Advertisement

Cave Ecology pp 497-532 | Cite as

Where Angels Fear to Tread: Developments in Cave Ecology

  • William F. HumphreysEmail author
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 235)

Abstract

The chapter anticipates the application of new or emerging methodological, technological and analytical approaches to the discipline of subterranean ecology. It notes the lack of basic biology (natural history) available for subterranean species outside the northern temperate zone and the disparity of knowledge across regions. It highlights the importance of establishing and contributing to open-access regional and global biodiversity data bases including genetic data bases. It examines idiosyncratically selected areas of subterranean ecology that are considered likely to progress partly through the application of these methodologies. It also covers areas of ecology judged to have been neglected in the context of subterranean ecosystems. Included are the general topics of methodological and technological innovations, basic biology (natural history), enumeration and movement, sampling in terrestrial and aquatic systems, diversity and the potential of metagenomics (eDNA), food sources and species interactions, the transition to subterranean life (trogloneogenesis), cave climate and climate change and biofilms and biogeochemistry. It considers the age of subterranean lineages to a proxy for the circumstances that drove the lineage underground and concludes to be alert for the possibility of opportunistic field experiments.

Notes

Acknowledgements

Brian Vine who first showed me what became Draculoides vinei (Harvey), took me caving in Cape Range and changed forever my research focus. Darren Brook of Exmouth, who has been a constant caving companion. Mark Adams and Steve Cooper of the South Australian Museum and Adelaide University and the succession of researchers through their labs. Julianne Waldock of the Western Australian Museum who has been there throughout. To each and everyone, my appreciation.

References

  1. Abrams KM, Guzik MT, Cooper SJ et al (2012) What lies beneath: molecular phylogenetics and ancestral state reconstruction of the ancient subterranean Australian Parabathynellidae (Syncarida, Crustacea). Mol Phylogenet Evol 64:130–144PubMedCrossRefGoogle Scholar
  2. Adams M, Humphreys WF (1993) Patterns of genetic diversity within selected subterranean fauna of the Cape Range peninsula, Western Australia: systematic and biogeographic implications. In: Humphreys WF (ed) The biogeography of Cape Range, Western Australia. Rec West Aust Mus Suppl 45:145–164Google Scholar
  3. Ahuja D, Parande D (2012) Review optical sensors and their applications. J Sci Res Rev 1:60–68CrossRefGoogle Scholar
  4. Allen EE, Banfield JF (2005) Community genomics in microbial ecology and evolution. Nat Rev Microbiol 3:489–498PubMedCrossRefGoogle Scholar
  5. Andrieux C (1990) Le climat des grottes. Les Dossiers Archeol 152:64–67Google Scholar
  6. Azmy SN, Sah SAM, Shafie NJ et al (2012) Counting in the dark: non-intrusive laser scanning for population counting and identifying roosting bats. Sci Rep 2:524PubMedPubMedCentralCrossRefGoogle Scholar
  7. Baehr BC, Harvey MS, Burger M et al (2012) The New Australasian goblin spider genus Prethopalpus (Araneae, Oonopidae). Bull Am Mus Nat Hist 369:1–113CrossRefGoogle Scholar
  8. Baker A, Spencer GM (2004) Characterisation of dissolved organic matter from source to sea using fluorescence and absorbance spectroscopy. Sci Total Environ 333:217–232PubMedCrossRefGoogle Scholar
  9. Barker D (1959) The distribution and systematic position of the Thermosbaenacea. Hydrobiologia 13:209–235CrossRefGoogle Scholar
  10. Barr TC Jr (1968) Cave ecology and the evolution of troglobites. In: Dobzhansky T, Hecht MK, Steere WC (eds) Evolutionary biology. Appleton-Century-Crofts, New York, pp 35–102CrossRefGoogle Scholar
  11. Barr TC Jr, Holsinger JR (1985) Speciation in cave faunas. Annu Rev Ecol Syst 16:313–337CrossRefGoogle Scholar
  12. Bauzà-Ribot MM, Juan C, Nardi F et al (2012) Mitogenomic phylogenetic analysis supports continental-scale vicariance in subterranean thalassoid crustaceans. Curr Biol 22:2069–2074CrossRefGoogle Scholar
  13. Bauzà-Ribot MM, Juan C, Nardi F et al (2013) Reply to Phillips et al. Curr Biol 23:R605–R606PubMedCrossRefGoogle Scholar
  14. Bennelongia Environmental Consultants (2015a) Strategic environmental assessment: description of regional subterranean fauna prepared for BHP Billiton Iron Ore. Final Report, September 2015Google Scholar
  15. Bennelongia Environmental Consultants (2015b) Yeelirrie subterranean fauna assessment prepared for Cameco Australia. Final Report September 2015, Jolimont WAGoogle Scholar
  16. Betke M, Hirsh DE, Makris NC et al (2008) Thermal imaging reveals significantly smaller Brazilian free-tailed bat colonies than previously estimated. J Mammal 89:18–24CrossRefGoogle Scholar
  17. Bichuette ME, Trajano E (2003) A population study of epigean and subterranean Potamolithus snails from southeast Brazil (Mollusca: Gastropoda: Hydrobiidae). Hydrobiologia 505:107–117CrossRefGoogle Scholar
  18. Bishop RE, Humphreys WF, Longley G (2014) Epigean and hypogean Palaemonetes sp. (Decapoda: Palaemonidae) from Edwards Aquifer: an examination of trophic structure and metabolism. Subterr Biol 14:79–102CrossRefGoogle Scholar
  19. Bishop RE, Humphreys WF, Cukrov N et al (2015) ‘Anchialine’ redefined as a subterranean estuary in a crevicular or cavernous geological setting. J Crustacean Biol 35:511–514CrossRefGoogle Scholar
  20. Boero F (1996) Episodic events: their relevance to ecology and evolution. Mar Ecol 17:237–250CrossRefGoogle Scholar
  21. Botello A, Illiffe T, Alvarez F et al (2012) Historical biogeography and phylogeny of Typhlatya cave shrimps (Decapoda: Atyidae) base on mitochondrial and nuclear data. J Biogeogr 40:594–607CrossRefGoogle Scholar
  22. Bou C, Rouch R (1967) Un nouveau champ de recherches sur la faune aquatique souterraine. CR Acad Sci Paris 265D:369–370Google Scholar
  23. Boulton AJ, Fenwick GD, Hancock PJ et al (2008) Biodiversity, functional roles and ecosystem services of groundwater invertebrates. Invertebr Syst 22:103–116CrossRefGoogle Scholar
  24. Bradford T, Adams M, Guzik M et al (2013) Patterns of population genetic variation in sympatric chiltoniid amphipods within a calcrete aquifer reveal a dynamic subterranean environment. Heredity 111:77–85PubMedPubMedCentralCrossRefGoogle Scholar
  25. Brankovits D, Pohlman JW, Niemann H et al (2017) Methane- and dissolved organic carbon-fueled microbial loop supports a tropical subterranean estuary ecosystem. Nat Commun 8:1835PubMedPubMedCentralCrossRefGoogle Scholar
  26. Cardoso P, Borges PAV, Triantis KA et al (2011) Adapting the IUCN Red List criteria for invertebrates. Biol Conserv 144:2432–2440CrossRefGoogle Scholar
  27. Chakrabarty P, Davis MP, Sparks JS (2012) The first record of a trans-oceanic sister-group relationship between obligate vertebrate troglobites. PLoS One 7:e44083PubMedPubMedCentralCrossRefGoogle Scholar
  28. Chen C, Wang L, Ji R et al (2004) Impacts of suspended sediment on the ecosystem in Lake Michigan: a comparison between the 1998 and 1999 plume events. J Geophys Res 109:C10S05Google Scholar
  29. Christidis L, Boles W (2008) Systematics and taxonomy of Australian birds. CSIRO, CollingwoodGoogle Scholar
  30. Christman MC, Culver DC (2001) The relationship between cave biodiversity and available habitat. J Biogeogr 28:367–380CrossRefGoogle Scholar
  31. Christner BC, Priscu JC, Achberger AM et al (2014) A microbial ecosystem beneath the West Antarctic ice sheet. Nature 512:310–315PubMedCrossRefGoogle Scholar
  32. Codd JR, Sanderson KJ, Branford AJ (2003) Roosting activity budget of the southern bent-wing bat (Miniopterus schreibersii bassanii). Aust J Zool 51:307–316CrossRefGoogle Scholar
  33. Colwell FS, D’Hondt S (2013) Nature and extent of the deep biosphere. Rev Mineral Geochem 7:547–574CrossRefGoogle Scholar
  34. Culver DC (2012) Species interactions. In: White WB, Culver DC (eds) Encyclopedia of caves, 2nd edn. Academic Press, San Diego, pp 734–748Google Scholar
  35. Culver DC, Pipan T (2013) Subterranean ecosystems. In: Levin SA (ed) Encyclopedia of biodiversity, vol 7, 2nd edn. Academic, Waltham, MA, pp 49–62CrossRefGoogle Scholar
  36. Culver DC, Pipan T (2014) Shallow subterranean habitats. Ecology, evolution and conservation. Oxford University Press, OxfordCrossRefGoogle Scholar
  37. Culver DC, Sket B (2000) Hotspots of subterranean biodiversity in caves and wells. J Cave Karst Stud 62:11–17Google Scholar
  38. Culver DC, Wilkens H (2000) Critical review of the relevant theories of the evolution of subterranean animals. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world 30: subterranean ecosystems. Elsevier, Amsterdam, pp 381–398Google Scholar
  39. Culver DC, Kane TC, Fong DW (1995) Adaptation and natural selection in caves. The evolution of Gammarus minus. Harvard University Press, CambridgeCrossRefGoogle Scholar
  40. Culver DC, Christman MC, Elliott WR et al (2003) The North American obligate cave fauna: regional patterns. Biodivers Conserv 12:441–468CrossRefGoogle Scholar
  41. Culver DC, Deharveng L, Bedos A et al (2006) The mid-latitude biodiversity ridge in terrestrial cave fauna. Ecography 29:120–128CrossRefGoogle Scholar
  42. Culver DC, Brancelj A, Pipan T (2012a) Epikarstic communities. In: White WB, Culver DC (eds) Encyclopedia of caves, 2nd edn. Academic, San Diego, pp 288–295CrossRefGoogle Scholar
  43. Culver DC, Trontelj P, Zagmajster M et al (2012b) Paving the way for standardized and comparable subterranean biodiversity studies. Subterr Biol 10:43–50CrossRefGoogle Scholar
  44. Dahms H-U, Harder T, Qian P-Y (2007) Selective attraction and reproductive performance of a harpacticoid copepod in a response to biofilms. J Exp Marin Ecol Biol 341:228–238CrossRefGoogle Scholar
  45. Danielopol DL (1984) Ecological investigations on the alluvial sediments of the Danube in the Vienna area—a phreatobiological project. Verh Int Vereinigung Theor Angew Limnol 22:1755–1761Google Scholar
  46. Danielopol DL (1989) Groundwater fauna associated with riverine aquifers. J North Am Benthol Soci 8:18–35CrossRefGoogle Scholar
  47. Danielopol DL, Rouch R (2012) Invasion, active versus passive. In: White WB, Culver DC (eds) Encyclopedia of caves, 2nd edn. Academic, San DiegoGoogle Scholar
  48. Danielopol DL, Claret C, Marmonier P et al (1997) Sampling in springs and other ecotones. Conservation and protection of the biota of karst. In: Extended abstracts & field-trip guide for the symposium held 13–16 Feb, 1997, Nashville, TennesseeGoogle Scholar
  49. Danielopol DL, Griebler C, Gunatilaka A et al (2003) Present state and future prospects for groundwater ecosystems. Environ Conserv 30:104–130CrossRefGoogle Scholar
  50. Dattagupta S, Schaperdoth I, Montanar A et al (2009) A novel symbiosis between chemoautotrophic bacteria and a freshwater cave amphipod. ISME J 3:935–943PubMedPubMedCentralCrossRefGoogle Scholar
  51. Davis J, Pavlova A, Thompson R et al (2013) Evolutionary refugia and ecological refuges: key concepts for conserving Australian arid zone freshwater biodiversity under climate change. Glob Chang Biol 19:1970–1984PubMedPubMedCentralCrossRefGoogle Scholar
  52. Day M (2011) Protection of karst landscapes in the developing world: lessons from Central America, the Caribbean, and Southeast Asia. In: van Beynen P (ed) Karst management. Springer, Berlin, pp 439–458CrossRefGoogle Scholar
  53. De Bruyn M, Stelbrink B, Page TM et al (2013) Time and space in biogeography: response to Parenti and Ebach (2013). J Biogeogr 40:2204–2208CrossRefGoogle Scholar
  54. De Freitas CR, Littlejohn RN, Clarkson TS et al (1982) Cave climate: assessment of airflow and ventilation. Int J Climatol 2:383–397CrossRefGoogle Scholar
  55. Deharveng L (1988) 9. Nouvelles données sur le gaz carbonique des cols et des cavités de Thailande et de Sulawesi. Expedition Thai-Maros 86. Rapport spéléologique et scientifique (1987), pp 97–110. Association Pyrénéenne de Spéléologie éd., 103 rue de la Providence, 31500 Toulouse (France)Google Scholar
  56. Deharveng L, Bedos A (2000) Cave fauna of South East Asia, origins, evolution and ecology. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world 30: subterranean ecosystems. Elsevier, Amsterdam, pp 603–632Google Scholar
  57. Deharveng L, Bedos A (2012) Diversity patterns in the tropics. In: White WB, Culver DC (eds) Encyclopedia of caves, 2nd edn. Academic, San DiegoGoogle Scholar
  58. Deming J, Baross J (1993) Deep-sea smokers: windows to a subsurface biosphere? Geochim Cosmochim Acta 57:3219–3230PubMedCrossRefGoogle Scholar
  59. Denniston RF, Villarini G, Gonzales AN et al (2015) Extreme rainfall activity in the Australian tropics reflects changes in the El Niño/Southern oscillation over the last two millennia. Proc Natl Acad Sci USA 112:4576–4581PubMedCrossRefGoogle Scholar
  60. Denniston R, Ummenhofer C, Wanamaker A et al (2016) Expansion and contraction of the Indo-Pacific tropical rain belt over the last three millennia. Sci Rep 6:34485PubMedPubMedCentralCrossRefGoogle Scholar
  61. Derkarabetian S, Steinmann DB, Hedin M (2010) Repeated and time-correlated morphological convergence in cave-dwelling harvestmen (Opiliones, Laniatores) from Montane western North America. PLoS One 5:e10388PubMedPubMedCentralCrossRefGoogle Scholar
  62. Do C, Waples RS, Peel D et al (2014) Ne Estimator V2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14:209–214PubMedCrossRefGoogle Scholar
  63. Dogsé P (1998) Designing and managing permanent monitoring plots as tools for implementing the convention on biological diversity. In: Dallmeier F, Comiskey JA (eds) Forest biodiversity in North, Central and South America, and the Caribbean; research and monitoring. UNESCO and The Parthenon Publishing Group, Paris, pp 29–46Google Scholar
  64. Dumont MG, Murrell JC (2005) Stable isotope probing—linking microbial identity to function. Nat Rev Microbiol 3:499–504PubMedCrossRefGoogle Scholar
  65. Eberhard S, Giachino PM (2011) Tasmanian Trechinae and Psydrinae (Coleoptera, Carabidae): a taxonomic and biogeographic synthesis, with description of new species and evaluation of the impact of Quaternary climate changes on evolution of the subterranean fauna. Subterr Biol 9:1–72CrossRefGoogle Scholar
  66. Eberhard SM, Humphreys WF (1999) Stygofauna survey – ore body 23 (Newman) and Mine Area C. A report prepared for BHP Iron Ore PtyGoogle Scholar
  67. Eberhard SM, Halse SA, Williams MR et al (2009) Exploring the relationship between sampling efficiency and short-range endemism for groundwater fauna in the Pilbara region, Western Australia. Freshw Biol 54:885–901CrossRefGoogle Scholar
  68. Engel AS (2012a) Chemoautotrophy. In: White WB, Culver DC (eds) Encyclopedia of caves, 2nd edn. Academic, San Diego, pp 125–134CrossRefGoogle Scholar
  69. Engel AS (2012b) Microbes. In: White WB, Culver DC (eds) Encyclopedia of caves, 2nd edn. Academic, San Diego, pp 490–499CrossRefGoogle Scholar
  70. EPA (2007) Sampling methods and survey considerations for subterranean fauna in Western Australia (Technical Appendix to Guidance Statement No. 54). Guidance Statement 54A (Draft). Perth, Western Australia, Environmental Protection AuthorityGoogle Scholar
  71. EPA (2013) Environmental assessment guideline No. 12 June 2013 Consideration of Subterranean Fauna in Environmental Impact Assessment in WA. Perth, Western Australia, Environmental Protection AuthorityGoogle Scholar
  72. Faille A, Casale A, Ribera I (2011) Phylogenetic relationships of west Mediterranean troglobitic Trechini ground beetles (Coleoptera: Carabidae). Zool Scr 40:282–295CrossRefGoogle Scholar
  73. Faille A, Casale A, Balke M et al (2013) A molecular phylogeny of Alpine subterranean Trechini (Coleoptera: Carabidae). BMC Evol Biol 13:248PubMedPubMedCentralCrossRefGoogle Scholar
  74. Faille A, Tänzler R, Toussaint EFA (2015) On the way to speciation: shedding light on the karstic phylogeography of the microendemic cave beetle Aphaenops cerberus in the Pyrenees. J Hered 106:692–699Google Scholar
  75. Faimon J, Ličbinská M, Zajíček P (2012) Relationship between carbon dioxide in Balcarka Cave and adjacent soils in the Moravian Karst region of the Czech Republic. Int J Speleol 41:17–28CrossRefGoogle Scholar
  76. Ferguson JA, Healey BG, Bronk KS et al (1997) Simultaneous monitoring of pH, CO2 and O2 using an optical imaging fiber. Anal Chim Acta 340:123–131CrossRefGoogle Scholar
  77. Finke DL, Denno RF (2004) Predator diversity dampens trophic cascades. Nature 429:407–410PubMedCrossRefGoogle Scholar
  78. Fišer C, Pipan T, Culver DC (2014) The vertical extent of groundwater metazoans: an ecological and evolutionary perspective. Bioscience 64:971–979CrossRefGoogle Scholar
  79. Fišer Ž, Novak L, Luštrik R et al (2016) Light triggers habitat choice of eyeless subterranean but not of eyed surface amphipods. Sci Nat 103:7CrossRefGoogle Scholar
  80. Galassi DMP, Huys R, Reid JW (2009) Diversity, ecology and evolution of groundwater copepods. Freshw Biol 54:691–678CrossRefGoogle Scholar
  81. Galassi DMP, Lombardo P, Fiasca B et al (2014) Earthquakes trigger the loss of groundwater biodiversity. Sci Rep 4:6273PubMedPubMedCentralCrossRefGoogle Scholar
  82. Gibert J, Culver DC (2009) Assessing and conserving groundwater biodiversity: an introduction. Freshw Biol 54:639–648CrossRefGoogle Scholar
  83. Gibert J, Deharveng L (2002) Subterranean ecosystems: a truncated functional biodiversity. Bioscience 52:473–481CrossRefGoogle Scholar
  84. Gnaspini P (1996) Population ecology of Goniosoma spelaeum, a cavernicolous harvestman from south-eastern Brazil (Arachnida: Opiliones: Gonyleptidae). J Zool 239:417–435CrossRefGoogle Scholar
  85. Gorički Š, Stanković D, Snoj A et al (2017) Environmental DNA in subterranean biology: range extension and taxonomic implications for Proteus. Sci Rep 7:45054PubMedPubMedCentralCrossRefGoogle Scholar
  86. Griebler C, Avramov M (2015) Groundwater ecosystem services: a review. Freshw Sci 34:355–367CrossRefGoogle Scholar
  87. Griebler C, Malard F, Lefébure T (2014) Current developments in groundwater ecology—from biodiversity to ecosystem function and services. Curr Opin Biotechnol 27:159–167PubMedCrossRefGoogle Scholar
  88. Guzik MT, Austin AD, Cooper SJB et al (2010) Is the Australian subterranean fauna uniquely diverse? Invertebr Syst 24:407–418CrossRefGoogle Scholar
  89. Guzik MT, Cooper SJB, Humphreys WF et al (2009) Fine-scale comparative phylogeography of a sympatric sister species triplet of subterranean diving beetles from a single calcrete aquifer in Western Australia. Mol Ecol 18:3683–3698CrossRefGoogle Scholar
  90. Hadley NF, Ahearn GA, Howarth FG (1981) Water and metabolic relations of cave-adapted and epigean lycosid spiders in Hawaii. J Arachnol 9:215–222Google Scholar
  91. Hahn HJ (2005) Unbaited phreatic traps: a new method of sampling stygofauna. Limnologica 35:248–261CrossRefGoogle Scholar
  92. Halse SA, Pearson GB (2014) Troglofauna in the vadose zone: comparison of scraping and trapping results and sampling adequacy. Subterr Biol 13:17–34CrossRefGoogle Scholar
  93. Halse SA, Scanlon MD, Cocking JS (2002) Do springs provide a window to the groundwater fauna of the Australian arid zone? In: Proceedings of the International Association of Hydrogeologists Conference, Darwin, Australia 12–17 May 2002Google Scholar
  94. Halse SA, Scanlon MD, Cocking JS et al (2014) Pilbara stygofauna: deep groundwater of an arid landscape contains globally significant radiation of biodiversity. Rec West Aust Mus Suppl 78:443–483CrossRefGoogle Scholar
  95. Hartland A, Fenwick GD, Bury SJ (2011) Tracing sewage-derived organic matter into a shallow groundwater food web using stable isotope and fluorescence signatures. Mar Freshw Res 62:119–129CrossRefGoogle Scholar
  96. Harvey MS, Berry O, Edward KL et al (2008) Molecular and morphological systematics of hypogean schizomids (Schizomida: Hubbardiidae) in semiarid Australia. Invertebr Syst 22:167–194CrossRefGoogle Scholar
  97. Havird JC, Weeks JR, Hau S et al (2013) Invasive fishes in the Hawaiian anchialine ecosystem: investigating potential predator avoidance by endemic organisms. Hydrobiologia 716:189–201CrossRefGoogle Scholar
  98. Hedin M (2015) High-stakes species delimitation in eyeless cave spiders (Cicurina, Dictynidae, Araneae) from central Texas. Mol Ecol 24:346–361PubMedCrossRefGoogle Scholar
  99. Herman SJ, Culver DC, Salzman J (2001) Groundwater ecosystems and the service of water purification. Stanf Environ Law J 20:479–495Google Scholar
  100. Herrick JE, Jones TH (2012) Soil ecology and ecosystems services. Oxford University Press, OxfordGoogle Scholar
  101. Hillary RM, Bravington MV, Patterson TA et al (2018) Genetic relatedness reveals total population size of white sharks in eastern Australia and New Zealand. Sci Rep 8:2661PubMedPubMedCentralCrossRefGoogle Scholar
  102. Hobbs HH III (2012) Diversity patterns in the United States. In: White WB, Culver DC (eds) Encyclopedia of caves, 2nd edn. Academic, San Diego, pp 251–264CrossRefGoogle Scholar
  103. Hoenemann M, Neiber MT, Humphreys WF et al (2013) Phylogenetic analyses and systematic revision of Remipedia (Nectiopoda) from Bayesian analysis of molecular data. J Crustac Biol 33:603–619CrossRefGoogle Scholar
  104. Hong BC, Shurin JB (2015) Latitudinal variation in the response of tidepool copepods to mean and daily range in temperature. Ecology 96:2348–2359PubMedCrossRefGoogle Scholar
  105. Howarth FG (1980) The zoogeography of specialized cave animals: a bioclimatic model. Evolution 34:394–406PubMedPubMedCentralCrossRefGoogle Scholar
  106. Howarth FG (1988) Environmental ecology of north Queensland caves: or why there are so many troglobites in Australia. In: Pearson L (ed) 17th biennial conference, Australian Speleological Federation Tropicon Conference, Lake Tinaroo, Far North Queensland 27–31 Dec. 1988. Cairns, Australian Speological Federation, pp 76–84Google Scholar
  107. Howarth FG (1993) High-stress subterranean habitats and evolutionary change in cave-inhabiting arthropods. Am Nat 142:S65–S77PubMedPubMedCentralCrossRefGoogle Scholar
  108. Howarth FG, Stone FD (1990) Elevated carbon dioxide levels in Bayliss Cave, Australia: implications for the evolution of obligate cave species. Pac Sci 44:207–218Google Scholar
  109. Humphreys WF (1989) The status of relict cave fauna of Cape Range, Western Australia, especially the Schizomida. Report to the Australian National Parks and Wildlife Service, Canberra, 104 ppGoogle Scholar
  110. Humphreys WF (1991) Experimental re-establishment of pulse-driven populations in a terrestrial troglobite community. J Anim Ecol 60:609–623CrossRefGoogle Scholar
  111. Humphreys WF (2000a) Relict faunas and their derivation. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world, Subterranean ecosystems, vol 30. Amsterdam, Elsevier, pp 417–432Google Scholar
  112. Humphreys WF (2000b) Karst wetlands biodiversity and continuity through major climatic change – an example from arid tropical Western Australia. In: Gopal B, Junk WJ, Davis JA (eds) Biodiversity in wetlands: assessment, function and conservation, vol 1. Backhuys, Leiden, pp 227–258Google Scholar
  113. Humphreys WF (2000c) First in, last out: should aquifer ecosystems be at the vanguard of remediation assessment? In: Johnston CD (ed) Contaminated site remediation: from source zones to ecosystems, vol 1. Wembley, Western Australia, Centre for Groundwater Studies, pp 275–282Google Scholar
  114. Humphreys WF (2001) Groundwater calcrete aquifers in the Australian arid zone: the context to an unfolding plethora of stygal biodiversity. Rec West Aust Mus Suppl 64:63–83CrossRefGoogle Scholar
  115. Humphreys WF (2006) Aquifers: the ultimate groundwater dependent ecosystems. Aust J Bot 54:115–132CrossRefGoogle Scholar
  116. Humphreys WF (2008) Rising from down under: developments in subterranean biodiversity in Australia from a groundwater fauna perspective. Invertebr Syst 22:85–101CrossRefGoogle Scholar
  117. Humphreys WF (2009) Hydrogeology and groundwater ecology: does each inform the other? Hydrgeol J 17:5–21CrossRefGoogle Scholar
  118. Humphreys WF (2012) Diversity patterns in Australia. In: White WB, Culver DC (eds) Encyclopedia of caves, 2nd edn. Academic, San Diego, pp 203–219CrossRefGoogle Scholar
  119. Humphreys WF (2014) Subterranean fauna of Christmas Island: habitats and salient features. Raffles Bull Zool Suppl 30:29–44Google Scholar
  120. Humphreys WF (2017) Australasian subterranean biogeography. In: Ebach MC (ed) Handbook of Australasian biogeography. CRC Press, Boca Raton, pp 269–293Google Scholar
  121. Humphreys WF, Adams M, Vine B (1989) The biology of Schizomus vinei (Chelicerata: Schizomida) in the caves of Cape Range, Western Australia. J Zool 217:177–201CrossRefGoogle Scholar
  122. Humphreys WF, Danielopol DL (2005) Danielopolina (Ostracoda, Thaumatocyprididae) on Christmas Island, Indian Ocean, a sea mount island. Crustaceana 78:1339–1352CrossRefGoogle Scholar
  123. Humphreys WF, Shear WA (1993) Troglobitic millipedes (Diplopoda: Paradoxosomatidae) from semi-arid Cape Range, Western Australia – systematics and biology. Invertebr Taxon 7:173–195CrossRefGoogle Scholar
  124. Humphreys WF, Tetu S, Elbourne L et al (2012) Geochemical and microbial diversity of Bundera Sinkhole, an anchialine system in the eastern Indian Ocean. Nat Croat 21(Suppl 1):59–63Google Scholar
  125. Hunt GW, Stanley EH (2000) An evaluation of alternative procedures using the Bou-Rouch method for sampling hyporheic invertebrates. Can J Fish Aquat Sci 57:1545–1550CrossRefGoogle Scholar
  126. Hutchins BT, Tovar RU, Schwartz BF (2013) New records of stygobionts from the Edwards Aquifer of central Texas. Speleobiology Notes 5:14–18Google Scholar
  127. Iglikowska A, Boxshall GA (2013) Danielopolina revised: Phylogenetic relationships of the extant genera of the family Thaumatocyprididae (Ostracoda: Myodocopa). Zool Anz 252:469–485CrossRefGoogle Scholar
  128. Iliffe TM, Bowen C (2001) Scientific cave diving. Mar Technol Soc J 35:36–41CrossRefGoogle Scholar
  129. Jannasch HW, Wheat CG, Plant JN et al (2004) Continuous chemical monitoring with osmotically pumped water samplers: OsmoSampler design and applications. Limnol Oceanogr Methods 2:102–113CrossRefGoogle Scholar
  130. Javidkar M, Cooper SJB, Humphreys WF (2018) Biogeographic history of subterranean isopods from groundwater calcrete islands in Western Australia. Zool Scr 47:206–220CrossRefGoogle Scholar
  131. Javidkar M, Cooper SJB, King R et al (2015) Molecular phylogenetic analyses reveal a new Southern Hemisphere oniscidean family (Crustacea, Isopoda) with a unique water transport system. Invertebr Syst 29:554–577CrossRefGoogle Scholar
  132. Juan C, Guzik MT, Jaume D et al (2010) Evolution in caves: Darwin’s ‘wrecks of ancient life’ in the molecular era. Mol Ecol 19:3865–3880PubMedCrossRefGoogle Scholar
  133. Juberthie C (1988) Paleoenvironment and speciation in the cave beetle complex Speonomus delarouzeei (Coleoptera, Bathysciinae). Int J Speleol 17:31–50CrossRefGoogle Scholar
  134. Juberthie C, Delay B, Bouillon M (1980) Extension du milieu souterrain en zone non calcaire: description d’un nouveau milieu et de son peuplement par les Colèoptéres troglobies. Mem Biospeol 7:19–52Google Scholar
  135. Juen A, Traugott M (2005) Detecting predation and scavenging by DNA gut-content analysis: a case study using a soil insect predator-prey system. Oecologia 142:344–352PubMedCrossRefGoogle Scholar
  136. Jugovic T, Praprotnik E, Buzan EV et al (2015) Estimating population size of the cave shrimp Troglocaris anophthalmus (Crustacea, Decapoda, Caridea) using mark-release-recapture data. Anim Biodiv Conserv 38:77–86Google Scholar
  137. Jurado-Rivera JA, Pons J, Alvarez F et al (2017) Phylogenetic evidence that both ancient vicariance and dispersal have contributed to the biogeographic patterns of anchialine cave shrimps. Sci Rep 7:2852PubMedPubMedCentralCrossRefGoogle Scholar
  138. Karanovic T, Eberhard SM, Perina G et al (2013) Two new subterranean ameirids (Crustacea: Copepoda: Harpacticoida) expose weaknesses in the conservation of short-range endemics threatened by mining developments in Western Australia. Invertebr Syst 27:540–566CrossRefGoogle Scholar
  139. Karanovic T, Djurakic M, Eberhard SM (2016) Cryptic species or inadequate taxonomy? Implementation of 2D geometric morphometrics based on integumental organs as landmarks for delimitation and description of copepod taxa. Syst Biol 65:304–327PubMedCrossRefGoogle Scholar
  140. Kaul L, Zlot R, Bosse M (2016) Continuous-time three-dimensional mapping for micro aerial vehicles with a passively actuated rotating laser scanner. J Field Robot 33:103–132CrossRefGoogle Scholar
  141. King RA, Bradford T, Austin AD et al (2012) Divergent molecular lineages and not-so-cryptic species: the first descriptions of stygobitic chiltoniid amphipods (Talitroidea: Chiltoniidae) from Western Australia. J Crustacean Biol 32:465–488CrossRefGoogle Scholar
  142. Knapp SM, Fong DW (1999) Estimates of population size of Stygobromus emarginatus (Amphipoda: Crangonyctidae) in a headwater stream in Organ Cave, West Virginia. J Cave Karst Stud 6:3–6Google Scholar
  143. Koonin EV (2015) Energetics and population genetics at the root of eukaryotic cellular and genomic complexity. Proc Natl Acad Sci USA 112:15777–15778PubMedCrossRefGoogle Scholar
  144. Kuehn KA, Koehn RD (1988) Mycofloral survey of an artesian community within the Edwards Aquifer of Central Texas. Mycologia 80:646–652CrossRefGoogle Scholar
  145. Larson HL, Foster R, Humphreys WF et al (2013) A new species of the blind cave gudgeon Milyeringa (Gobioidei, Eleotridae, Butinae) from Barrow Island, Western Australia, with a redescription of M. veritas Whitley. Zootaxa 3616:135–150PubMedCrossRefGoogle Scholar
  146. Lategan MJ, Torpy FR, Newby S et al (2012) Fungal diversity of shallow aquifers in southeastern Australia. Geomicrobiol J 29:352–361CrossRefGoogle Scholar
  147. Lavelle P, Spain AV (2001) Soil ecology. Kluwer, DordrechtCrossRefGoogle Scholar
  148. Legendre S, Schoener TW, Clobert J et al (2008) How is extinction risk related to population-size variability over time? A family of models for species with repeated extinction and immigration. Am Nat 172:282–298PubMedCrossRefGoogle Scholar
  149. Leys R, Watts CHS, Cooper SJB et al (2003) Evolution of subterranean diving beetles (Coleoptera: Dytiscidae: Hydroporini, Bidessini) in the arid zone of Australia. Evolution 57:2819–2834Google Scholar
  150. Lopez H, Oromí P (2010) A pitfall trap for sampling the mesovoid shallow substratum (MSS) fauna. Speleobiology Notes 2:7–11Google Scholar
  151. Luštrik R, Turjak M, Kralj-Fišer S et al (2011) Coexistence of surface and cave amphipods in an ecotone environment (spring area). Contrib Zool 80:133–141Google Scholar
  152. Mammola S, Leroy B (2017) Applying species distribution models to caves and other subterranean habitats. Ecography. https://doi.org/10.1111/ecog.03464CrossRefGoogle Scholar
  153. Martínez del Rio C, Wolf N, Carleton SA et al (2009) Isotopic ecology ten years after a call for more laboratory experiments. Biol Rev 84:91–111CrossRefGoogle Scholar
  154. Michel G, Malard F, Deharveng L et al (2009) Reserve selection for conserving groundwater biodiversity. Freshw Biol 54:861–876CrossRefGoogle Scholar
  155. Moore WS (1999) The subterranean estuary: a reaction zone of ground water and sea water. Mar Chem 65:111–125CrossRefGoogle Scholar
  156. Moracchioli N (2002) Estudo dos Spelaeogriphacea brasileiros, crustaceos Peracarida suterraneos. Thesis, University of Sao Paulo, BrazilGoogle Scholar
  157. Moritsch M, Pakes MJ, Lindberg D (2014) How might sea level change affect arthropod biodiversity in anchialine caves: a comparison of Remipedia and Atyidae taxa (Arthropoda: Altocrustacea). Org Divers Evol 14:225–235CrossRefGoogle Scholar
  158. Mylroie JE, Jensen JW, Taborosi D et al (2001) Karst features of Guam in terms of a general model of carbonate island karst. J Cave Karst Stud 63:9–22Google Scholar
  159. Niederreiter R, Danielopol DL (1991) The use of mini-video cameras for the description of groundwater habitats. Mitt Hydrogr Dienstes Osterr 65(66):85–89Google Scholar
  160. Nogoro G, Mermilliod-Blondin F, Francois-Carcaillet F et al (2006) Invertebrate bioturbation can reduce the clogging of sediment: an experimental study using infiltration sediment columns. Freshw Biol 51:1458–1473CrossRefGoogle Scholar
  161. Northup DE (2011) Managing microbial communities in caves. In: van Beynen P (ed) Karst management. Springer, Berlin, pp 225–240CrossRefGoogle Scholar
  162. Ohlemüller R, Anderson BJ, Araujo MB et al (2008) The coincidence of climatic and species rarity: high risk to small-range species from climate change. Biol Lett 23:568–572CrossRefGoogle Scholar
  163. Page TJ, von Rintelen K, Hughes JM (2007) Phylogenetic and biogeographic relationships of subterranean and surface genera of Australian Atyidae (Crustacea: Decapoda: Caridea) inferred with mitochondrial DNA. Invertebr Syst 21:137–145CrossRefGoogle Scholar
  164. Page TJ, Humphreys WF, Hughes JM (2008) Shrimps down under: evolutionary relationships of subterranean crustaceans from Western Australia (Decapoda: Atyidae: Stygiocaris). PLoS One 3:e1618PubMedPubMedCentralCrossRefGoogle Scholar
  165. Page TJ, Hughes JM, Real KM et al (2016) Allegory of the cave crustacean: systematic and biogeographic reality of Halosbaena (Peracarida: Thermosbaenacea) sought with molecular data at multiple scales. Mar Biodivers. https://doi.org/10.1007/s12526-016-0565-3CrossRefGoogle Scholar
  166. Pakes MJ, Mejia-Ortiz LM (2014) Chemosynthetic ectosymbiosis reported in the predatory anchialine cave endemic, Xibalbanus tulumensis (Yager, 1987) (Remipedia). Crustaceana 87:1657–1667CrossRefGoogle Scholar
  167. Pakes MJ, Weiss AW, Mejia-Ortiz LM (2014) Arthropods host intracellular chemosynthetic symbionts, too: cave study reveals an unusual form of symbiosis. J Crustac Biol 34:334–341CrossRefGoogle Scholar
  168. Parker LV, Clark CH (2002) Study of five discrete interval-type groundwater sampling devices. Cold Regions Research and Engineering Laboratory technical publication ERDC/CRREL TR-02-12 (51 pp Enineer Research and Development Center, US Army Corps of Engineers)Google Scholar
  169. Paula DP, Linard B, Andow DA et al (2014) Detection and decay rates of prey and prey symbionts in the gut of a predator through metagenomics. Mol Ecol Resour 15:880–892CrossRefGoogle Scholar
  170. Pfenninger M, Schwenk K (2007) Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evol Biol 7:121PubMedPubMedCentralCrossRefGoogle Scholar
  171. Phillips MJ, Page TJ, de Bruyn M et al (2013) The linking of plate tectonics and evolutionary divergence. Curr Biol 23:R603–R605PubMedCrossRefGoogle Scholar
  172. Pickford M, Eisenmann V, Senut B (1999) Timing of landscape development and calcrete genesis in northern Namaqualand, South Africa. S Afr J Sci 95:357–360Google Scholar
  173. Pimm SL, Alibhai S, Bergl R et al (2015) Emerging technologies to conserve biodiversity. Trends Ecol Evol 30:685–696PubMedCrossRefGoogle Scholar
  174. Pipan T (2005) Epikarst – a promising habitat. Copepod fauna, its diversity and ecology: a case study from Slovenia (Europe). Ljubljana, ZRC Publishing, Karst Research Institute at ZRC SAZUGoogle Scholar
  175. Pipan T, Culver DC (2012) Convergence and divergence in the subterranean realm: a reassessment. Biol J Linn Soc 107:1–14CrossRefGoogle Scholar
  176. Plath M, Hauswaldt JS, Moll K et al (2007) Local adaptation and pronounced genetic differentiation in an extremophile fish, Poecilia mexicana, inhabiting a Mexican cave with toxic hydrogen sulphide. Mol Ecol 16:967–976CrossRefGoogle Scholar
  177. Pohlman JW, Iliffe TM, Cifuentes LA (1997) A stable isotope study of organic cycling and the ecology of an anchialine cave ecosystem. Mar Ecol Prog Ser 155:17–27CrossRefGoogle Scholar
  178. Poore GCB, Humphreys WF (1998) First record of Spelaeogriphacea from Australasia: a new genus and species from an aquifer in the arid Pilbara of Western Australia. Crustaceana 71:721–742CrossRefGoogle Scholar
  179. Poulson TL (2012) Food Sources. In: White WB, Culver DC (eds) Encyclopedia of caves, 2nd edn. Academic, San Diego, pp 323–334CrossRefGoogle Scholar
  180. Prosser JI, Bohannan BJM, Curtis TP et al (2007) The role of ecological theory in microbial ecology. Nature 386:384–392Google Scholar
  181. Racovitza EG (1907) Essai sur les problèmes biospéologiques. Arch Zool Exp Gen 6:371–488Google Scholar
  182. Racovita G (2000) Ice caves in temperate regions. In: Wilkens H, Culver DC, Humphreys WF (eds) Subterranean ecosystems of the world 30. Elsevier, Amsterdam, pp 561–568Google Scholar
  183. Radajewski S, Ineson P, Parekh NR et al (2000) Stable isotope probing as a tool in microbial ecology. Nature 403:646–649PubMedCrossRefGoogle Scholar
  184. Reichman OJ, Jones MB, Schildhauer MP (2011) Challenges and opportunities of open data in ecology. Science 331:703–705PubMedCrossRefGoogle Scholar
  185. Rendoš M, Raschmanová N, Kováč L et al (2016) Organic carbon content and temperature as substantial factors affecting diversity and vertical distribution of Collembola on forested scree slopes. Eur J Soil Biol 75:180–187CrossRefGoogle Scholar
  186. Ribera I, Fresneda J, Bucur R et al (2010) Ancient origin of a Western Mediterranean radiation of subterranean beetles. BMC Evol Biol 10:29PubMedPubMedCentralCrossRefGoogle Scholar
  187. Ripple WJ, Estes JA, Schmitz OJ et al (2016) What is a Trophic Cascade? Trends Ecol Evol 31:842–849PubMedCrossRefGoogle Scholar
  188. Robertson T, Döring M, Gurainick R et al (2014) The GBIF integrated publishing toolkit: facilitating the efficient publishing of biodiversity data in the internet. PLoS One 9:e102623PubMedPubMedCentralCrossRefGoogle Scholar
  189. Robinson WH (2005) Urban insects and arachnids: a handbook of urban entomology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  190. Robinson CJ, Bohannan BJM, Young VB (2010) From structure to function: the ecology of host-associated microbial communities. Microb Mol Biol R 74:453–476CrossRefGoogle Scholar
  191. Romero A, Singh A, McKie A et al (2002) Replacement of the troglomorphic population of Rhamdia quelen (Pisces: Pimelodidae) by an epigean population of the same species in the Cumaca Cave, Trinidad, West Indies. Copeia 2002:938–942CrossRefGoogle Scholar
  192. Rouch R, Carlier A (1985) Le système karstique du Baget. XIV La communauté des Harpacticides Evolution et comparaison des structures du peuplement épigé à l’entrée et à sortie de l’aquifère. Stygologia 1:71–92Google Scholar
  193. Sbordoni V (1982) Advances in speciation of cave animals. In: Barrigozzi C (ed) Mechanisms of speciation. A.R. Liss, New York, pp 219–240Google Scholar
  194. Schiödte JC (1849) Specimen faunae-subterraneae. Bidrag til den underjordiske Fauna. Saerskilt aftrykt af det Kgl. Danske Videnskabernes Selskabs Skrifter, 5tc Raekke, naturvidenskabelig og mathematisk Afdeling, 2det Bind. Trykt hos Kgl. Hofbogtrykker Bianco Luno, KjöbenhavnGoogle Scholar
  195. Šebela S (2011) Expert control and recommendations for management of Postojnska Jama, climatic and biological monitoring. In: Prelovšek M, Zupan Hajna N (eds) Pressures and protection of the underground Karst – cases from Slovenia and Croatia, Slovenia, Karst Research Institute ZRC SAZUGoogle Scholar
  196. Seymour JR, Humphreys WF, Mitchell JG (2007) Stratification of the microbial community inhabiting an anchialine sinkhole. Aquat Microb Ecol 50:11–24CrossRefGoogle Scholar
  197. Shaw PA, de Vries JJ (1988) Duricrust, groundwater and valley development in the Kalahari of southeast Botswana. J Arid Environ 14:245–254Google Scholar
  198. Shaw JLA, Weyrich L, Cooper A (2017) Using environmental (e)DNA sequencing for aquatic biodiversity surveys: a beginners guide. Mar Freshw Res 68:20–33CrossRefGoogle Scholar
  199. Shimomura M, Fujita Y (2009) First record of the thermosbaenacean genus Halosbaena from Asia: H. daitoensis sp. nov (Peracarida: Thermosbaenacea: Halosbaenidae) from an anchialine cave of Minamidaito-jima Is., in Okinawa, southern Japan. Zootaxa 1990:55–64Google Scholar
  200. Silva MS, Ferreira RL (2016) The first two hotspots of subterranean biodiversity in South America. Subterr Biol 19:1–21CrossRefGoogle Scholar
  201. Silvertown J (2015) Have ecosystem services been oversold? Trends Ecol Evol 30:641–648PubMedCrossRefGoogle Scholar
  202. Simon KS, Benfield EF (2001) Leaf and wood breakdown in cave streams. J North Am Benth Soc 20:550–563CrossRefGoogle Scholar
  203. Simon KS, Buikema AL (1997) Effects of organic pollution on an Appalachian cave: changes in macroinvertebrate populations and food supplies. Am Midl Nat 138:387–401CrossRefGoogle Scholar
  204. Simon KS, Benfield EF, Macko SA (2003) Food web structure and the role of epilithic films in cave streams. Ecology 84:2395–2406CrossRefGoogle Scholar
  205. Simon KS, Pipan T, Culver DC (2007) A conceptual model of the flow and distribution of organic carbon in caves. J Cave Karst Stud 69:279–284Google Scholar
  206. Sket B (2008) Can we agree on an ecological classification of subterranean animals? J Nat Hist 42:1549–1563CrossRefGoogle Scholar
  207. Smith J, Osborn AM (2009) Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microb Ecol 67:6–20CrossRefGoogle Scholar
  208. Smith GB, Eberhard SM, Perina G et al (2012) New species of short range endemic troglobitic silverfish (Zygentoma: Nicoletiidae) from subterranean habitats in Western Australia’s semi-arid Pilbara region. Rec West Aust Mus 27:101–116CrossRefGoogle Scholar
  209. Smith RJ, Paterson JS, Launer E et al (2016) Stygofauna enhance prokaryotic transport in groundwater ecosystems. Sci Rep 6:32738PubMedPubMedCentralCrossRefGoogle Scholar
  210. Sneed M, Galloway DL, Cunningham WL (2003) Earthquakes—rattling the earth’s plumbing system. United States Geological Survey. http://pubs.usgs.gov/fs/fs-096-03/pdf/fs-096-03.pdf
  211. Sorensen JPR, Maurice L, Edwards FK et al (2013) Using Boreholes as windows into groundwater ecosystems. PLoS One 8:e70264PubMedPubMedCentralCrossRefGoogle Scholar
  212. Souza-Silva M, Martins RP, Ferreira RL (2011) Cave lithology determining the structure of the invertebrate communities in the Brazilian Atlantic rain forest. Biodivers Conserv (8):1713–1729CrossRefGoogle Scholar
  213. Spangler PJ, Barr CB (1995) A new genus and species of stygobiontic dytiscid beetle, Comaldessus stygius (Coleoptera: Dytiscidae: Bidessini) from Comal Springs, Texas. Insecta Mundi 9:301–308Google Scholar
  214. Stevens TO, McKinley JP (1995) Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270:450–454CrossRefGoogle Scholar
  215. Stieglitz T (2005) Submarine groundwater discharge into the near-shore zone of the Great Barrier Reef, Australia. Mar Pollut Bull 51:51–59PubMedCrossRefGoogle Scholar
  216. Stock JH (1980) Regression model evolution as exemplified by the genus Pseudoniphargus (Amphipoda). Bijdr Dierkd 50:105–141Google Scholar
  217. Stone FD (2010) Bayliss Lava Tube and the discovery of a rich cave fauna in tropical Australia. In: Proceedings 14th international symposium on vulcanospeleology, August 2010, Undara, Australia, pp 47–58Google Scholar
  218. Stone FD, Howarth FG, Hoch H et al (2012) Root communities in lava tubes. In: White WB, Culver DC (eds) Encyclopedia of caves, 2nd edn. Academic, San Diego, pp 658–664CrossRefGoogle Scholar
  219. Subterranean Ecology Pty Ltd (2011) Yeelirrie Subterranean Fauna Survey. Proposed Yeelirrie Development. Report prepared for BHP Billiton Yeelirrie Development Company Pty Ltd. Western Australia, Subterranean Ecology Pty Ltd, StirlingGoogle Scholar
  220. Suzuki MT, Taylor LT, Delong EF (2000) Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 59-nuclease assays. Appl Environ Microbiol 66:4605–4614PubMedPubMedCentralCrossRefGoogle Scholar
  221. Takai K, Horikoshi K (2000) Rapid detection and quantification of members of the archaeal community by Quantitative PCR using fluorogenic probes. Appl Environ Microbiol 66:5066–5072PubMedPubMedCentralCrossRefGoogle Scholar
  222. Taylor SJ, Niemiller ML (2016) Biogeography and conservation assessment of Bactrurus groundwater amphipods (Crangonyctidae) in the central and eastern United States. Subterr Biol 17:1–29CrossRefGoogle Scholar
  223. Thomas T, Gilbert J, Meyer F (2012) Metagenomics – a guide from sampling to data analysis. Microb Inform Exp 2:3PubMedPubMedCentralCrossRefGoogle Scholar
  224. Thomsen PF, Willerslev E (2015) Environmental DNA – an emerging tool in conservation for monitoring past and present biodiversity. Biol Conserv 183:4–18CrossRefGoogle Scholar
  225. Tierney SM, Friedrich M, Humphreys WF et al (2016) Consequences of evolutionary transitions in changing photic environments. Aust Entomol 56:23–46CrossRefGoogle Scholar
  226. Trajano E, Bichuette ME (2008) Population ecology of cave armoured catfish, Ancistrus cryptophthalmus Reis 1987, from central Brazil (Siluriformes: Loricariidae). Ecol Freshw Fish 16:105–115CrossRefGoogle Scholar
  227. Trinh DA, Trinh QH, Fernández-Cortés A et al (2018) First assessment on the air CO2 dynamic in the show caves of tropical karst, Vietnam. Int J Speleol 47:93–112CrossRefGoogle Scholar
  228. Trontelj P (2007) The age of subterranean crayfish species. A comment on Buhay Crandall (2005): subterranean phylogeography of freshwater crayfishes shows extensive gene flow and surprisingly large population sizes. Mol Ecol 16:2841–2843PubMedCrossRefGoogle Scholar
  229. Trontelj P, Douady CJ, Fišer C et al (2009) A molecular test for cryptic diversity in ground water: how large are the ranges of macro-stygobionts? Freshw Biol 54:727–744CrossRefGoogle Scholar
  230. Turner CR, Uy KL, Everhart RC (2015) Fish environmental DNA is more concentrated in aquatic sediments than surface water. Biol Conserv 183:93–102CrossRefGoogle Scholar
  231. Vanderwolf KJ, Malloch D, McAlpine DF et al (2013) A world review of fungi, yeasts, and slime molds in caves. Int J Speleol 42:77–96CrossRefGoogle Scholar
  232. Vernarski MP, Huryn AD, Benstead JP (2012) Re-examining extreme longevity of the cave crayfish Orconectes australis using new mark–recapture data: a lesson on the limitations of iterative size-at-age models. Freshw Biol 57:1471–1481CrossRefGoogle Scholar
  233. Vié C, Hilton-Taylor C, Stuart SN (eds) (2008) The 2008 review of The IUCN Red List of threatened species. IUCN, GlandGoogle Scholar
  234. Vittori M, Kostanjšek R, Žnidaršič N et al (2012) Molting and cuticle deposition in the subterranean trichoniscid Titanethes albus (Crustacea, Isopoda). ZooKeys 176:23–38CrossRefGoogle Scholar
  235. Vizcaíno JA, Deutsch EW, Wang R et al (2014) ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat Biotechnol 32:223–226PubMedPubMedCentralCrossRefGoogle Scholar
  236. Wagner HP (1994) A monographic review of the Thermosbaenacea (Crustacea: Peracarida). Zool Verh 291:1–338Google Scholar
  237. Wagner K, Bengtsson MM, Besemer K et al (2014) Functional and structural responses of hyporheic biofilms to varying sources of dissolved organic matter. Appl Environ Microbiol 80:6004–6012PubMedPubMedCentralCrossRefGoogle Scholar
  238. Watts CHS, Humphreys WF (2009) Fourteen new Dytiscidae (Coleoptera) of the genera Limbodessus Guignot, Paroster Sharp, and Exocelina Broun from underground waters in Australia. T Roy Soc South Aust 133:62–107Google Scholar
  239. Weaver J, Conrad J, Eskes S (1993) Valley calcrete: another Karoo groundwater exploration target. In: Proceedings of the groundwater ’93 conference: Africa needs groundwater. University of Witwatersrand, Johannesburg. Groundwater Division of the Geological Society of South Africa and Borehole Water Association of Southern AfricaGoogle Scholar
  240. Weese DA, Fujita Y, Santos SR (2016) Looking for needles in a haystack: molecular identification of anchialine crustacean larvae (Decapoda: Caridea) from the Shiokawa Spring, Okinawa Island, Ryukyu Islands, Japan. J Crustacean Biol 36:61–67Google Scholar
  241. Welch JLM, Rossetti BJ, Rieken CW et al (2016) Biogeography of a human oral microbiome at the micron scale. Proc Natl Acad Sci USA 113:E791–E800CrossRefGoogle Scholar
  242. Wheat CG, Jannasch HW, Plant JN et al (2000) Continuous sampling of hydrothermal fluids from the Loihi Seamount after the 1996 event. J Geophys Res 105:19353–19368CrossRefGoogle Scholar
  243. Whitehead MR, Peakall R (2012) Microdot technology for individual marking of small arthropods. Agr Forest Entomol 14:171–175CrossRefGoogle Scholar
  244. Wicks C, Humphreys WF (2011) Preface to special volume Anchialine ecosystems: reflections and prospects. Hydrobiologia 677:1–2CrossRefGoogle Scholar
  245. Wigley TML, Brown MC (1976) The physics of caves. In: Ford TD, Cullingford CHD (eds) The science of speleology. Academic, San Diego, pp 329–344Google Scholar
  246. Wilkens H, Strecker U (2017) Evolution in the dark: Darwin’s loss without selection. Springer, BerlinCrossRefGoogle Scholar
  247. Wilson GDF (2008) Gondwanan groundwater: subterranean connections of Australian phreatoicidean isopods to India and New Zealand. Invertebr Syst 22:301–310CrossRefGoogle Scholar
  248. Zagmajster M, Eme D, Fišer C et al (2014) Geographic variation in range size and beta diversity of groundwater crustaceans: insights from habitats with low thermal seasonality. Glob Ecol Biogeogr 23:1135–1145CrossRefGoogle Scholar
  249. Zakšek V, Sket B, Gottstein S et al (2009) The limits of cryptic diversity in groundwater: phylogeography of the cave shrimp Troglocaris anophthalmus (Crustacea: Decapoda: Atyidae). Mol Ecol 18:931–946PubMedPubMedCentralCrossRefGoogle Scholar
  250. Zhang Y, Li S (2014) A spider species complex revealed high cryptic diversity in South China caves. Mol Phylogenet Evol 79:353–358PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of Biological SciencesUniversity of Western AustraliaCrawleyAustralia

Personalised recommendations