Where Cave Animals Live

  • Francis G. Howarth
  • Oana Teodora Moldovan
Part of the Ecological Studies book series (ECOLSTUD, volume 235)


Subterranean habitats form wherever erosion or deposition creates an interconnected system of voids. These systems occur in unconsolidated sediments, in karst, volcanoes, sandstone, and granites, and together they represent one of the most extensive ecosystems on Earth. Their extent depends on the degree of connectivity among the voids, allowing for animal migration and input of nutrients, organic carbon, and oxygen. Sizes of the voids range from microscopic to large caves. Communities composed of specialized cave-adapted animals have developed wherever the habitat is large and old enough to support life. The voids filled with air support terrestrial animals; those filled with water support aquatic animals. Many voids are biphasic, alternating between air and water, and suitable for both terrestrial and aquatic species. Terrestrial habitats are strongly zonal with three main zones recognized based on light, i.e., entrance, twilight, and dark zones. The dark zone is subdivided into a transition, deep, and stagnant air zones based on abiotic parameters. Aquatic habitats vary by source, flow rate, sediment load, physicochemical composition, nutrient availability, and size of the water body. Each microhabitat in both terrestrial and aquatic realms often supports a distinct community of organisms.



OTM acknowledges the financial support from the Romanian Academy and the grant of the Romanian Ministry of Research and Innovation, CNCS—UEFISCDI, project number PN-III-P4-ID-PCCF-2016-0016, within PNCDI III.


  1. Ashmole NP, Oromí P, Ashmole MJ et al (1992) Primary faunal succession in volcanic terrain: lava and cave studies on the Canary Islands. Biol J Linn Soc 46:207–234CrossRefGoogle Scholar
  2. Bakalowicz M (1974) Géochimie des eaux d’ aquifères karstiques. 1. Relation entre minéralisation et conductivité. Annales de Spéléologie 29:167–173Google Scholar
  3. Barr TC (1968) Cave ecology and the evolution of troglobites. Evol Biol 2:35–102Google Scholar
  4. Barr TC, Holsinger JR (1985) Speciation in cave faunas. Annu Rev Ecol Syst 16:313–337CrossRefGoogle Scholar
  5. Barton HA, Northup DE (2007) Geomicrobiology in cave environments: past, current and future perspectives. J Cave Karst Stud 69:163–178Google Scholar
  6. Bonacci O (1987) Karst hydrology. Springer, BerlinCrossRefGoogle Scholar
  7. Brancelj A (2015) Jama Velika Pasica – zgodovina, okolje in življenje v njej/The Velika Pasica Cave – The History, Environment and Life in it. Založba ZRC, ZRC SAZU, Nacionalni inštitut za biologijo, LjubljanaGoogle Scholar
  8. Camacho AI (1992) A classification of the aquatic and terrestrial subterranean environment and their associated fauna. In: Camacho AI (ed) The natural history of biospeleology. Monografías del Museo Nacional de Ciencias Naturales. CSIC, Madrid, pp 135–168Google Scholar
  9. Christiansen KA (1961) Convergence and parallelism in cave Entomobryinae. Evolution 15:288–301CrossRefGoogle Scholar
  10. Christiansen K (1965) Behavior and form in the evolution of cave Collembola. Evolution 19:529–537CrossRefGoogle Scholar
  11. Cornu J-F, Eme D, Malard F (2013) The distribution of groundwater habitats in Europe. Hydrogeol J 21:949–960CrossRefGoogle Scholar
  12. Culver DC (1970) Analysis of simple cave communities: niche separation and species packing. Ecology 51:949–958CrossRefGoogle Scholar
  13. Culver DC (1982) Cave life: evolution and ecology. Harvard University Press, CambridgeCrossRefGoogle Scholar
  14. Culver DC, Deharveng L, Bedos A et al (2006) The mid-latitude biodiversity ridge in terrestrial cave fauna. Ecography 29:120–128CrossRefGoogle Scholar
  15. Culver DC, Sket B (2000) Hotspots of subterranean biodiversity in caves and wells. J Cave Karst Stud 62:11–17Google Scholar
  16. Danielopol DL (1989) Groundwater fauna associated with riverine aquifers. J North Am Benthol Soc 8:18–35CrossRefGoogle Scholar
  17. Datry T, Malard F, Niederreiter R et al (2003) Video-logging for examining biogenic structures in deep heterogeneous subsurface sediments. CR Acad Sci III-Vie 326:589–597Google Scholar
  18. Delay B (1969) Sur le peuplement des circulations d’eau de la zone de percolation temporarire des massifs karstiques. CR Acad Sci III-Vie 268:1917–1920Google Scholar
  19. Derkarabetian S, Steinmann DB, Hedin M (2010) Repeated and time-correlated morphological convergence in cave-dwelling harvestmen (Opiliones, Laniatores) from Montane Western North America. PLoS One 5:e10388CrossRefGoogle Scholar
  20. Ford D, Williams P (2007) Karst hydrogeology and geomorphology. Wiley, ChichesterCrossRefGoogle Scholar
  21. Gibert J (2001) Basic attributes of groundwater ecosystems. In: Griebler C, Danielopol D, Gibert J, Nachtnebel HP, Notenboom J (eds) Groundwater ecology, a tool for management of water resources. Office for Official Publications of the European Community, Luxembourg, pp 39–52Google Scholar
  22. Gibert J, Danielopol DL, Stanford JA (1994) Groundwater ecology. Academic Press, New YorkGoogle Scholar
  23. Ginet R, Decou V (1977) Initiation à la biologie et à l’écologie souterraines. Jean-Pierre Delarge, ParisGoogle Scholar
  24. Holland RA, Wikelski M, Kümmeth F et al (2009) The secret life of oilbirds: new insights into the movement ecology of a Unique Avian Frugivore. PLoS One 4:e8264CrossRefGoogle Scholar
  25. Howarth FG (1983) Ecology of cave arthropods. Annu Rev Entomol 28:365–389CrossRefGoogle Scholar
  26. Howarth FG (1993) High-stress subterranean habitats and evolutionary change in cave-inhabiting arthropods. Am Nat 142:S65–S77CrossRefGoogle Scholar
  27. Howarth FG (1996) A comparison of volcanic and karstic cave communities. In: Oromí P (ed) Proc. 7th International Symposium on Vulcanospeleology, Canary Is., November 1994. Barcelona Forimpres S.A., pp 63–68Google Scholar
  28. Howarth FG, James SA, Preston DJ et al (2007) Identification of roots in lava tube caves using molecular techniques: implications for conservation of cave arthropod faunas. J Insect Conserv 11:251–261CrossRefGoogle Scholar
  29. Howarth FG, Stone FD (1990) Elevated carbon dioxide levels in Bayliss Cave, Australia: implications for the evolution of obligate cave species. Pac Sci 44:207–218Google Scholar
  30. Jiménez-Valverde A, Gilgado JD, Sendra A et al (2015) Exceptional invertebrate diversity in a scree slope in Eastern Spain. Insect Conserv 19:713–728CrossRefGoogle Scholar
  31. Jourdan J, Bierbach D, Riesch R et al (2014) Microhabitat use, population densities, and size distributions of sulfur cave-dwelling Poecilia mexicana. Peer J 2:e490CrossRefGoogle Scholar
  32. Juberthie C (1983) Introduction, le milieu souterrain: étendue et composition. Mem Biospeol 10:17–65Google Scholar
  33. Keppel G, Van Niel KP, Wardell-Johnson GW et al (2011) Refugia: identifying and understanding safe havens for biodiversity under climate change. Glob Ecol Biogeogr 21:393–404CrossRefGoogle Scholar
  34. Ladle RJ, Firmino JV, Malhado AC et al (2012) Unexplored diversity and conservation potential of Neotropical hot caves. Conserv Biol 26:978–982CrossRefGoogle Scholar
  35. Lavoie KH, Helf KL, Poulson TL (2007) The biology and ecology of North American cave crickets. J Cave Karst Stud 69:114–134Google Scholar
  36. Leruth R (1939) La biologie du domaine souterrain et la faune cavernicole de la Belgique. Mém Musée R Hist Nat Belgique 87:1–506Google Scholar
  37. López H, Oromí P (2010) A type of trap for sampling the mesovoid shallow substratum (MSS) fauna. Speleobiol Notes 2:7–11Google Scholar
  38. Malard F, Boutin C, Camacho A et al (2009) Diversity patterns of stygobiotic crustaceans across multiple spatial scales in Europe. Freshw Biol 54:756–776CrossRefGoogle Scholar
  39. Mangin A (1975) Contribution à l’étude hydrodynamique des aquifères karstiques. Thèse Univ. Dijon. Annales de Spéléologie 29:283–332, 29:495–601, 30:21–124Google Scholar
  40. Meleg IN, Fiers F, Robu M et al (2012) Distribution patterns of subsurface copepods and the impact of environmental parameters. Limnologica 42:156–164CrossRefGoogle Scholar
  41. Moldovan OT, Meleg IN, Persoiu A (2012) Habitat fragmentation and its effects on groundwater populations. Ecohydrology 5:445–452CrossRefGoogle Scholar
  42. Olmi M, Mita T, Guglielmino A (2014) Revision of the Embolemidae of Japan (Hymenoptera: Chrysidoidea), with description of a new genus and two new species. Zootaxa 3793:423–440CrossRefGoogle Scholar
  43. Peck SB, Finston TL (1993) Galapagos islands troglobites: the questions of tropical troglobites, parapatric distributions with eyed-sister-species, and their origin by parapatric speciation. Mem Biospeol 20:19–37Google Scholar
  44. Price J, Johnson KP, Clayton DH (2004) The evolution of echolocation in swiftlets. J Avian Biol 35:135–143CrossRefGoogle Scholar
  45. Rouch R (1968) Contribution a la connaissance des Harpacticides hypogés (Crustacés—Copépodes). Thèse. Sc. nat. Toulouse. Annales de Spéléologie 23:1Google Scholar
  46. Sârbu SM, Kane TC, Kinkle BK (1996) A chemoautotrophically based cave ecosystem. Science 272:1953–1955CrossRefGoogle Scholar
  47. Schmidt SI, Hahn HJ (2012) What is groundwater and what does this mean to fauna? – An opinion. Limnologica 42:1–6CrossRefGoogle Scholar
  48. Trontelj P, Blejec A, Fišer C (2012) Ecomorphological convergence of cave communities. Evolution 66:3852–3865CrossRefGoogle Scholar
  49. Trontelj P, Gorički S, Polak S et al (2007) Age estimates for some subterranean taxa and lineages in the Dinaric Karst. Acta Carsol 18:183–189Google Scholar
  50. Uéno S-I (1987) The derivation of terrestrial cave animals. Zool Sci 4:593–606Google Scholar
  51. Zagmajster M, Eme D, Fišer C et al (2014) Geographic variation in range size and beta diversity of groundwater crustaceans: insights from habitats with low thermal seasonality. Glob Ecol Biogeogr 23:1135–1145CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Francis G. Howarth
    • 1
  • Oana Teodora Moldovan
    • 2
  1. 1.Bernice P. Bishop MuseumHonoluluUSA
  2. 2.Emil Racovitza Institute of Speleology, Romanian AcademyCluj NapocaRomania

Personalised recommendations