Advertisement

Cave Ecology pp 415-434 | Cite as

Research in Calcretes and Other Deep Subterranean Habitats Outside Caves

  • Stuart HalseEmail author
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 235)

Abstract

The outstanding difference between traditional subterranean fauna studies and those carried out recently in Australia is the Australian emphasis on the fauna that occurs deep underground, but outside caves, across large parts of the landscape. This work has shown that the Australian arid zone, particularly in the western half of the continent, is rich in subterranean fauna, with the geologies supporting most species being calcrete and alluvium in the case of stygofauna and iron-rich rocks in the case of troglofauna. It is likely that, altogether, as many as 4500 species of stygofauna and troglofauna occur in the two most species-rich regions of Western Australia — the Pilbara and Yilgarn. Striking characteristics of the stygofauna communities in these regions include little overlap in species composition of communities of the hyporheic zone and deeper groundwater, very high levels of endemism in individual calcrete bodies, and the existence of extensive radiations of candonid ostracods in the Pilbara and copepods in calcretes of the Yilgarn. Characteristics of the troglofauna communities include extremely small ranges of many species, with linear ranges of 1–2 km apparently being common, and extensive radiation of schizomids and some other invertebrate groups in iron formations of the Pilbara.

References

  1. Baehr M, Main D (2016) New genera and species of subterranean anilline Bembidiini from the Pilbara, north-western Australia (Insecta: Coleoptera: Carabidae: Bembidiini: Anillina). Rec W Aust Mus Suppl 31:59–89CrossRefGoogle Scholar
  2. Barranco P, Harvey MS (2008) The first indigenous palpigrade from Australia: a new species of Eukoenenia (Palpigradi: Eukoeneniidae). Invertebr Syst 22:227–233CrossRefGoogle Scholar
  3. Bradford T, Adams M, Humphreys WF et al (2010) DNA barcoding of stygofauna uncovers cryptic amphipod diversity in a calcrete aquifer in Western Australia’s arid zone. Mol Ecol Resour 10:41–50CrossRefGoogle Scholar
  4. Bradford TM, Adams M, Guzik MT et al (2013) Patterns of population genetic variation in sympatric chiltoniid amphipods within a calcrete aquifer reveal a dynamic subterranean environment. Heredity 111:77–85CrossRefGoogle Scholar
  5. Brown L, Finston T, Humphreys G et al (2015) Groundwater oligochaetes show complex genetic patterns of distribution in the Pilbara region of Western Australia. Invertebr Syst 29:405–420CrossRefGoogle Scholar
  6. Byrne M, Yeates DK, Joseph L et al (2008) Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Mol Ecol 17:4398–4417CrossRefGoogle Scholar
  7. Camacho AI, Hancock P (2012) Two new species of the genus Chilibathynella Noodt, 1963 and Onychobathynella bifurcata gen. et sp. nov (Crustacea: Syncarida: Parabathynellidae) from New South Wales, Australia. J Nat Hist 46:145–173CrossRefGoogle Scholar
  8. Camacho AI, Valdecasas AG (2008) Global diversity of syncarids (Syncarida; Crustacea) in freshwater. Hydrobiologia 595:257–266CrossRefGoogle Scholar
  9. Car CA, Short M, Huynh C et al (2013) The millipedes of Barrow Island, Western Australia (Diplopoda). Rec W Aust Mus Suppl 83:209–219CrossRefGoogle Scholar
  10. Cho J-L, Park J-G, Humphreys WF (2005) A new genus and six species of the Parabathynellidae (Bathynellacea, Syncarida) from the Kimberley region, Western Australia. J Nat Hist 39:2225–2255CrossRefGoogle Scholar
  11. Cook BD, Abrams KM, Marshall J et al (2012) Species diversity and genetic differentiation of stygofauna (Syncarida: Bathynellacea) across an alluvial aquifer in north-eastern Australia. Aust J Zool 60:152–158CrossRefGoogle Scholar
  12. Cooper SJB, Hinze S, Leys R et al (2002) Islands under the desert: molecular systematics and evolutionary origins of stygobitic water beetles (Coleoptera: Dytiscidae) from central Western Australia. Invertebr Syst 16:589–598CrossRefGoogle Scholar
  13. Cooper SJB, Bradbury JH, Saint KM et al (2007) Subterranean archipelago in the Australian arid zone: mitochondrial DNA phylogeography of amphipods from central Western Australia. Mol Ecol 16:1533–1544CrossRefGoogle Scholar
  14. Creuzé des Châtelliers M, Juget J, Lafont M et al (2009) Subterranean aquatic Oligochaeta. Freshw Biol 54:678–690CrossRefGoogle Scholar
  15. Culver DC, Pipan T (2008) Superficial subterranean habitats – gateway to the subterranean realm? Cave Karst Sci 5:5–12Google Scholar
  16. Culver DC, Sket B (2000) Hotspots of subterranean biodiversity in caves and wells. J Cave Karst Stud 6:11–17Google Scholar
  17. Dogramaci S, Skrzypek G, Dodson W et al (2012) Stable isotope and hydrochemical evolution of groundwater in the semi-arid Hamersley Basin of subtropical northwest Australia. J Hydrol 475:281–293CrossRefGoogle Scholar
  18. Ducarme X, André HM, Wauthy G et al (2004) Comparison of endogeic and cave communities: microarthopod density and mite species richness. Euro J Soil Biol 40:129–138CrossRefGoogle Scholar
  19. Eberhard S (2003) Nowranie Caves and the Camooweal Karst Area, Queensland: hydrology, geomorphology and speleogenesis, with notes on aquatic biota. Helictite 38:27–38Google Scholar
  20. Eberhard SM, Halse SA, Humphreys WF (2005) Stygofauna in the Pilbara region, north-west Western Australia: a review. J R Soc West Aust 88:167–176Google Scholar
  21. Eberhard SM, Halse SA, Williams MR et al (2009) Exploring the relationship between sampling efficiency and short range endemism for groundwater fauna in the Pilbara region, Western Australia. Freshw Biol 54:885–901CrossRefGoogle Scholar
  22. Eberhard SM, Watts CHS, Callan SK et al (2016) Three new subterranean diving beetles (Coleoptera: Dytiscidae) from the Yeelirrie groundwater calcretes, Western Australia, and their distribution between several calcrete deposits including a potential mine site. Rec W Aust Mus Suppl 31:27–40CrossRefGoogle Scholar
  23. EPA (2007) Mesa A/Warramboo iron ore project. Bulletin 1251. Perth, Environmental Protection AuthorityGoogle Scholar
  24. EPA (2011) Solomon iron ore project. Report 1386. Perth, Environmental Protection AuthorityGoogle Scholar
  25. EPA (2012) Flinders Pilbara iron ore project, stage 1. Report 1456. Perth, Environmental Protection AuthorityGoogle Scholar
  26. EPA (2016) Yeelirrie uranium project. Report 1574. Perth, Environmental Protection AuthorityGoogle Scholar
  27. Evans KA, McCuaig TC, Leach D et al (2013) Banded iron ore formation to iron ore: a record of the evolution of earth environments? Geology 41:99–102CrossRefGoogle Scholar
  28. Finston TL, Bradbury JH, Johnson MS et al (2004) When morphology and molecular markers conflict: a case history of subterranean amphipods from the Pilbara, Western Australia. Anim Biodiv Conserv 27:83–94Google Scholar
  29. Finston TL, Johnson MS, Humphreys WF et al (2007) Cryptic speciation in two widespread subterranean amphipod genera reflects historical drainage patterns in an ancient landscape. Mol Ecol 16:355–365CrossRefGoogle Scholar
  30. Galassi DMP, Huys R, Reid JW (2009) Diversity, ecology and evolution of groundwater copepods. Freshw Biol 54:691–708CrossRefGoogle Scholar
  31. Greenslade P (2002) Systematic composition and distribution of Australian cave collembolan faunas with notes on exotic taxa. Helictite 38:11–15Google Scholar
  32. Grimes KG (1988) The Barkly karst region, north-west Queensland. In: Pearson L (ed) 17th Biennial conference of the Australian Speleological Federation, TROPICON, Lake Tinaroo, Cairns. Australian Speleological Federation, pp 16–24Google Scholar
  33. Guzik MT, Abrams KM, Cooper SJB et al (2008) Phylogeography of the ancient Parabathynellidae (Crustacea: Bathynellacea) from the Yilgarn region of Western Australia. Invertebr Syst 22:205–216CrossRefGoogle Scholar
  34. Guzik MT, Austin AD, Cooper SJB et al (2010) Is the Australian subterranean fauna uniquely diverse? Invertebr Syst 24:407–418CrossRefGoogle Scholar
  35. Halse S (2016) Challenges and rewards of subterranean fauna environmental impact assessment. In: Abstracts of 23rd international conference on subterranean biology, Fayetteville, Arkansas. International Society for Subterranean Biology, p 3Google Scholar
  36. Halse SA, Pearson GB (2014) Troglofauna in the vadose zone: comparison of scraping and trapping results and sampling adequacy. Subterr Biol 13:17–34CrossRefGoogle Scholar
  37. Halse SA, Scanlon MD, Cocking JS (2002) Do springs provide a window to the groundwater fauna of the Australian arid zone? In: Yinfoo D (ed) Balancing the groundwater budget: proceedings of an international groundwater conference, Darwin 2002. International Association of Hydrogeologists, pp 1–12Google Scholar
  38. Halse SA, Scanlon MD, Cocking JS et al (2014) Pilbara stygofauna: deep groundwater of an arid landscape contains globally significant radiation of biodiversity. Rec W Aust Mus Suppl 78:443–483CrossRefGoogle Scholar
  39. Harms D, Curran MK, Klesser R et al (2018) Speciation patterns in complex subterranean systems: a case study using short-tailed whipscorpions (Schizomida: Hubbardiidae). Biol J Linn Soc (in press)Google Scholar
  40. Harvey MS (2001) New cave-dwelling schizomids (Schizomida: Hubbardiidae) from Australia. Rec W Aust Mus Suppl 64:171–185CrossRefGoogle Scholar
  41. Harvey MS, Berry O, Edward KL et al (2008) Molecular and morphological systematics of hypogean schizomids (Schizomida:Hubbardiidae) in semiarid Australia. Invertebr Syst 22:167–194CrossRefGoogle Scholar
  42. Hose GC, Asmyhr MG, Cooper SJB et al (2015) Down under down under: austral groundwater life. In: Stow A, Maclean N, Holwell GI (eds) Austral Ark: the State of Wildlife in Australia and New Zealand. Cambridge University Press, Melbourne, pp 512–536Google Scholar
  43. Howarth FG (1983) Ecology of cave arthropods. Annu Rev Entomol 28:365–389CrossRefGoogle Scholar
  44. Humphreys WF (2001) Groundwater calcrete aquifers in the Australian arid zone: the context of an unfolding plethora of stygal biodiversity. Rec W Aust Mus Suppl 64:63–83CrossRefGoogle Scholar
  45. Humphreys WF (2008) Rising from down under: developments in subterranean biodiversity in Australia from a groundwater fauna perspective. Invertebr Syst 22:85–101CrossRefGoogle Scholar
  46. Humphreys WF (2016) Australasian subterranean biogeography. In: Ebach MC (ed) Handbook of Australasian biogeography. CRC Press, Boca Raton, pp 269–293Google Scholar
  47. Humphreys WF, Watts CHS, Cooper SJB et al (2008) Groundwater estuaries of salt lakes: buried pools of endemic biodiversity on the Western Plateau, Australia. Hydrobiologia 626:79–95CrossRefGoogle Scholar
  48. Javidkar M, Cooper SJB, King RA et al (2016) Molecular systematics and biodiversity of oniscidean isopods in the groundwater calcretes of central Western Australia. Mol Phylogenet Evol 104:83–98CrossRefGoogle Scholar
  49. Johnson D (2009) The geology of Australia, 2nd edn. Cambridge University Press, MelbourneCrossRefGoogle Scholar
  50. Juberthie C (1983) Le milieu souterrain: étendu et compositon. Mem Biospeol 10:17–65Google Scholar
  51. Karanovic I (2007) Candoninae (Ostracoda) from the Pilbara region in Western Australia. Crustaceana Monogr 7:1–432CrossRefGoogle Scholar
  52. Karanovic T, Cooper SJB (2011) Molecular and morphological evidence for short range endemism in the Kinnecaris solitaria complex (Copepoda: Parastenocarididae), with descriptions of seven new species. Zootaxa 3026:1–64Google Scholar
  53. Karanovic T, Cooper SJB (2012) Explosive radiation of the genus Schizopera on a small subterranean island in Western Australia (Copepoda : Harpacticoida): unravelling the cases of cryptic speciation, size differentiation and multiple invasions. Invertebr Syst 26:115–192CrossRefGoogle Scholar
  54. Karanovic T, Djurakic M, Eberhard SM (2015) Cryptic species or inadequate taxonomy? Implementation of 2D geometric morphometrics based on integumental organs as landmarks for delimitation and description of copepod taxa. Syst Biol 65:304–327CrossRefGoogle Scholar
  55. King RA, Bradford T, Austin AD et al (2012) Divergent molecular lineages and not-so-cryptic species: the first descriptions of stygobitic chiltoniid amphipods (Talitroidea: Chiltoniidae) from Western Australia. J Crustacean Biol 32:465–488CrossRefGoogle Scholar
  56. Knott B, Halse SA (1999) Pilbarophreatoicus platyarthricus n.gen., n.sp. (Isopoda: Phreatoicidae: Amphisopodidae) from the Pilbara region of Western Australia. Rec Aust Mus 51:33–42CrossRefGoogle Scholar
  57. Kováč L, Parimuchová A, Miklisová D (2016) Distributional patterns of cave Collembola (Hexapoda) in association with habitat conditions, geography and subterranean refugia in the Western Carpathians. Biol J Linn Soc 119:571–592CrossRefGoogle Scholar
  58. Mammola S, Giachino PM, Piano E et al (2016) Ecology and sampling techniques of an understudied subterranean habitat: the Milieu Souterrain Superficiel (MSS). Sci Nat 103:1–24CrossRefGoogle Scholar
  59. Mann AW, Horwitz RC (1979) Groundwater calcrete deposits in Australia: some observations from Western Australia. J Geol Soc Aust 26:293–303CrossRefGoogle Scholar
  60. Monjaraz-Ruedas R (2013) A new species of Protoschizomus (Schizomida: Protoschizomidae) from a cave in Guerrero, Mexico. J Arachnol 41:420–424CrossRefGoogle Scholar
  61. Morgan KH (1993) Development, sedimentation and economic potential of palaeoriver systems of the Yilgarn Craton of Western Australia. Sediment Geol 85:637–656CrossRefGoogle Scholar
  62. Morris RC (1983) Supergene alteration of banded iron formation. In: Trendall AF, Morris RC (eds) Iron-formation facts and problems. Elsevier, London, pp 513–534CrossRefGoogle Scholar
  63. Morris RC, Ramanaidou ER (2007) Genesis of the channel iron deposits (CID) of the Pilbara region, Western Australia. Aust J Earth Sci 54:733–756CrossRefGoogle Scholar
  64. Moulds T, Bannink P (2012) Preliminary notes on the cavernicolous arthropod fauna of Judbarra/Gregory karst area, northern Australia. Helictite 41:75–85Google Scholar
  65. Niemiller ML, Zigler KS (2013) Patterns of cave biodiversity and endemism in the Appalachians and interior plateau of Tennessee, USA. PLoS One 8:e64177CrossRefGoogle Scholar
  66. Ortuño VM, Gilgado JD, Jiménez-Valverde A et al (2013) The “Alluvial Mesovoid Shallow Substratum”, a new subterranean habitat. PLoS One 8:e76311CrossRefGoogle Scholar
  67. Pinder AM (2008) Phreodrilidae (Clitellata: Annelida) in north-western Australia with descriptions of two new species. Rec W Aust Mus 24:459–468CrossRefGoogle Scholar
  68. Pinder AM, Halse SA, Shiel RJ et al (2010) An arid zone awash with diversity: patterns in the distribution of aquatic invertebrates in the Pilbara region of Western Australia. Rec W Aust Mus Suppl 78:205–246CrossRefGoogle Scholar
  69. Reboleira ASPS, Goncalves F, Oromí P (2013) Literature survey, bibliographic analysis and a taxonomic catalogue of subterranean fauna from Portugal. Subterr Biol 10:51–60CrossRefGoogle Scholar
  70. Reeves JM, De Deckker P, Halse SA (2007) Groundwater ostracods from the arid Pilbara region of northwestern Australia: distribution and water chemistry. Hydrobiologia 585:99–118CrossRefGoogle Scholar
  71. Richards AM (1971) An ecological study of the cavernicolous fauna of the Nullarbor Plain Southern Australia. J Zool 164:1–60CrossRefGoogle Scholar
  72. Roth LM (1991) A new cave-dwelling cockroach from Western Australia (Blattaria: Nocticolidae). Rec W Aust Mus 15:17–21Google Scholar
  73. Schön I, Martens K, Halse S (2010) Genetic diversity in Australian ancient asexual Vestalenula (Ostracoda, Darwinulidae) – little variability down-under. Hydrobiologia 641:59–70CrossRefGoogle Scholar
  74. Silva MS, Martins RP, Ferreira RL (2011) Cave lithology determining the structure of the invertebrate communities in the Brazilian Atlantic rain forest. Biodivers Conserv 20:1713–1729CrossRefGoogle Scholar
  75. Sket B, Paragamian K, Tontelj P (2004) A census of the obligate subterranean fauna of the Balkan Peninsula. In: Griffith HI (ed) Balkan biodiversity. Kluwer Academic, Dordrecht, pp 309–322CrossRefGoogle Scholar
  76. Trotter AJ, McRae JM, Main DC et al (2017) Speciation in fractured rock landforms: towards understanding the diversity of subterranean cockroaches (Dictyoptera: Nocticolidae: Nocticola) in Western Australia. Zootaxa 4250:143–170CrossRefGoogle Scholar
  77. Watts CHS, Humphreys WF (2009) Fourteen new Dytiscidae (Coleoptera) of the genera Limbodessus Guignot, Paroster Sharp, and Exocelina Broun from underground waters in Australia. Trans R Soc South Aust 133:62–107CrossRefGoogle Scholar
  78. Watts CHS, McRae JM (2013) Limbodessus bennetti sp. nov.; first stygobitic Dytiscidae from the Pilbara region of Western Australia. Rec W Aust Mus 28:141–143CrossRefGoogle Scholar
  79. Webb JA, James JM (2006) Karst evolution of the Nullarbor Plain, Australia. In: Harmon RS, Wicks C (eds) Perspectives on karst geomorphology, hydrology, and geochemistry. Geological Society of America Special Paper, pp 65–78Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Bennelongia Environmental ConsultantsJolimontAustralia

Personalised recommendations