objectif sur le pois, la féverole et le lupin. UNIP, ParisGoogle Scholar
  110. Unkovich MJ, Pate JS (2000) An appraisal of recent field measurements of symbiotic N2 fixation by annual legumes. Field Crop Res 65:211–222CrossRefGoogle Scholar
  111. Van Kessel C, Hartley C (2000) Agricultural management of grain legumes: has it led to an increase in nitrogen fixation? Field Crops Res 65:165–181CrossRefGoogle Scholar
  112. Von Richthofen JS, GL- Pro partner (2006) Economic and environmental value of European cropping systems that include grain legumes. Grain legumes No. 45 – 1st quarter 2006 Special report UNIP, FranceGoogle Scholar
  113. Von Richthofen JS, Pahl H, Nemecek T, Odermatt O, Charles R, Casta P, Sombrero A, Lafarga A, Dubois G (2006) Economic interest of grain legumes in European crop rotations. GL-Pro Report, WP3. 58 ppGoogle Scholar
  114. Wani SP, McGill WB, Haugen-Koyzra KL, Robertson JA, Thurstson JJ (1994) Improved soil quality and barley yields with faba-beans, manure, forages, and crop rotation on a gray luvisol. Can J Soil Sci 74:75–84CrossRefGoogle Scholar
  115. Wani SP, Rego TJ, Iot O, Lee KK (1996) Nitrogen budget in soil under different cropping systems. In: Ito et al. (eds) Roots and nitrogen in cropping systems of the semi-arid tropics. JIRCAS, pp 481–492Google Scholar
  116. Wani SP, Pathak P, Jangawad LS, Eswaran H, Singh P (2003) Improved management of Vertisols in the semiarid tropics for increased productivity and soil carbon sequestration. Soil Use Manag 19(3):217–222CrossRefGoogle Scholar
  117. Weitbrecht B, Pahl H (2000) Lohnt sich der Anbau von Körnerleguminosen? Ökologie und Landbau 116:39–41Google Scholar
  118. Wery J (1987) Relations entre la nutrition azotée et la production chez les légumineuses. In Nutrition azotée des légumineuses‘. Les Colloques de l‘INRA, Paris, 37:199–223Google Scholar
  119. Wery J, Ahlawat IPS (2007) Analysing and improving the role of grain legumes in cropping system‘s sustainability: a system approach illustrated on chickpea in India and Europe. Proceeding of The Forth International Food Legumes Research Conference (IFLRC-IV), New Delhi, IndiaGoogle Scholar
  120. White RE (1988) Leaching. In: Wilson JR (ed) Advances in nitrogen cycling in agricultural ecosystems. CAB International, Wallingford, pp 193–211Google Scholar
  121. Zander P, Amjath-Babu TS, Preissel S, Reckling M, Bues A, Schläfke N, Kuhlman T, Bachinger J, Uthes S, Stoddard F, Murphy-Bokern D (2016) Grain legume decline and potential recovery in European agriculture: a review. Agron Sustain Dev 36(2):26CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Faisal Mahmood
    • 1
  • Tanvir Shahzad
    • 1
  • Sabir Hussain
    • 1
  • Muhammad Shahid
    • 2
  • Muhammad Azeem
    • 3
  • Jacques Wery
    • 4
  1. 1.Department of Environmental Sciences & EngineeringGovernment College University FaisalabadFaisalabadPakistan
  2. 2.Department of Bioinformatics & BiotechnologyGovernment College University FaisalabadFaisalabadPakistan
  3. 3.Department of BotanyGovernment College University FaisalabadFaisalabadPakistan
  4. 4.SupAgro Montpellier UMR-SystemMontpellierFrance

Personalised recommendations