Cave Ecology pp 173-194 | Cite as

An Overview on the Aquatic Cave Fauna

  • Oana Teodora Moldovan
Part of the Ecological Studies book series (ECOLSTUD, volume 235)


The diversity of the most frequent groundwater fauna groups is presented briefly in this chapter. Emphasis is given to stygobionts and their cave habitats, although comments on stygophiles and other groundwater habitats are given when appropriate. Information on each group representatives, distribution, and adaptations is also provided. This chapter is a continuation of the previous chapter on biodiversity of terrestrial cave habitats and should be completed with the chapters on aquatic diversity in anchialine and calcrete habitats.



I am grateful to Ľubomir Kováč and Stuart Halse for the useful suggestions and comments that improved the quality of the manuscript. I am also indebted to Jana Bedek, Marko Lukić, Jane McRae, and Jaroslav Stankovič for allowing me to use their photos in this chapter. OTM acknowledges the financial support from the Romanian Academy and the grant of the Romanian Ministry of Research and Innovation, CNCS—UEFISCDI, project number PN-III-P4-ID-PCCF-2016-0016, within PNCDI III.


  1. Behrmann-Godel J, Nolte AW, Kreiselmaier J et al (2017) The first European cave fish. Curr Biol 27:R257–R258PubMedCrossRefPubMedCentralGoogle Scholar
  2. Bilandžija H, Morton B, Podnar M et al (2013) Evolutionary history of relict Congeria (Bivalvia: Dreissenidae): unearthing the subterranean biodiversity of the Dinaric Karst. Front Zool 10:5PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bole J, Velkovrh F (1986) Mollusca from continental subterranean aquatic habitats. In: Botosaneanu L (ed) Stygofauna mundi. Leiden, E.J. Brill/Dr. W. Backhuys, pp 177–208Google Scholar
  4. Botosaneanu L (1986) Stygofauna mundi, a faunistic, distributional, and ecological synthesis of the world fauna inhabiting subterranean waters (including the marine interstitial). Leiden, E.J. Brill/Dr. W. BackhuysGoogle Scholar
  5. Botosaneanu L (1998) Nemertina. In: Juberthie C, Decou V (eds) Encyclopaedia biospeologica, Tome II. Société de Biospéologie, Bucarest, pp 847–848Google Scholar
  6. Boulton AJ, Humphreys WF, Eberhard SM (2003) Imperilled subsurface waters in Australia: biodiversity, threatening processes and conservation. Aquat Ecosyst Health 6:41–54CrossRefGoogle Scholar
  7. Boutin C (1998) Thermosbaenacea. In: Juberthie C, Decou V (eds) Encyclopaedia Biospeologica, Tome II. Société de Biospéologie, Bucarest, pp 877–888Google Scholar
  8. Bowman TE (1986) Freshwater calanoid copepods of the West Indies. Syllogeus 58:237–246Google Scholar
  9. Bowman TE, Iliffe TM (1985) Mictocaris halope, a new unusual percaridan crustacean from marine caves on Bermuda. J Crustacean Biol 5:58–73CrossRefGoogle Scholar
  10. Camacho AI (2003) Historical biogeography of Hexabathynella, a cosmopolitan genus of groundwater Syncarida (Crustacea, Bathynellacea, Parabathynellidae). Biol J Linn Soc 78:457–466CrossRefGoogle Scholar
  11. Camacho AI, Valdecasas AG (2008) Global diversity of syncarids (Syncarida; Crustacea) in freshwater. Hydrobiologia 595:257–266CrossRefGoogle Scholar
  12. Chertoprud ES, Palatov DM, Borisov RR et al (2016) Distribution and a comparative analysis of the aquatic invertebrate fauna in caves of the western Caucasus. Subterr Biol 18:49–70CrossRefGoogle Scholar
  13. Cichocka JM, Bielecki A, Kur J et al (2015) A new leech species (Hirudinida: Erpobdellidae: Erpobdella) from a cave in the West Azerbaijan province of Iran. Zootaxa 4013:413–427PubMedCrossRefPubMedCentralGoogle Scholar
  14. Coineau N (1998) Syncarida. In: Juberthie C, Decou V (eds) Encyclopaedia Biospeologica, Tome II. Société de Biospéologie, Bucarest, pp 863–876Google Scholar
  15. Coineau N, Camacho AI (2004) Crustacea: Syncarida. In: Gunn J (ed) Encyclopedia of caves and Karst science. Fitzroy Dearborn, New York, pp 268–270Google Scholar
  16. Conde-Vela VM (2017) The troglomorphic adaptations of Namanereidinae (Annelida, Nereididae) revisited, including a redescription of Namanereis cavernicola (Solís-Weiss & Espinasa, 1991), and a new Caribbean species of Namanereis Chamberlin, 1919. Subterr Biol 23:19–28CrossRefGoogle Scholar
  17. Cooper JE, Cooper MR (1978) Growth, longevity, and reproduction strategies in Shelta Cave crayfishes. NSS Bull 40:97Google Scholar
  18. Crouau Y (1978) Organes sensoriels d’un Mysidacé souterrain anophtalme, Antromysis juberthiei: étude ultrastructurale des aesthetascs. B Mus Natl Hist Nat 352:165–175Google Scholar
  19. Crouau Y (1980) Ultrastructure de 8 types de soies antennaires chez un Crustacé Mysidacé souterrain (Antromysis juberthiei Bacesco et Orghidan). CR Acad Sci Paris 290:1381–1384Google Scholar
  20. Culver DC (2012) Mollusks. In: White WB, Culver DC (eds) Encyclopedia of caves, 2nd edn. Academic, Amsterdam, pp 512–517CrossRefGoogle Scholar
  21. Danielopol DL, Hartmann G (1985) Ostracoda. In: Botosaneanu L (ed) Stygofauna Mundi. Leiden, E.J. Brill/Dr. W. Backhuys, pp 265–294Google Scholar
  22. Danielopol D, Rouch R (1991) L’adaptation des organisms au milieu aquatique souterrain. Réflexions sur l’apport des recherches écologiques récentes. Stygologia 6:129–142Google Scholar
  23. Delamare-Deboutteville C (1960) Biologie des eaux souterraines littorales et continentales. Hermann, ParisGoogle Scholar
  24. Delić T, Švara V, Coleman CO et al (2017) The giant cryptic amphipod species of the subterranean genus Niphargus (Crustacea, Amphipoda). Zool Scr 46:740–752CrossRefGoogle Scholar
  25. Di Lorenzo T, Stoch F, Galassi DMP (2013) Incorporating the hyporheic zone within the river discontinuum: longitudinal patterns of subsurface copepod assemblages in an Alpine stream. Limnologica 43:288–296CrossRefGoogle Scholar
  26. Dumnicka E (1986) Naididae (Oligochaeta) from subterranean water of West Indian Islands. Bijdr Dierk 56:267–281Google Scholar
  27. Dumnicka E, Juberthie C (1994) Aphanoneura et Oligochaeta. In: Juberthie C, Decou V (eds) Encyclopaedia Biospeologica, Tome I. Société de Biospéologie, Bucarest, pp 67–75Google Scholar
  28. Dumnicka E, Wojtan K (1989) L’influence du milieu et des paramètre physico–chymiques de l’eau sur les peuplements des oligochètes et la variabilité des populations de Propappus volki (Enchytraeidae) dans la grotte Wodna (Tatras Montagnes, Pologne). Mem Biospeol 16:225–232Google Scholar
  29. Durand JP (1998) Amphibia. In: Juberthie C, Decou V (eds) Encyclopaedia Biospeologica, Tome II. Société de Biospéologie, Bucarest, pp 1215–1244Google Scholar
  30. Durand JP (2005) Salamanders. In: Culver DC, White WB (eds) Encyclopedia of caves. Academic, Amsterdam, pp 485–491Google Scholar
  31. Eberhard SM (1990) Ida Bay karst study: the cave fauna at Ida Bay in Tasmania and the effect of quarry operations. Tasmania, Report to Department of Parks, Wildlife & HeritageGoogle Scholar
  32. Fišer C, Robinson CT, Malard F (2018) Cryptic species as a window into the paradigm shift of the species concept. Mol Ecol 00:1–23Google Scholar
  33. Fujimoto S, Yamasaki H (2017) A new genus and species of Renaudarctidae (Heterotardigrada: Arthrotardigrada) from Ryukyu Archipelago, Japan. Mar Biol Res 13:288–299CrossRefGoogle Scholar
  34. Galassi DMP (2001) Groundwater copepods: diversity patterns over ecological and evolutionary scales. Hydrobiologia 454(453):227–253CrossRefGoogle Scholar
  35. Gibert J, Culver DC (2005) Diversity patterns in Europe. In: Culver DC, White WB (eds) Encyclopedia of caves. Elsevier/Academic, Amsterdam, pp 196–201Google Scholar
  36. Ginet R, Decou V (1977) Initiation à la biologie et à l’écologie souterraines. Jean-Pierre Delarge, ParisGoogle Scholar
  37. Glasby CJ, Fiege D, Damme KV (2014) Stygobiont polychaetes: notes on the morphology and the origins of groundwater Namanereis (Annelida: Nereididae: Namanereidinae), with a description of two new species. Zool J Linn Soc-Lond 171:22–37CrossRefGoogle Scholar
  38. Golemansky V, Bonnet L (1994) Protozoa. In: Juberthie C, Decou V (eds) Encyclopaedia Biospeologica, Tome I. Société de Biospéologie, Bucarest, pp 23–33Google Scholar
  39. Gonzalez BC, Worsaae K, Fontaneto D et al (2018) Anophthalmia and elongation of body appendages in cave scale worms (Annelida: Aphroditiformia). Zool Scr 47:106–121CrossRefGoogle Scholar
  40. González-López L, Vidal-Romani JR, López-Gallindo MJ (2013) First data on testate amoebae in speleothems of caves in igneous rocks. Cuad Lab Xeol Laxe 37:37–56Google Scholar
  41. Gourbault N (1968) Étude comparée du metabolisme respiratoire chez les Planaires epigées et hypogées. CR Acad Sci D 266:145–148Google Scholar
  42. Gourbault N (1970) Recherches sur les Tricladides Paludicoles hypogés. Mem Mus Natl Hist Nat 73:1–249Google Scholar
  43. Guinot D (1994) Decapoda Brachyura. In: Juberthie C, Decou V (eds) Encyclopaedia Biospeologica, Tome I. Société de Biospéologie, Bucarest, pp 165–179Google Scholar
  44. Hobbs HH III (1998) Decapoda (Caridea, Astacidea, Anomura). In: Juberthie C, Decou V (eds) Encyclopaedia Biospeologica, Tome II. Société de Biospéologie, Bucarest, pp 891–911Google Scholar
  45. Hobbs HH III (2004) Crustacea: Decapoda (Shrimps, crayfishes, crabs). In: Gunn J (ed) Encyclopedia of cave and Karst science. Fitzroy Dearborn, New York, pp 261–265Google Scholar
  46. Holsinger JR (1966) A preliminary study on the effects of organic pollution of Banners Corner Cave, Virginia. Int J Speleol 2:75–89CrossRefGoogle Scholar
  47. Holsinger JR (1994) Amphipoda. In: Juberthie C, Decou V (eds) Encyclopaedia Biospeologica, Tome I. Société de Biospéologie, Bucarest, pp 147–164Google Scholar
  48. Husmann S (1966) Versuch einer oekologischen Gliederung des interstitiellen Grundwassers in Lebensbereiche eigener Praegung. Arch Hydrobiol 62:231–268Google Scholar
  49. Husmann S (1967) Die oekologische Stellung der Hoehlen- und Spaltengewaesser innerhalb der subterran-aquatilen Lebensbereiche. Int J Speleol 2:409–436CrossRefGoogle Scholar
  50. Jaume D (2008) Global diversity of Spelaeogriphaceans & Thermosbaenaceans (Crustacea; Spelaeogriphacea & Thermosbaenacea) in freshwater. Hydrobiologia 595:219–224CrossRefGoogle Scholar
  51. Jørgensen A, Boesgaard TM, Møbjerg N et al (2014) The tardigrade fauna of Australian marine caves: with descriptions of nine new species of Arthrotardigrada. Zootaxa 3802:401–443CrossRefGoogle Scholar
  52. Juberthie C, Decu V (1998) Annelida Polychaeta. In: Juberthie C, Decou V (eds) Encyclopaedia Biospeologica, Tome II. Société de Biospéologie, Bucarest, pp 849–854Google Scholar
  53. Juberthie C, Durand J, Dupuy M (1996) La reproduction des protées (Proteus anguinus): bilan de 35 ans d’élevage dans les grottes-laboratoires de Moulis et d’Aulignac. Mem Biospeol 23:53–56Google Scholar
  54. Karanovic I (2007) Candoninae (Ostracoda) from the Pilbara region in Western Australia. Crustaceana Monographs 7:1–432CrossRefGoogle Scholar
  55. Kisielewski J (1998) Gastrotricha. In: Juberthie C, Decou V (eds) Encyclopaedia Biospeologica, Tome II. Société de Biospéologie, Bucarest, pp 855–858Google Scholar
  56. Knott B, Halse SA (1999) Pilbarophreatoicus platyarthricus n.gen., n.sp. (Isopoda: Phreatoicidae: Amphisopodidae) from the Pilbara region of Western Australia. Rec Aust Mus 51:33–42CrossRefGoogle Scholar
  57. Koenemann S, Hoenemann M, Stemme T (2018) World Remipedia Database. Accessed 22 Mar 2018
  58. Kolicka M, Gadawski P, Dabert M (2017) A new species of freshwater Chaetonotidae (Gastrotricha, Chaetonotida) from Obodska Cave (Montenegro) based on morphological and molecular characters. Eur J Taxon 354:1–30Google Scholar
  59. Konec M, Prevorčnik S, Sarbu SM et al (2015) Parallels between two geographically and ecologically disparate cave invasions by the same species, Asellus aquaticus (Isopoda, Crustacea). J Evol Biol 28:864–875CrossRefGoogle Scholar
  60. Larned ST (2012) Phreatic groundwater ecosystems: research frontiers for freshwater ecology. Freshw Biol 57:885–906CrossRefGoogle Scholar
  61. Lavoie KH (2015) “A grand, gloomy, and peculiar place”: microbiology in the Mammoth Cave region. In: Wagner R, Engel AS (eds) Microbial life of cave systems. De Gruyter, Berlin, pp 47–78Google Scholar
  62. Leal-Zanchet A, Souza S, Ferreira R (2014) A new genus and species for the first recorded cave-dwelling Cavernicola (Platyhelminthes) from South America. Zookeys 442:1–15CrossRefGoogle Scholar
  63. Leys R, Watts CHS, Cooper SJB et al (2003) Evolution of subterranean diving beetles (Coleoptera: Dytiscidae: Hydroporini, Bidessini) in the arid zone of Australia. Evolution 57:2819–2834Google Scholar
  64. Ma L, Zhao Y (2012) Cavefish of China. In: Culver DC, White WB (eds) Encyclopedia of caves. Elsevier Academic, Amsterdam, pp 107–125CrossRefGoogle Scholar
  65. Manconi R, Cadeddu B, Ledda F et al (2013) An overview of the Mediterranean cave-dwelling horny sponges (Porifera, Demospongiae). Zookeys 281:1–68CrossRefGoogle Scholar
  66. Marmonier P, Vervier PH, Gibert J et al (1993) Biodiversity in ground waters. Trends Ecol Evol 8:392–395CrossRefGoogle Scholar
  67. Martens K (2004) Crustacea: Ostracoda. In: Gunn J (ed) Encyclopedia of caves and karst science. Fitzroy Dearborn, New York, pp 267–268Google Scholar
  68. Matjašič J (1994) Turbellaria, Temnocephalida. In: Juberthie C, Decou V (eds) Encyclopaedia Biospeologica, Tome I. Société de Biospéologie, Bucarest, pp 45–48Google Scholar
  69. Matjašič J, Sket B (1971) Jamski hidroid s slovenskega krasa. Biol Vestn 19:139–145Google Scholar
  70. Mihevc A, Sket B, Pruner P et al (2001) Fossil remains of a cave tube worm (Polychaeta: Serpulidae) in an ancient cave in Slovenia. In: Proceedings 13th International Speleological Congress, 4th Speleological Congress of Latin America and the Caribbean, 26th Brazilian Congress of Speleology, Brasilia, 15–22 July 2001, 2:20–24Google Scholar
  71. Moore J, Gibson R (1972) On a new genus of freshwater hoplonemertean from Campbell island. Freshw Biol 2:187–202CrossRefGoogle Scholar
  72. Motaș C (1963) La notion de nappe phreatique.- La phreatobiologie, ses debuts, son objet. An Stiint Univ Iasi (Rom) 9:57–61Google Scholar
  73. Muschiol D (2009) Meiofauna in a chemosynthetic groundwater ecosystem: Movile Cave, Romania. Bielefeld University, BielefeldGoogle Scholar
  74. Negrea S (1994) Cladocera. In: Juberthie C, Decou V (eds) Encyclopaedia Biospeologica, Tome, Tome I. Société de Biospéologie, Bucarest, pp 99–104Google Scholar
  75. Ohtsuka S, Hanamura Y, Kase T (2002) A new species of Thetispelecaris (Crustacea: Peracarida) from submarine cave on Grand Cayman Island. Zool Sci 19:611–624PubMedCrossRefPubMedCentralGoogle Scholar
  76. Orghidan T (1959) Ein neuer Lebensraum des unterirdischen Wassers: der hyporheische Biotop. Arch Hydrobiol 55:392–414Google Scholar
  77. Page TJ, Humphreys WF, Hughes JM (2008) Shrimps down under: evolutionary relationships of subterranean crustaceans from Western Australia (Decapoda: Atyidae: Stygiocaris). PLoS One 3:e1618PubMedPubMedCentralCrossRefGoogle Scholar
  78. Pinder AM (2008) Phreodrilidae (Clitellata: Annelida) in north-western Australia with descriptions of two new species. Rec West Aust Mus 24:459–468CrossRefGoogle Scholar
  79. Puorriot R (1994) Rotifera. In: Juberthie C, Decou V (eds) Encyclopaedia Biospeologica, Tome I. Société de Biospéologie, Bucarest, pp 63–66Google Scholar
  80. Riess W, Giere O, Kohls O et al (1999) Anoxic thermomineral cave waters and bacterial mats as habitat for freshwater nematodes. Aquat Microb Ecol 18:157–164CrossRefGoogle Scholar
  81. Romero A (ed) (2001) The biology of hypogean fishes. Developments in environmental biology of fishes. Kluwer Academic, DordrechtGoogle Scholar
  82. Rouch R (1992) Caractéristiques et conditions hydrodynamiques des écoulements dans les sédiments d’un ruisseau des Pyrénées. Implications écologiques. Stygologia 7:13–25Google Scholar
  83. Rouch R (1994) Copepoda. In: Juberthie C, Decou V (eds) Encyclopaedia Biospeologica, Tome I. Société de Biospéologie, Bucarest, pp 105–111Google Scholar
  84. Schwarz AE, Schwoerbel J, Gruia M (1998) Hydracarina. In: Juberthie C, Decou V (eds) Encyclopaedia Biospeologica, Tome II. Société de Biospéologie, Bucarest, pp 953–976Google Scholar
  85. Shu SS, Brancelj A, Chen FZ et al (2017) A new freshwater stygobiotic calanoid (Copepoda: Speodiaptominae) from Yunnan, China. Zootaxa 4290:192–200CrossRefGoogle Scholar
  86. Simões L, Ferreira T, Bichuette M (2013) Aquatic biota of different karst habitats in epigean and subterranean systems of Central Brazil—visibility versus relevance of taxa. Subterr Biol 11:55–74CrossRefGoogle Scholar
  87. Sket B (1986) Hirudinea. In: Botosaneanu L (ed) Stygofauna Mundi. Leiden, E.J. Brill/Dr. W. Backhuys, pp 250–253Google Scholar
  88. Sket B (1997) Distribution of Proteus (Amphibia: Urodela: Proteidae) and its possible explanation. J Biogeogr 24:263–280CrossRefGoogle Scholar
  89. Sket B, Arntzen JW (1994) A black, non-troglomorphic amphibian from the karst of Slovenia: Proteus anguinus Parkelj n. ssp (Urodela: Proteidae). Bijdr Dierk 64:33–53Google Scholar
  90. Sket B, Velikonja M (1984) Prethodni isvjestaj o nalazima slatkovodnih spuzvi (Porifera, Spongillidae) u spiljama Jugoslavije. Deveti Jugoslavenski Speleoloski Kongres, Zagreb, pp 553–557Google Scholar
  91. Sket B, Velikonja M (1986) Troglobitic freshwater sponges (Porifera, Spongillidae) found in Yugoslavia. Stygologia 2:254–266Google Scholar
  92. Sket B, Dovč P, Jalžić B et al (2001) A cave leech (Hirudinea, Erpobdellidae) from Croatia with unique morphological features. Zool Scr 30:223–229CrossRefGoogle Scholar
  93. Sket B, Paragamian K, Trontelj P (2004) A census of the obligate subterranean fauna of the Balkan Peninsula. In: Griffiths HI, Kryštufek B, Reed JM (eds) Balkan biodiversity: pattern and process in the European hotspot. Kluwer Academic, Dordrecht, pp 309–322CrossRefGoogle Scholar
  94. Smith RJ, Kamiya T, Choi Y-G et al (2017) A new species of Cavernocypris Hartmann, 1964 (Crustacea: Ostracoda) from caves in South Korea. Zootaxa 4268:360–376PubMedCrossRefPubMedCentralGoogle Scholar
  95. Sørensen MV, Jørgensen A, Boesgaard TM (2000) A new Echinoderes (Kinorhyncha: Cyclorhagida) from a submarine cave in New South Wales, Australia. Cah Biol Mar 41:167–179Google Scholar
  96. Souza S, Morais AL, Bichuette ME et al (2016) Two new species of freshwater flatworms (Platyhelminthes:Tricladida:Continenticola) from South American caves. Zootaxa 4092:107–121PubMedCrossRefPubMedCentralGoogle Scholar
  97. Spangler PJ, Decu V (1998) Coleoptera aquatica. In: Juberthie C, Decou V (eds) Encyclopaedia Biospeologica, Tome II. Société de Biospéologie, Bucarest, pp 1031–1046Google Scholar
  98. Stocchino GA, Sluys R, Kawakatsu M et al (2017) A new species of freshwater atworm (Platyhelminthes, Tricladida, Dendrocoelidae) inhabiting a chemoautotrophic groundwater ecosystem in Romania. Eur J Taxon 342:1–21Google Scholar
  99. Stoch F, Artheau M, Brancelj A et al (2009) Biodiversity indicators in European ground waters: towards a predictive model of stygobiotic species richness. Freshw Biol 54:745–755CrossRefGoogle Scholar
  100. Teschner D (1963) Die Biologie, Verbreitung und Ökologie der Grundwassermilbe Lobohalacarus weberi quadriporus (Walter, 1947), Limnohalacaridae Acari. Arch Hydrobiol 59:71–102Google Scholar
  101. Thienemann AF (1925) Die Binnengewaesser Mitteleuropas. Bd. I. Eine limnologische Einfuehrung, StuttgartGoogle Scholar
  102. Todaro MA, Leasi F, Bizzarri N et al (2006) Meiofauna densities and gastrotrich community composition in a Mediterranean sea cave. Mar Biol 149:1079–1091CrossRefGoogle Scholar
  103. Trajano E, Bichuette ME, Kapoor BG (2010) Biology of subterranean fishes. Science Publishers, Enfield, NHCrossRefGoogle Scholar
  104. Trontelj P, Douady CJ, Fišer C et al (2009) A molecular test for cryptic diversity in ground water: how large are the ranges of macro-stygobionts? Freshw Biol 54:727–744CrossRefGoogle Scholar
  105. Uéno SI (1957) Blind aquatic beetles of Japan, with some accounts of the fauna of Japanese subterranean waters. Arch Hydrobiol 53:250–296Google Scholar
  106. Vacelet J (1990) Storage cells of calcified relic sponges. In: Rützler K (ed) New perspectives in sponge biology. Smithsonian Institution Press, Washington, DC, pp 144–152Google Scholar
  107. Van Damme K, Sinev AY (2011) A new genus of cave-dwelling microcrustaceans from the Dinaric Region (south-east Europe): adaptations of true stygobitic Cladocera (Crustacea: Branchiopoda). Zool J Linn Soc-Lond 161:31–52CrossRefGoogle Scholar
  108. Varga L (1959) Beitrage zur Kenntnis der aquatilen Mikrofauna der Baradla-Hohle bei Aggtelek. Acta Zool Hung 4:429–441Google Scholar
  109. Varga L (1963) Weitere Untersuchungen uber die aquatile Mikrofauna der Baradla-Hohle bei Aggtelek (Ungarn). Acta Zool Hung 9:439–458Google Scholar
  110. Watts CHS, Humphreys W (2009) Fourteen new Dytiscidae (Coleoptera) of the genera Limbodessus Guignot, Paroster Sharp, and Exocelina Broun from underground waters in Australia. Trans R Soc South Aust 133:62–107CrossRefGoogle Scholar
  111. Watts CHS, Hendrich L, Balke M (2016) A new interstitial species of diving beetle from tropical northern Australia provides a scenario for the transition of epigean to stygobitic life (Coleoptera, Dytiscidae, Copelatinae). Subterr Biol 19:23–29CrossRefGoogle Scholar
  112. Weber A, Proudlove GS, Parzefall J et al (1998) Pisces (Teleostei). In: Juberthie C, Decou V (eds) Encyclopaedia Biospeologica, Tome II. Société de Biospéologie, Bucarest, pp 1177–1213Google Scholar
  113. Williams DD (2004) Review of the polychaete genus Namanereis (Nereididae) in the Caribbean region, with a record of N. hummelincki from deep freshwater wells in Barbados. Caribb J Sci 40:401–408Google Scholar
  114. Wilson GDF (2008) Gondwanan groundwater: subterranean connections of Australian phreatoicidean isopods (Crustacea) to India and New Zealand. Invertebr Syst 22:301–310CrossRefGoogle Scholar
  115. Yager J (1981) A new class of Crustacea from a marine cave in the Bahamas. J Crustacean Biol 1:328–333CrossRefGoogle Scholar
  116. Yamasaki H (2016) Ryuguderes iejimaensis, a new genus and species of Campyloderidae (Xenosomata: Cyclorhagida: Kinorhyncha) from a submarine cave in the Ryukyu Islands, Japan. Zool Anz 265:69–79CrossRefGoogle Scholar
  117. Zagmajster M, Porter ML, Fong DW (2011) Freshwater hydrozoans in caves with report on new records. Speleobiological Notes 3:4–10Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Oana Teodora Moldovan
    • 1
  1. 1.Emil Racovitza Institute of Speleology, Romanian AcademyCluj NapocaRomania

Personalised recommendations