Advertisement

Cave Ecology pp 435-447 | Cite as

Subterranean Biodiversity in Ferruginous Landscapes

  • Rodrigo Lopes FerreiraEmail author
  • Marcus Paulo Alves de Oliveira
  • Marconi Souza Silva
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 235)

Abstract

The iron ore formations and their caves are among the most unknown ecosystems in the world. These formations of Cambrian rocks cover at least 5% of the Earth’s surface and occur in spots distributed mainly in Brazil, Australia, India, and South Africa. In Brazil, the two largest ferruginous formations, Carajás and Iron Quadrangle, present distinct speleological, ecological, and biological traits. However, the caves share some features, such as their advanced age, occurrence relatively close to the surface, and their connection to several small-interconnected voids in the canga formation. The ecological and evolutionary importance of the ferruginous voids is expressed in the great diversity of fauna they harbor, including relict and endemic species, many of them troglobites. In addition, the underground biodiversity in these ecosystems is greater than that observed in other lithologies in Brazil. However, despite this uniqueness, these ecosystems have been threatened by anthropic activities of mineral exploration and urban expansion, requiring studies and emergency conservation actions.

Notes

Acknowledgements

We are grateful to Ana Clara Moreira Viana for producing the figure regarding the schematic profile of the ferruginous habitats. We are also thankful to the whole team of the Center of Studies on Subterranean Biology from the Federal University of Lavras for their assistance in several field works in ferrugineous caves. We are finally grateful to all institutions that supported distinct research projects regarding ferrugineous cave fauna, providing funds, scholarships, and infrastructure (CNPq—Conselho Nacional de Desenvolvimento Cientifico e Tecnológico; FAPEMIG—Fundação de Amparo à Pesquisa do Estado de Minas Gerais; CAPES—Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; CECAV—Centro Nacional de Pesquisa e Conservação de Cavernas; UFLA—Universidade Federal de Lavras and VALE company).

References

  1. Arima E, Barreto P, Brito M (2005) Pecuária na Amazônia: tendências e implicações para a conservação ambiental. Instituto do Homem e Meio Ambiente da Amazônia. Belé, Imazon, BelémGoogle Scholar
  2. Asenjo A, Zampaulo R d A, Ferreira RL (2018) Two new troglobitic species of Oxarthrius Reitter (Coleoptera, Staphylinidae, Pselaphinae) from Brazil. Zootaxa 4462(3):404CrossRefGoogle Scholar
  3. Auler AS, Piló LB (2005) Introdução às Cavernas de Minério de Ferro e Canga. O Carste 17:70–72Google Scholar
  4. Auler A, Pilo LB, Parker CW et al (2014) Hypogene cave patterns in iron ore caves: convergence of forms or processes? vol 18. Karst Waters Institute, Leesburg, pp 15–19Google Scholar
  5. Brescovit AD, Sánchez-Ruiz A (2016) Descriptions of two new genera of the spider family Caponiidae (Arachnida, Araneae) and an update of Tisentnops and Taintnops from Brazil and Chile. Zookeys 622:47–84CrossRefGoogle Scholar
  6. Costa ML (1993) Gold distribution in lateritic profiles in South America, Africa, and Australia: applications to geochemical exploration in tropical regions. J Geochem Expl 47:143–163CrossRefGoogle Scholar
  7. Culver DC, Pipan T (2014) Shallow subterranean habitats: ecology, evolution, and conservation. Oxford University Press, OxfordCrossRefGoogle Scholar
  8. Eberhard SM, Halse SA, Williams MR et al (2009) Exploring the relationship between sampling efficiency and short-range endemism for groundwater fauna in the Pilbara region, Western Australia. Freshw Biol 54:885–901CrossRefGoogle Scholar
  9. Ferreira RL (2005) A vida subterrânea nos campos ferruginosos. O Carste 3:106–115Google Scholar
  10. Ferreira LV, Venticinque E, Almeida S (2005) O desmatamento na Amazônia e a importância das áreas protegidas. Estud Avançados 19Google Scholar
  11. Ferreira RL, Oliveira MPA, Souza-Silva M (2015) Biodiversidade subterrânea em geossistemas ferruginosos. In: do Carmo FF, Kamino LHY (eds) Geossistemas Ferruginosos do Brasil. Belo Horizonte, Brasil (www.institutopristino.org.br), pp 195–231
  12. Gama EM, Matias GP (2015) Hidrogeologia e os Geossistemas Ferruginosos. In: Carmo FF, Kamino LHY (eds) Geossistemas Ferruginosos do Brasil, vol 1. Instituto Prístino. Belo Horizonte, pp 103–124Google Scholar
  13. Gibson N, Coates D, Van Leeuwen S et al (2015) Hot, dry and ancient: banded iron formations of Western Australia. In: do Carmo FF, Kamino LHY (eds) Geossistemas Ferruginosos do Brasil. Belo Horizonte, Brasil, pp 361–391Google Scholar
  14. Giupponi APL, de Miranda GS (2016) Eight new species of Charinus Simon, 1892 (Arachnida: Amblypygi: Charinidae) endemic for the Brazilian Amazon, with notes on their conservational status. PLoS One 11:e0148277CrossRefGoogle Scholar
  15. Guzik MT, Austin AD, Cooper SJB et al (2011) Is the Australian subterranean fauna uniquely diverse? Invertebr Syst 24:407–418CrossRefGoogle Scholar
  16. Halse SA, Pearson GB (2014) Troglofauna in the vadose zone: comparison of scraping and trapping results and sampling adequacy. Subterr Biol 13:17–34CrossRefGoogle Scholar
  17. Halse SA, Scanlon MD, Cocking JS, Barron HJ, Richardson JB, Eberhard SM (2014) Pilbara stygofauna: deep groundwater of an arid landscape contains globally significant radiation of biodiversity. Rec W Aust Mus Suppl 78:443–483CrossRefGoogle Scholar
  18. Harrison S, Ross SJ, Lawton JH (1992) Beta diversity on geographic gradients in Britain. J Anim Ecol 61:151–158CrossRefGoogle Scholar
  19. Jacobi CM, Carmo FF (2008) Diversidade dos campos rupestres ferruginosos no Quadrilátero Ferrífero, MG. Megadiversidade 4:24–32Google Scholar
  20. Jacobi CM, Carmo FF, Vicent RC et al (2007) Plant communities on ironstone outcrops: a diverse and endangered Brazilian ecosystem. Biodiv Conserv 16:2185–2200CrossRefGoogle Scholar
  21. Jaffé R, Prous X, Zampaulo R et al (2016) Reconciling mining with the conservation of cave biodiversity: a quantitative baseline to help establish conservation priorities. PLoS One 11:e0168348CrossRefGoogle Scholar
  22. McKenzie NL, Burbidge AA, Baynes A et al (2006) Analysis of factors implicated in the recent decline of Australia’s mammalian fauna. J Biogeogr 34:597–611CrossRefGoogle Scholar
  23. Mourão MAA (2007) Caracterização hidrogeológica do Aquífero Cauê, Quadrilátero Ferrífero, MG. Tese de Doutorado. Universidade Federal de Minas Gerais/Escola de Engenharia, Belo HorizonteGoogle Scholar
  24. Ollier CD, Galloway RW (1990) The laterite profile, ferricrete and unconformity. Catena 17:97–109CrossRefGoogle Scholar
  25. Parker CW, Wolf JA, Auler AS et al (2013) Microbial reducibility of Fe (III) phases associated with the Iron Quadrangle, Minas Gerais, Brazil. Minerals 3:395–411CrossRefGoogle Scholar
  26. Piló LB, Auler AS, Martins F (2015) Carajás national forest: iron ore plateaus and caves in Southeastern Amazon. In: Vieira BC, Salgado AAR, dos Santos LJC (eds) Landscapes and Landforms of Brazil. Springer, Dordrecht, pp 273–283Google Scholar
  27. Porto MFS (2016) The tragedy of mining and development in Brazil: public health challenges. Perspectives. Cad. Saúde Pública, Rio de Janeiro 32:e00211015Google Scholar
  28. Salgado AAR, Carmo FF (2015) ‘Quadrilátero Ferrífero’: a beautiful and neglected landscape between the gold and iron ore reservoirs. In: Vieira BC, Salgado AAR, dos Santos LJC (eds) Landscapes and landforms of Brazil. Springer, Dordrecht, pp 319–330Google Scholar
  29. Schuster DL, Farley KA, Vasconcelos PM et al (2012) Cosmogenic 3He in hematite and goethite from Brazilian “canga” duricrust demonstrates the extreme stability of these surfaces. Earth Planet Sci Lett 329–330:41–50CrossRefGoogle Scholar
  30. Simões MH, Souza-Silva M, Ferreira RL (2015) Cave physical attributes influencing the structure of terrestrial invertebrate communities in Neotropics. Subterr Biol 16:103–121CrossRefGoogle Scholar
  31. Souza MF, Ferreira RL (2018) Pandora is on Earth: new species of Eukoenenia (Palpigradi) emerging at risk of extinction. Invertebr Syst 32(3):581–604Google Scholar
  32. Souza-Silva M, Martins RP, Ferreira RL (2011) Cave lithology determining the structure of the invertebrate communities in the Brazilian Atlantic Rain Forest. Biodiv Conserv 20:1713–1729CrossRefGoogle Scholar
  33. Veado MARV, Arantes IA, Oliveira AH et al (2006) Metal pollution in the environment of Minas Gerais State, Brazil. Environ Monit Assess 117:157–172CrossRefGoogle Scholar
  34. Veríssimo A, Barreto P, Mattos M et al (1996) Impactos da atividade madeireira e perspectivas para o manejo sustentável da floresta numa velha fronteira da Amazônia: o caso Paragominas. In: Barros AC, Verissimo A (eds) A expansão da atividade madeireira na Amazônia: impactos e perspectivas para o desenvolvimento do setor florestal no Pará. Belém, Imazon, pp 47–73Google Scholar
  35. Whittaker RH (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecol Monogr 30:279–338CrossRefGoogle Scholar
  36. Yoemans J, Bowater D (2016) One year on, Brazil battles to rebuild after the Samarco mining disaster. Telegraph. http://www.telegraph.co.uk/business/2016/10/15/one-year-on-brazil-battles-to-rebuild-after-the-samarco-mining-d/. Retrieved 15 Oct 2017
  37. Zeppelini D, Oliveira JV (2016) Chaetotaxy of Neotropical Cyphoderus caetetus sp. nov. with comments on the taxonomic position of Cyphoderinae within Paronellidae (Collembola, Entomobryoidea). Zootaxa 4098:560–570CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Rodrigo Lopes Ferreira
    • 1
    • 2
    Email author
  • Marcus Paulo Alves de Oliveira
    • 2
  • Marconi Souza Silva
    • 1
  1. 1.Centro de Estudos em Biologia Subterrânea, Departamento de BiologiaUniversidade Federal de LavrasLavrasBrazil
  2. 2.Programa de Pós-graduação em Ecologia Aplicada, Departamento de BiologiaUniversidade Federal de LavrasLavrasBrazil

Personalised recommendations