Advertisement

Cave Ecology pp 195-227 | Cite as

Subterranean Biodiversity Patterns from Global to Regional Scales

  • Maja ZagmajsterEmail author
  • Florian Malard
  • David Eme
  • David C. Culver
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 235)

Abstract

In the last two decades, there has been a substantial progress in the availability of records for several subterranean taxa, as well as in mapping and statistical modeling of biodiversity patterns. Currently, there is still a large bias toward analyses of aquatic compared to terrestrial subterranean taxa. We provide the first global map of species richness for groundwater crustaceans, indicating that tropics are not hotspots of species richness. Detailed analyses of subterranean biodiversity patterns in Europe show that species richness peaks in regions of mid-latitude, where the beneficial effects of a high productive energy and high habitat heterogeneity have not been counteracted by cold or arid historical events. The range size of European groundwater crustacean species increases northward, a pattern which is best explained by long-term climatic changes. Subterranean species have narrow distribution ranges, which results in a high spatial turnover in species composition across regions and a disproportionally high contribution of regional diversity to total species richness. Within regions, biodiversity patterns are diverse, and their explanations vary across regions, but hotspots contribute only a small proportion of the regional species pool. Molecular approaches to biodiversity studies offer promising research avenues for further documenting and understanding subterranean biodiversity patterns.

References

  1. Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Glob Ecol Biogeogr 19:134–143CrossRefGoogle Scholar
  2. Baselga A (2012) The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Glob Ecol Biogeogr 21:1223–1232CrossRefGoogle Scholar
  3. Beck J, Schwanghart W (2010) Comparing measure of species diversity from incomplete inventories: and update. Methods Ecol Evol 1:38–44CrossRefGoogle Scholar
  4. Bickford D, Lohman DJ, Sodhi NS et al (2007) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22:148–155PubMedPubMedCentralCrossRefGoogle Scholar
  5. BioFresh Data Portal (2014) Freshwater biodiversity data portal. BioFresh Project – Biodiversity of Freshwater Ecosystems Funded by the European Union under the 7th Framework Programme (data-freshwaterbiodiversity.eu)Google Scholar
  6. Bohmann K, Evans A, Gilbert MT et al (2014) Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol Evol 29:358–367PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bonn A, Storch D, Gaston KJ (2004) Structure of the species–energy relationship. Proc R Soc B-Biol Sci 271:1685–1691CrossRefGoogle Scholar
  8. Botosaneanu L (1986) Stygofauna Mundi, A faunistic, distributional, and ecological synthesis of the world fauna inhabiting subterranean waters. E.J. Brill, LeidenGoogle Scholar
  9. Boutin C, Coineau N (2000) Evolutionary rates and phylogenetic age of some stygobiontic species. In: Wilkens H, Culver DC, Humphreys WF (eds) Subterranean ecosystems – ecosystems of the World 30. Elsevier, Amsterdam, pp 433–451Google Scholar
  10. Brancelj A, Boonyanusith C, Watiroyram S et al (2013) The groundwater-dwelling fauna of South East Asia. J Limnol 72:327–344CrossRefGoogle Scholar
  11. Bregović P, Zagmajster M (2016) Understanding hotspots within a global hotspot – identifying the drivers of regional species richness patterns in terrestrial subterranean habitats. Insect Conserv Div 9:268–281CrossRefGoogle Scholar
  12. Brown JH (1995) Macroecology. University of Chicago Press, ChicagoGoogle Scholar
  13. Brown JH, Gillooly JF, Allen AP et al (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789CrossRefGoogle Scholar
  14. Brunsdon C, Fotheringham AS, Charlton ME (1996) Geographically weighted regression: a method for exploring spatial nonstationarity. Geogr Anal 28:281–298CrossRefGoogle Scholar
  15. Camacho AI, Dorda BA, Rey I (2014) Iberian Peninsula and Balearic island Bathynellacea (Crustacea, Syncarida) database. ZooKeys 386:1–20CrossRefGoogle Scholar
  16. Castellarini F, Malard F, Dole-Olivier M-J et al (2007) Modelling the distribution of stygobionts in the Jura Mountains (eastern France). Implications for the protection of ground waters. Div Distrib 13:213–224CrossRefGoogle Scholar
  17. Christman MC, Culver DC (2001) The relationship between cave biodiversity and available habitat. J Biogeogr 28:367–380CrossRefGoogle Scholar
  18. Christman MC, Zagmajster M (2012) Mapping subterranean biodiversity. In: White WB, Culver DC (eds) Encyclopedia of caves, 2nd edn. Academic, Amsterdam, pp 474–481CrossRefGoogle Scholar
  19. Christman MC, Culver DC, Madden MK et al (2005) Patterns of endemism of the eastern North American cave fauna. J Biogeogr 32:1441–1452CrossRefGoogle Scholar
  20. Christman MC, Doctor DH, Niemiller ML et al (2016) Predicting the occurrence of cave-inhabiting fauna based on features of the earth surface environment. PLoS One 11:e0160408PubMedPubMedCentralCrossRefGoogle Scholar
  21. CKmap2000 (2003) Checklist e distribuzione della fauna italiana. www.faunaitalia.it/ckmap
  22. Colwell RK, Coddington JA (1994) Estimating terrestrial biodiversity through extrapolation. Philos Trans R Soc B 345:101–118CrossRefGoogle Scholar
  23. Cornu J-F, Eme D, Malard F (2013) The distribution of groundwater habitats in Europe. Hydrgeol J 21:949–960CrossRefGoogle Scholar
  24. Cressie NAC (1993) Statistic for spatial data, revised edn. Wiley, New YorkGoogle Scholar
  25. Crist TO, Veech JA, Gering JC et al (2003) Partitioning species diversity across landscapes and regions: a hierarchical analysis of a, b, and c diversity. Am Nat 162:734–743PubMedCrossRefGoogle Scholar
  26. Culver DC, Pipan T (2009) The biology of caves and other subterranean habitats. Oxford University Press, OxfordGoogle Scholar
  27. Culver DC, Pipan T (2013) Subterranean ecosystems. In: Levin SA (ed) Encyclopedia of biodiversity, vol 7, 2nd edn. Academic, Waltham, pp 49–62CrossRefGoogle Scholar
  28. Culver DC, Sket B (2000) Hotspots of subterranean biodiversity in caves and wells. J Cave Karst Stud 62:11–17Google Scholar
  29. Culver DC, Hobbs HH III, Christman MC et al (1999) Distribution map of caves and cave animals of the United States. J Cave Karst Stud 61:139–140Google Scholar
  30. Culver DC, Master LL, Christman MC et al (2000) Obligate cave fauna of the 48 contiguous United States. Conserv Biol 14:386–401CrossRefGoogle Scholar
  31. Culver DC, Deharveng L, Gibert J et al (2001) Mapping subterranean biodiversity. In: Proceedings of the international workshop held March 18–20, 2001, Laboratoire Souterrain du CNRS, Moulis, Ariege, France. Karst Waters Institute, Special Publication 6Google Scholar
  32. Culver DC, Christman MC, Elliott WR et al (2003) The North American obligate cave fauna: regional patterns. Biodivers Conserv 12:441–468CrossRefGoogle Scholar
  33. Culver DC, Christman MC, Sket B et al (2004a) Sampling adequacy in an extreme environment: species richness patterns in Slovenian caves. Biodivers Conserv 13:1209–1229CrossRefGoogle Scholar
  34. Culver DC, Christman MC, Šereg I et al (2004b) The location of terrestrial species-rich caves in a cave-rich area. Subterr Biol 2:27–32Google Scholar
  35. Culver DC, Deharveng L, Bedos A et al (2006) The mid-latitude biodiversity ridge in terrestrial cave fauna. Ecography 29:120–128CrossRefGoogle Scholar
  36. Culver DC, Trontelj P, Zagmajster M et al (2012) Paving the way for standardized and comparable subterranean biodiversity studies. Subterr Biol 10:43–50CrossRefGoogle Scholar
  37. Datry T, Malard F, Gibert J (2005) Response of invertebrate assemblages to increased groundwater recharge rates in a phreatic aquifer. J North Am Benth Soc 24:461–477CrossRefGoogle Scholar
  38. Davies RG, Orme CDL, Webster AJ et al (2007) Environmental predictors of global parrot (Aves: Psittaciformes) species richness and phylogenetic diversity. Glob Ecol Biogeogr 16:220–233CrossRefGoogle Scholar
  39. de Jong Y, Verbeek M, Michelsen V et al (2014) Fauna Europaea – all European animal species on the web. Biodiv Data J 2:e4034CrossRefGoogle Scholar
  40. Deharveng L, Bedos A (2012) Diversity patterns in the tropics. In: White WB, Culver DC (eds) Encyclopedia of caves, 2nd edn. Academic, Amsterdam, pp 238–250CrossRefGoogle Scholar
  41. Deharveng L, Stoch F, Gibert J et al (2009) Groundwater biodiversity in Europe. Freshw Biol 54:709–726CrossRefGoogle Scholar
  42. Delić T, Trontelj P, Rendoš M et al (2017) The importance of naming cryptic species and the conservation of endemic subterranean amphipods. Sci Rep-UK 7:339CrossRefGoogle Scholar
  43. Dole-Olivier M-J, Castellarini F, Coineau N et al (2009) Towards an optimal sampling strategy to assess groundwater biodiversity: comparison across six European regions. Freshw Biol 54:777–796CrossRefGoogle Scholar
  44. Dole-Olivier M-J, Galassi DMP, Fiers F et al (2015) Biodiversity in mountain groundwater: the Mercantour National Park (France) as a European hotspot. Zoosyst 37:529–550CrossRefGoogle Scholar
  45. Du Preez G, Majdi N, Swart A et al (2017) Nematodes in caves: a historical perspective on their occurrence, distribution and ecological relevance. Nematol 19:627–644CrossRefGoogle Scholar
  46. Dynesius M, Jansson R (2000) Evolutionary consequences of changes in species’ geographical distributions driven by Milankovitch climate oscillations. Proc Natl Acad Sci USA 97:9115–9120PubMedCrossRefPubMedCentralGoogle Scholar
  47. Eme D, Malard F, Konecny-Dupré L et al (2013) Bayesian phylogeographic inferences reveal contrasting colonization dynamics among European groundwater isopods. Mol Ecol 22:5685–5699CrossRefGoogle Scholar
  48. Eme D, Malard F, Colson-Proch C et al (2014) Integrating phylogeography, physiology and habitat modelling to explore species range determinants. J Biogeogr 41:687–699CrossRefGoogle Scholar
  49. Eme D, Zagmajster M, Fišer C et al (2015) Multi-causality and spatial non-stationarity in the determinants of groundwater crustacean diversity in Europe. Ecography 38:531–540CrossRefGoogle Scholar
  50. Eme D, Zagmajster M, Delić T et al (2017) Do cryptic species matter in macroecology? Sequencing European groundwater crustaceans yields smaller ranges but does not challenge biodiversity determinants. Ecography 40:1–13CrossRefGoogle Scholar
  51. Evans KL, Warren PH, Gaston KJ (2005) Species – energy relationships at the macroecological scale: a review of the mechanisms. Biol Rev Camb Philos 80:1–25CrossRefGoogle Scholar
  52. Ficetola GF, Miaud C, Pompanon F et al (2008) Species detection using environmental DNA from water samples. Biol Lett 4:423–425PubMedPubMedCentralCrossRefGoogle Scholar
  53. Field R, Hawkins BA, Cornell HV et al (2009) Spatial species-richness gradients across scales: a meta- analysis. J Biogeogr 36:132–147CrossRefGoogle Scholar
  54. Fišer C, Zagmajster M (2009) Cryptic species from cryptic space: the case of Niphargus fongi sp.n. (Amphipoda, Niphargidae). Crustaceana 82:593–614CrossRefGoogle Scholar
  55. Fišer C, Sket B, Trontelj P (2008) A phylogenetic perspective on 160 years of troubled taxonomy of Niphargus (Crustacea: Amphipoda). Zool Script 37:665–680CrossRefGoogle Scholar
  56. Foulquier A, Malard F, Lefebure T et al (2008) The imprint of Quaternary glaciers on the present-day distribution of the obligate groundwater amphipod Niphargus virei (Niphargidae). J Biogeogr 35:552–564CrossRefGoogle Scholar
  57. Foulquier A, Malard F, Mermillod-Blondin F et al (2011) Surface water linkages regulate trophic interactions in a groundwater food web. Ecosystems 14:1339–1353CrossRefGoogle Scholar
  58. Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood CliffsGoogle Scholar
  59. Gibert J, Deharveng L (2002) Subterranean ecosystems: a truncated functional diversity. Bioscience 52:473–481CrossRefGoogle Scholar
  60. Gibert J, Brancelj A, Camacho A et al (2004) Protocols for the assessment and conservation of aquatic life in the subsurface (PASCALIS): overview and main results. SWSBGoogle Scholar
  61. Gibert J, Culver DC, Dole-Olivier MJ et al (2009) Assessing and conserving groundwater biodiversity: synthesis and perspectives. Freshw Biol 54:930–941CrossRefGoogle Scholar
  62. Giribet G, McIntyre E, Christian E et al (2014) The first phylogenetic analysis of Palpigradi (Arachnida) – the most enigmatic arthropod order. Invertebr Syst 28:350–360CrossRefGoogle Scholar
  63. Gorički Š, Stanković D, Snoj A et al (2017) Environmental DNA in subterranean biology: range extension and taxonomic implications for Proteus. Sci Rep-UK 7:45054CrossRefGoogle Scholar
  64. Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391CrossRefGoogle Scholar
  65. Gouveia SF, Hortal J, Cassemiro FAS et al (2013) Nonstationary effects of productivity, seasonality, and historical climate changes on global amphibian diversity. Ecography 36:104–113CrossRefGoogle Scholar
  66. Guzik MT, Austin AD, Cooper SJB et al (2011) Is the Australian subterranean fauna uniquely diverse? Invertebr Syst 24:407–418CrossRefGoogle Scholar
  67. Halse SA, Scanlon MD, Cocking JS et al (2014) Pilbara stygofauna, deep groundwater of an arid landscape contains globally significant radiation of biodiversity. Rec West Aust Mus 78:443–483CrossRefGoogle Scholar
  68. Hof C, Brändle M, Brandl R (2008) Latitudinal variation of diversity in European freshwater animals is not concordant across habitat types. Glob Ecol Biogeogr 17:539–546CrossRefGoogle Scholar
  69. Holsinger JR (1993) Biodiversity of subterranean amphipod crustaceans: global patterns and zoogeographic implications. J Nat Hist 27:821–835CrossRefGoogle Scholar
  70. Horton T, Lowry J, De Broyer C et al (2017) World amphipoda database. Accessed at http://www.marinespecies.org/amphipoda
  71. Humphreys WF, Watts CHS, Cooper SJB et al (2009) Grounwater estuaries of salt lakes: buried pools of endemic biodiversity on the wetsern plateau, Australia. Hydrobiologia 626:79–95CrossRefGoogle Scholar
  72. Illies J (1978) Limnofauna Europaea, 2nd edn. Gustav Fischer Verlag, StuttgartGoogle Scholar
  73. Jablonski D, Roy K, Valentine JW (2006) Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science 314:102–106PubMedCrossRefGoogle Scholar
  74. Jiménez-Valverde A, Sendra A, Garay P et al (2017) Energy and speleogenesis: key determinants of terrestrial species richness in caves. Ecol Evol 7:10207–10215PubMedPubMedCentralCrossRefGoogle Scholar
  75. Juberthie C, Decu V (1994) Encyclopædia Biospeologica, Tome I. Société de Biospéologie, Moulis (France), Bucarest (Romania)Google Scholar
  76. Juberthie C, Decu V (1998) Encyclopædia Biospeologica, Tome II. Société de Biospéologie, Moulis (France), Bucarest (Romania)Google Scholar
  77. Juberthie C, Decu V (2001) Encyclopædia Biospeologica, Tome III. Société de Biospéologie, Moulis (France), Bucarest (Romania)Google Scholar
  78. Kayo RT, Marmonier P, Togouet SHZ et al (2012) An annotated checklist of freshwater stygobiotic crustaceans of Africa and Madagascar. Crustaceana 85:1613–1631CrossRefGoogle Scholar
  79. Lamoreux J (2004) Stygobites are more wide-ranging than troglobites. J Cave Karst Stud 66:18–19Google Scholar
  80. Lande R (1996) Statistics and partitioning of species diversity, and similarity among multiple communities. Oikos 76:5–13CrossRefGoogle Scholar
  81. Lefébure T, Douady CJ, Gouy M et al (2006) Phylogeography of a subterranean amphipod reveals cryptic diversity and dynamic evolution in extreme environments. Mol Ecol 15:1797–1806CrossRefGoogle Scholar
  82. Leprieur F, Tedesco PA, Huqueny B et al (2011) Partitioning global patterns of freshwater fish beta diversity reveals contrasting signatures of past climate changes. Ecol Lett 14:325–334PubMedCrossRefPubMedCentralGoogle Scholar
  83. Leprieur F, Albouy C, de Bortoli J et al (2012) Quantifying phylogenetic beta diversity: distinguishing between “true” turnover of lineages and phylogenetic diversity gradients. PLoS One 7:e42760PubMedPubMedCentralCrossRefGoogle Scholar
  84. Malard F, Boutin C, Camacho AI et al (2009) Diversity patterns of stygobiotic crustaceans across multiple spatial scales in Europe. Freshw Biol 54:756–776CrossRefGoogle Scholar
  85. Mammola S, Leroy B (2017) Applying species distribution models to caves and other subterranean habitats. Ecography 40:1–14CrossRefGoogle Scholar
  86. Mejia-Ortiz LM, Lopez-Mejia M, Sprouse P (2013) Distribucion de los crustaceos estigobiontes de Mexico. Mundos Subterráneos 24:20–32Google Scholar
  87. Meleg IN, Zakšek V, Fišer C et al (2013) Can environment predict cryptic diversity? The case of Niphargus inhabiting Western Carpathian groundwater. PLoS One 8:e76770CrossRefGoogle Scholar
  88. Michel G, Malard F, Deharveng L et al (2009) Reserve selection for conserving groundwater biodiversity. Freshw Biol 54:861–876CrossRefGoogle Scholar
  89. Niemiller ML, Zigler KS (2013) Patterns of cave biodiversity and endemism in the Appalachians and interior plateau of Tennessee, USA. PLoS One 8:e64177PubMedPubMedCentralCrossRefGoogle Scholar
  90. Niemiller ML, Porter ML, Keany J et al (2017) Evaluation of eDNA for groundwater invertebrate detection and monitoring: a case study with endangered Stygobromus (Amphipoda: Crangonyctidae). Conserv Gen Resour 1–11Google Scholar
  91. Ohlemüller R, Anderson BJ, Araújo MB et al (2008) The coincidence of climatic and species rarity: high risk to small-range species from climate change. Biol Lett 4:568–572PubMedPubMedCentralCrossRefGoogle Scholar
  92. Peck SB (1994) Canada. In: Juberthie C, Decu V (eds) Encyclopaedia Biospeologica, Tome I. Société de Biospéologie, Moulis (France), Bucarest (Romania), pp 381–388Google Scholar
  93. Pérez-González A, Yager J (2001) The Cuban troglobites. In: Culver DC, Deharveng L, Gibert J, Sasowsky ID (eds) Karst Water Institute Special Publication 6. Charles Town, pp 61–75Google Scholar
  94. Pfenninger M, Schwenk K (2007) Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evol Biol 7:121PubMedPubMedCentralCrossRefGoogle Scholar
  95. Proudlove GS (2010) Biodiversity and distribution of the subterranean fishes of the world. In: Trajano E, Bichuette ME, Kapoor BG (eds) Biology of subterranean fishes. Science Publishers, Enfield, NH, pp 41–64CrossRefGoogle Scholar
  96. Rios-Escalante P, Parra-Coloma L, Peralta MA et al (2016) A checklist of subterranean water crustaceans from Chile (South America). Proc Biol Soc Wash 129:114–128CrossRefGoogle Scholar
  97. Rosenzweig ML (1995) Species diversity in space and time. Cambridge University Press, New YorkCrossRefGoogle Scholar
  98. Šebela S, Turk J (2011) Local characteristics of Postojna Cave climate, air temperature, and pressure monitoring. Theor Appl Climatol 105:371–386CrossRefGoogle Scholar
  99. Soberón J, Jimenez R, Golubov J et al (2007) Assessing completeness of biodiversity databases at different spatial scales. Ecography 30:152–160CrossRefGoogle Scholar
  100. Souza SM, Ferreira LR (2016) The first two hotpots of subterranean biodiversity of South America. Subterr Biol 19:1–21CrossRefGoogle Scholar
  101. Stevens GC (1989) The latitudinal gradient in geographical range – how so many species co-exist in the tropics. Am Nat 133:240–256CrossRefGoogle Scholar
  102. Stoch F, Galassi DMP (2010) Stygobiotic crustacean species richness: a question of numbers, a matter of scale. Hydrobiologia 653:217–234CrossRefGoogle Scholar
  103. Strayer DL, May SE, Nielsen P et al (1997) Oxygen, organic matter, and sediment granulometry as controls on hyporheic animal communities. Arch Hydrobiol 140:131–144CrossRefGoogle Scholar
  104. Tisseuil C, Cornu JF, Beauchard O et al (2013) Global diversity patterns and cross- taxa convergence in freshwater systems. J Anim Ecol 82:365–376PubMedCrossRefGoogle Scholar
  105. Trajano E, Bichuette ME (2010) Diversity of Brazilian subterranean invertebrates, with a list of troglomorphic data. Subterr Biol 7:1–16Google Scholar
  106. Trajano E, Gallão JE, Bichuette ME (2016) Spots of high diversity of troglobites in Brazil: the challenge of measuring subterranean diversity. Biodivers Conserv 25:1805–1828CrossRefGoogle Scholar
  107. Trontelj P, Fišer C (2009) Cryptic species diversity should not be trivialised. Syst Biodiv 7:1–3CrossRefGoogle Scholar
  108. Trontelj P, Douady CJ, Fišer C et al (2009) A molecular test for cryptic diversity in ground water: how large are the ranges of macro-stygobionts? Freshw Biol 54:727–744CrossRefGoogle Scholar
  109. Trontelj P, Blejec A, Fišer C (2012) Ecomorphological convergence of cave communities. Evolution 66:3852–3865PubMedPubMedCentralCrossRefGoogle Scholar
  110. Tucker CM, Cadotte MW, Carvalho SB et al (2017) A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol Rev 92:698–715PubMedCrossRefGoogle Scholar
  111. Tyre AJ, Tenhumberg B, Field SA et al (2003) Improving precision and reducing bias in biological surveys: estimating false-negative error rates. Ecol Appl 13:1790–1801CrossRefGoogle Scholar
  112. Veter NM, DeSantis LRG, Yann LT et al (2013) Is Rapoport’s rule a recent phenomenon? A deep time perspective on potential causal mechanisms. Biol Lett 9:20130398PubMedPubMedCentralCrossRefGoogle Scholar
  113. Vodă R, Dapporto L, Dincă V et al (2015) Cryptic matters: overlooked species generate most butterfly beta-diversity. Ecography 38:405–409CrossRefGoogle Scholar
  114. Weary DJ, Doctor DH (2014) Karst in the United States: a digital map compilation and database. USGS Open File Report 2014–1156. Available: http://pubs.usgs.gov/of/2014/1156/
  115. Wiens JJ (2011) The causes of species richness patterns across space, time, and clades and the role of “ecological limits”. Q Rev Biol 86:75–96PubMedCrossRefGoogle Scholar
  116. Wilson ED (1988) Biodiversity. National Academy, WashingtonGoogle Scholar
  117. Wolf B (1934–1938) Animalium cavernarum catalogus. Junk, s’GravenhageGoogle Scholar
  118. Zagmajster M, Culver DC, Sket B (2008) Species richness patterns of obligate subterranean beetles (Insecta: Coleoptera) in a global biodiversity hotspot-effect of scale and sampling intensity. Div Distrib 14:95–105CrossRefGoogle Scholar
  119. Zagmajster M, Culver DC, Christman MC et al (2010) Evaluating the sampling bias in pattern of subterranean species richness: combining approaches. Biodivers Conserv 19:3035–3048CrossRefGoogle Scholar
  120. Zagmajster M, Eme D, Fišer C et al (2014) Geographic variation in range size and beta diversity of groundwater crustaceans: insights from habitats with low thermal seasonality. Glob Ecol Biogeogr 23:1135–1145CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Maja Zagmajster
    • 1
    Email author
  • Florian Malard
    • 2
  • David Eme
    • 3
  • David C. Culver
    • 4
  1. 1.Biotechnical Faculty, Department of Biology, Subterranean Biology LabUniversity of LjubljanaLjubljanaSlovenia
  2. 2.University of Lyon 1, ENTPE, CNRS, Univ. de Lyon, UMR5023 LEHNAVilleurbanneFrance
  3. 3.New Zealand Institute for Advanced study, Institute of Natural and Mathematical SciencesMassey UniversityAucklandNew Zealand
  4. 4.Department of Environmental ScienceAmerican UniversityWashington, DCUSA

Personalised recommendations