Advertisement

A Hot Stamping Line

  • Jan Jonasson
  • Eren Billur
  • Aitor Ormaetxea
Chapter

Abstract

Hot stamping requires a special production line, similar to but different than cold stamping operations. A typical hot stamping line consists of (1) a furnace/heating system, (2) a material handling system, (3) a press, and (4) an exit line. Sometimes trimming/piercing systems could also be included in the definition of “a line”. In this chapter, the first three items are explained in detail.

References

  1. 1.
    K. Eriksson, Bringing it together. Presented at AP&T Press Hardening, Next Step Seminar, Novi, MI (2010). Accessed 15 Sep 2010Google Scholar
  2. 2.
    H. Karbasian, A.E. Tekkaya, A review on hot stamping. J. Mater. Process. Technol. 210(15), 2103–2118 (2010)CrossRefGoogle Scholar
  3. 3.
    E. Gamboa, X. Agirretxe, J.M. Martin, K. Gorostiza, Compact line conception for hot forming lines, in 3rd International Conference on Hot Sheet Metal Forming of High Performance Steel, CHS2, Kassel, Germany (2011), pp. 181–187Google Scholar
  4. 4.
    P. Siebert, M. Alsmann, H.J. Watermeier, Influence of different heating technologies on the coating properties of hot-dip aluminized 22MnB5, in 3rd International Conference on Hot Sheet Metal Forming of High Performance Steel, CHS2, Kassel, Germany (2011), pp. 457–464Google Scholar
  5. 5.
    H. Lehmann, Developments in the field of schwartz heat treatment furnaces for press hardening industry, in 3rd International Conference on Hot Sheet Metal Forming of High Performance Steel, CHS2, Kassel, Germany (2011), pp. 171–179Google Scholar
  6. 6.
    F.J. Ebner, Hotphase - press hardening automotive solutions by EBNER, in 3rd International Conference on Hot Sheet Metal Forming of High Performance Steel, CHS2, Kassel, Germany (2011), pp. 247–253Google Scholar
  7. 7.
    H. Lehmann, Furnaces for press hardening. Presented at AP&T Press Hardening, Next Step Seminar, March 24, Shanghai, China (2010)Google Scholar
  8. 8.
    H. Lehmann, Roller hearth furnaces for hot-form hardening. IDDRG Graz Austria 2010, 131–140 (2010)Google Scholar
  9. 9.
    Volkswagen Media Services, http://www.volkswagen-media-services.com
  10. 10.
    V. Uthaisangsuk, Hot stamping of ultra high strength steel: a key technology for lightweight automotive design. Presented Automotive Summit 2014, June 19–20, Bangkok, Thailand (2014)Google Scholar
  11. 11.
    Schuler. Hot forming systems: light-weight in volume production. Product catalogue (2006)Google Scholar
  12. 12.
  13. 13.
    M. Kahl, Some like it hot. Automotive Manufacturing Solutions (2004), pp. 49–52Google Scholar
  14. 14.
    B.A. Behrens, S. Hübner, Conductive heating in press-hardening process. Presented at Doors and Closures in Car Body Engineering 2011, November 16–17, Bad Nauheim, Germany (2011)Google Scholar
  15. 15.
    Schuler. Private communication (2013)Google Scholar
  16. 16.
    P. Hu, L. Ying, B. He, Hot Stamping Technology and the Main Equipment (Springer, Singapore, 2017), pp. 19–44Google Scholar
  17. 17.
    M.J. Holzweissig, J. Lackmann, S. Konrad, M. Schaper, T. Niendorf, Influence of short austenitization treatments on the mechanical properties of low-alloy steels for hot forming applications. Metall. Mater. Trans. A 46(7), 3199–3207 (2015). JulCrossRefGoogle Scholar
  18. 18.
    V. Ploshikhin, A. Prihodovsky, J. Kaiser, R. Bisping, H. Lindner, C. Lengsdorf, K. Roll, New heating technology for the furnace-free press hardening process, in Proceedings of TTP 2011 (2011)Google Scholar
  19. 19.
    J.N. Rasera, Development of a novel technology for rapidly austenitizing usibor 1500p steel (2015)Google Scholar
  20. 20.
    K. Mori, P.F. Bariani, B.A. Behrens, A. Brosius, S. Bruschi, T. Maeno, M. Merklein, J. Yanagimoto, Hot stamping of ultra-high strength steel parts. CIRP Annals - Manufacturing Technology (2017)Google Scholar
  21. 21.
    M. Reinstettel, The door sidecrash beam ın the new BMW i8: application of a press hardened 7xxx aluminium alloy panel, in Proceedings of 5th International Conference on Accuracy in Forming Technology (ICAFT 2015) (2015), pp. 349–356Google Scholar
  22. 22.
    R. Kolleck, R. Veit, M. Merklein, J. Lechler, M. Geiger, Investigation on induction heating for hot stamping of boron alloyed steels. CIRP Ann. - Manuf. Technol. 58(1), 275–278 (2009)CrossRefGoogle Scholar
  23. 23.
    M. Uslu, Docol 22mnb5 Çeliǧinin balistik Özelliklerinin İncelenmesi (investigation of ballistic proerties of docol 22mnb5 steel - in turkish) (2007)Google Scholar
  24. 24.
    K. Mori, S. Maki, Y. Tanaka, Warm and hot stamping of ultra high tensile strength steel sheets using resistance heating. CIRP Ann. - Manuf. Technol. 54(1), 209–212 (2005)CrossRefGoogle Scholar
  25. 25.
    C.W. Lee, W.S. Choi, Y.R. Cho, B.C.D. Cooman, Microstructure evolution of a 55 wt. hardening steel during rapid heating. Surf. Coat. Technol. 281, 35–43 (2015)CrossRefGoogle Scholar
  26. 26.
    B.A. Behrens, S. Hübner, S. Schrödter, J. Uhe, Conductive heating opens up various new opportunitites in hot stamping, in Proceedings of 5th International Conference on Accuracy in Forming Technology (ICAFT 2015) (2015), pp. 157–174Google Scholar
  27. 27.
    W. Liang, L. Wang, Y. Liu, Y. Wang, Y. Zhang, Hot stamping parts with tailored properties by local resistance heating. Procedia Eng. 81, 1731–1736 (2014); 11th International Conference on Technology of Plasticity, ICTP 2014, 19-24 October 2014, Nagoya Congress Center, Nagoya, JapanGoogle Scholar
  28. 28.
    W. Liang, Y. Liu, B. Zhu, M. Zhou, Y. Zhang, Conduction heating of boron alloyed steel in application for hot stamping. Int. J. Precis. Eng. Manuf. 16(9), 1983–1992 (2015). AugCrossRefGoogle Scholar
  29. 29.
    K. Steinhoff, Retaining control of complexity - the real challenge in contemporary hot stamping, in 4th International Seminar on Hot Sheet Metal Forming Technology (2016), pp. 9–40Google Scholar
  30. 30.
    C. Lobbe, O. Hering, L. Hiegemann, A.E. Tekkaya, Setting mechanical properties of high strength steels for rapid hot forming processes. Materials 9(4), 25 (2016)CrossRefGoogle Scholar
  31. 31.
    T. Senuma, Y. Takemoto, Effect of rapid heating on evolution of microstructures and coating layers in hot stamping processes, in 3rd International Conference on Hot Sheet Metal Forming of High Performance Steel, CHS2, Kassel, Germany (2011), pp. 465–472Google Scholar
  32. 32.
    M. Terziakın, Instant heating process with electric current application to the workpiece for high strength metal forming, US Patent 6,463,779 (2002)Google Scholar
  33. 33.
    K. Ishiguro, M. Furuhashi, Hot press forming apparatus and hot press forming method, US Patent 9,206,488 (2015)Google Scholar
  34. 34.
    A. Mikuni, T. Sagisaka, T. Shiga, The new lexus is. Presented at EuroCarBody 2013, September 25–26, Bad Nauheim, Germany (2013)Google Scholar
  35. 35.
    R. Kolleck, W. Weiß, P. Mikoleizik, Cooling of tools for hot stamping applications. IDDRG Graz Austria 2010, 111–119 (2010)Google Scholar
  36. 36.
    H. Schülbe, M. Jestremski, B. Nacke, Induction heat treatment for press hardening process, in 3rd International Conference on Hot Sheet Metal Forming of High Performance Steel, CHS2, Kassel, Germany (2011), pp. 481–488Google Scholar
  37. 37.
    R. Hund, M. Braun, Continuous improvement of hot forming technology, in 3rd International Conference on Hot Sheet Metal Forming of High Performance Steel, CHS2, Kassel, Germany (2011), pp. 189–200Google Scholar
  38. 38.
    J.J. Coryell, P.J. Belanger, Pre-diffused Al-Si coatings for use in rapid induction heating of press-hardened steel, US Patent 9,677,145 (2017). Accessed 13 June 2017Google Scholar
  39. 39.
    S. Aikawa, Far infrared heating furnace for steel plate for hot pressing, US Patent 9,677,145 (2017)Google Scholar
  40. 40.
    S.K. Chaudhury, D. Apelian, Fluidized-bed: high efficiency heat treatment of aluminum castings. Heat Treat. Prog. 7(6), 29 (2007)Google Scholar
  41. 41.
    T. Marten, T. Troster, S. Adelbert, A. Kadim, Fluidized bed heating of blanks for the hot forming process, in 3rd International Conference on Hot Sheet Metal Forming of High Performance Steel, CHS2, Kassel, Germany (2011), pp. 473–480Google Scholar
  42. 42.
    R. Neugebauer, R. Müller, A. Bester, Innovative concept for combining the austinitization and surface coating of steel into one step. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 226(7), 1281–1284 (2012)CrossRefGoogle Scholar
  43. 43.
    T. Kurz, New developments in zinc coated steel for press hardening. Presented at Insight Edition Conference, September 20–21, Gothenburg, Sweden (2011)Google Scholar
  44. 44.
    J. Watkins, Material development. Presented at AP&T Press Hardening, Next Step Seminar, Novi, MI (2011)Google Scholar
  45. 45.
    R. Aldén, Metallurgical investigation in weldability of aluminium silicon coated boron steel with different coating thickness. Bahcelor Degree Thesis, KTH Royal Institute of Technology, Stockholm, Sweden (2015)Google Scholar
  46. 46.
    M. Windmann, A. Röttger, W. Theisen, Formation of intermetallic phases in Al-coated hot-stamped 22MnB5 sheets in terms of coating thickness and Si content. Surf. Coat. Technol. 246, 17–25 (2014)CrossRefGoogle Scholar
  47. 47.
    S. Fujita, S.J. Maki, H.I. Yamanaka, M. Kurosak, Corrosion resistance after hot stamping of 22MnB5 steels aluminized with 80g/m2 c.w. and ZnO coating, in 5th International Conference on Hot Sheet Metal Forming of High Performance Steel, CHS2, Toronto, ON, Canada (2015), pp. 681–690Google Scholar
  48. 48.
    J. Karlsson, Press requirements. Presented at AP&T Press Hardening, Next Step Seminar, Novi, MI (2010). Accessed 15 Sept 2010Google Scholar
  49. 49.
    Schuler Inc. Press hardening with pch (2008)Google Scholar
  50. 50.
    voestalpine Media services, http://www.voestalpine.com/group/en/press
  51. 51.
    L.A. Kren, Specialty hydraulic press. Metal Forming Magazine (2015), pp. 20–23Google Scholar
  52. 52.
    M. Skrikerud, Next generation of compact hot forming lines for optimised throughput with different materials. Presented at Forming in Car Body Engineering 2014, September 24–25, Bad Nauheim, Germany (2014)Google Scholar
  53. 53.
    A. Shapiro, Finite element modeling of hot stamping. Steel Res. Int. 80(9), 658–664 (2009)Google Scholar
  54. 54.
    Schuler. PCH 4-out. Newsletter Special Edition - PCH Technology (2010)Google Scholar
  55. 55.
    P. Josefsson, General outlook - the future for press hardening in the automotive industry. Presented at AP&T Press Hardening, Next Step Seminar, September 19th, Dearborn, MI, USA (2012)Google Scholar
  56. 56.
    T. Maki, M. Amino, K. Hirano, H. Murai, Mechanical link servo press for hotforming, in 5th International Conference on Hot Sheet Metal Forming of High Performance Steel, CHS2, Toronto, ON, Canada (2015), pp. 179–187Google Scholar
  57. 57.
    P. Belanger, The Future for Press Hardening in the Automotive Industry. Presented at AP&T Press Hardening, Next Step Seminar, Novi, MI (2011), p. 2011Google Scholar
  58. 58.
    P. Thom, From first draft to serial production: increase ROI with turnkey hot stamping solutions. Presented at Grundig-Akademie 4th PHS Suppliers Forum (2016). Accessed 22 Sept 2016Google Scholar
  59. 59.
    E. Lundström, Hot stamping press technology. Presented at Schuler Hot Stamping Workshop, May 14, Dearborn, MI, USA (2013)Google Scholar
  60. 60.
    E. Billur, Hydraulic presses, in Sheet Metal Forming - Fundamentals, ed. by T. Altan, A.E. Tekkaya (ASM International, 2012), pp. 181–201Google Scholar
  61. 61.
    Schuler GmbH, Metal Forming Handbook (Springer Science & Business Media, 1998)Google Scholar
  62. 62.
    A. Kirk, J. Neil, Selecting a hydraulic hot-stamping press. Stamp. J. 22–27 (2014)Google Scholar
  63. 63.
    ThyssenKrupp Steel Europe. Private communication (2013)Google Scholar
  64. 64.
    Schuler Pressen GmbH. Press hardening with PCH Flex –fast, flexible, cost-effective. Product/Service Brochure (2014)Google Scholar
  65. 65.
    J. Aspacher, Press hardening - “dead end” or “take off”. Presented at 25th European Car Body Conference, March 13–14, Bad Nauheim, Germany (2007)Google Scholar
  66. 66.
    T. Altan, A. Erman Tekkaya, Sheet Metal Forming: Processes and Applications (ASM International, 2012)Google Scholar
  67. 67.
    T. Altan, L. Penter, Application of modern cushion systems to improve quality and productivity in sheet metal forming, in Proceedings of the CIRP Conference Machine-Process Interactions, Vancouver (2010)Google Scholar
  68. 68.
    J. Aspacher, Hydraulic presses in use for light weight production in the automotive industry. Presented at Forming in Car Body Engineering 2011, September 27th, Bad Nauheim, Germany (2011)Google Scholar
  69. 69.
    J. Aspacher, D. Haller, Hot stamping part design and feasibility study with respect to functionality and optimization of production cost. Presented at Forming in Car Body Engineering 2014, September 24–25th, Bad Nauheim, Germany (2014)Google Scholar
  70. 70.
    R. Vollmer, C. Palm, Improving the quality of hot stamping parts with innovative press technology and inline process control, in IDDRG 2017, Munich, Germany (2017)Google Scholar
  71. 71.
    E. Billur, B. Çetin, M.M. Yılmaz, A. G. Oğuz, A. Atay, K. Ersoy, R.O. Uğuz, B. Kaftanoğlu, Forming of new generation AHSS using servo presses, in 5th International Conference on Accuracy in Forming Technologies, Chemnitz, Germany (2015), pp. 175–191Google Scholar
  72. 72.
    L. Wang, B. Zhu, Y. Zhang, Y. Wang, X. An, Q. Wang, A smart process control strategy for press hardening production, in 6th International Conference on Hot Sheet Metal Forming of High Performance Steel, CHS2, Atlanta, GA, USA (2017), pp. 515–524Google Scholar
  73. 73.
    A. Ormaetxea, G. Ibañez, Servomechanical press makes foray into hot stamping. Stamp. J. 18–21 (2015)Google Scholar
  74. 74.
    C. Wood, Hot forming press, U.S. Patent App. 14/240,174 (2012). Accessed 22 Aug 2012Google Scholar
  75. 75.
    Dirk Landgrebe, Anja Rautenstrauch, Andreas Kunke, Stefan Polster, Sebastian Kriechenbauer, Reinhard Mauermann, The effect of cushion-ram pulsation on hot stamping. AIP Conf. Proc. 1769(1), 070014 (2016)CrossRefGoogle Scholar
  76. 76.
    J. Meng, L. Wang, Q. Wang, Y. Sun, Y. Zhang, Research on the model of the production of hot forming process and the optimization method of production cycle, in 5th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2015) (2015), pp. 1949–1952Google Scholar
  77. 77.
    F. Schieck, Energy and resource-efficient process routes in hot sheet metal forming. Presented at Forming in Car Body Engineering 2015, September 29–30, Bad Nauheim, Germany (2015)Google Scholar
  78. 78.
    S. Behm, The Honda Ridgeline. Presented at Great Designs in Steel 2017 (2017)Google Scholar
  79. 79.
    J.M. Berasategi, C. Garbalena, B. Irazu, G. Gonzalez, Past and future for taylor-made hot stamping lines, in 3rd International Conference on Hot Sheet Metal Forming of High Performance Steel, CHS2, Kassel, Germany (2011), pp. 255–261Google Scholar
  80. 80.
    B. Osburg, G. Lengfeld, O. Straube, Innovation and globalization as a factor of success for global hotstamping growth, in New Developments in Sheet Metal Forming Conference, Stuttgart, Germany ( 2012), pp. 79–92Google Scholar
  81. 81.
    Bundesministerium für Bildung und Forschung, (German Federal Ministry of Education and Research). KMU-innovativ Forschung für die Produktion von morgen (SME-innovative “Research for the production of tomorrow”) (2014)Google Scholar
  82. 82.
    Schnupp Gmbh & Co. Hydraulik KG. Vertpress. kompaktpresse für die warmumformung. Product Catalogue (2016)Google Scholar
  83. 83.
    Neue Materialien Bayreuth GmbH, Warmumformung auf kleinstem Raum: NMB präsentiert neuen Anlagenprototypen (hot forming in the smallest space: NMB presents new plant prototypes). Press Release (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.AP&T ABUlricehamnSweden
  2. 2.Billur Makine Ltd.AnkaraTurkey
  3. 3.Atılım UniversityAnkaraTurkey
  4. 4.Fagor Arrasate S. Coop.GipuzkoaSpain

Personalised recommendations