Advertisement

Cave Ecology pp 351-368 | Cite as

Researches in Sulphide-Based Ecosystems

  • Alexandra Hillebrand-Voiculescu
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 235)

Abstract

Caves are habitats characterised by partial/complete darkness, constant climate (constant air/water temperature, relative humidity) and restricted input of nutrients. Based on their speleogenesis, caves can be epigenic—when formed by the movement of water from overlying or immediately adjacent recharge surfaces to springs in nearby valleys—or hypogenic, when formed by fluids ascending through various geological and tectonic settings at different depths by different dissolution mechanisms. In contrast to the majority of caves (epigenic) that have at least one opening towards the surface, and where the underground biocenosis dependent on the input of exogenous organic matters (litter, logs, animals, etc.), the hypogenic caves present a high degree of isolation from the surface, the energy in these systems being mainly provided by the rising fluids and gases such as H2S and CH4, in the ascending water. These compounds are the energy source for chemolithotrophic bacteria forming the base of the underground trophic web. Here, we present a completely isolated hypogenic cave, the Movile Cave (Romania) and its unusually rich and diverse biocenosis and Cueva de Villa Luz (Mexico), another hypogenic cave presenting several underground habitats, due to various conditions (skylights, river, sulphurous/unsulphurous water, etc.) in which specific organisms thrive.

Notes

Acknowledgements

I thank Dr. Şerban Sârbu and Cristian Lascu for wonderful explanations and discussion on the underground ecosystems and to Vlad Voiculescu, Mihai Baciu and Dr. Virgil Drăguşin for assisting me in my research of Movile Cave. I am most grateful to my collaborators, Prof. Colin Murrell (UK), Dr. Deepak Kumaresan (UK) and Dr. Alena Nováková (CZ) for valuable scientific discussions and great time spent together during sampling trips and throughout our collaborations.

References

  1. Borgonie G, Dierick M, Houthoofd W et al (2010) Refuge from predation, the benefit of living in an extreme acidic environment? Biol Bull 219:268–276CrossRefGoogle Scholar
  2. Chen Y, Wu L, Boden R et al (2009) Life without light: microbial diversity and evidence of sulfur- and ammonium-based chemolithotrophy in Movile Cave. ISME J 3:1093–1104CrossRefGoogle Scholar
  3. Dworkin M (2012) Sergei Winogradsky: a founder of modern microbiology and the first microbial ecologist. FEMS Microbiol Rev 36:364–379CrossRefGoogle Scholar
  4. Falniowski A, Szarowska M, Sirbu I et al (2008) Heleobia dobrogica (Grossu & Negrea, 1989) (Gastropoda: Rissooidea: Cochliopidae) and the estimated time of its isolation in a continental analogue of hydrothermal vents. Molluscan Res 28:165–170Google Scholar
  5. Forti P, Galdenzi S, Sarbu SM (2002) The hypogenic caves: a powerful tool for the study of seeps and their environmental effects. Cont Shelf Res 22:2373–2386CrossRefGoogle Scholar
  6. Gamboa VJ, Ku I (1998) Descripción de la cueva “Las Sardinas”, Villa Luz, Tabasco, México. Mundos Subterraneos 9:51–54Google Scholar
  7. Gazert L, Schirmack J, Alawi M et al (2014) Methanosarcina spelaei sp. nov., a methanogenicarchaeon isolated from a floating biofilm of a subsurface sulphurous lake. Int J Syst Evol Microbiol 64:3478–3484CrossRefGoogle Scholar
  8. Gordon MS, Rosen DE (1962) A cavernicolous form of the poeciliid fish Poecilia sphenops from Tabasco, Mexico. Copeia 1962:360–368CrossRefGoogle Scholar
  9. Greenway R, Arias-Rodriguez L, Diaz P et al (2014) Patterns of macroinvertebrates and fish diversity in freshwater sulphide springs. Diversity 6:597–632CrossRefGoogle Scholar
  10. Horoi V (1994) The corrosion process in “Peştera de la Movile” Cave (Southern Dobrugja—Romania). Theor Appl Karstol 7:187–191Google Scholar
  11. Horstkotte J, Riesch R, Plath M, Jäger P (2010) Predation by three species of spiders on a cave fish in a Mexican sulphur cave. Bull Br Arachnol Soc 15(2):55–58CrossRefGoogle Scholar
  12. Hose LD, Pisarowicz JA (1999) Cueva de Villa Luz, Tabasco, Mexico: reconnaissance study of an active sulfur spring cave and ecosystem. J Cave Karst Stud 61:13–21Google Scholar
  13. Hose LD, Palmer AN, Palmer MV et al (2000) Microbiology and geochemistry in a hydrogen-sulphide-rich karst environment. Chem Geol 169:399–423CrossRefGoogle Scholar
  14. Hubka V, Nováková A, Kolařík M et al (2015) Revision of Aspergillus section Flavipedes: seven new species and proposal of section Jani sect. nov. Mycologia 107:169–208CrossRefGoogle Scholar
  15. Hubka V, Nováková A, Samson RA et al (2016) Aspergillus europaeus sp. nov., a widely distributed soil-borne species related to A. wentii (section Cremei). Plant Syst Evol 302:641–650CrossRefGoogle Scholar
  16. Hutchens E, Radajewski S, Dumont MG et al (2004) Analysis of methanotrophic bacteria in Movile Cave by stable isotope probing. Environ Microbiol 6:111–120CrossRefGoogle Scholar
  17. Jones DS, Schaperdoth I, Macalady JL (2016) Biogeography of sulfur-oxidizing Acidithiobacillus populations in extremely acidic cave biofilms. ISME J 10:2879–2891CrossRefGoogle Scholar
  18. Klimchouk A (2009) Principal characteristics of hypogene speleogenesis. In: Advances in hypogene karst studies, National Cave and Karst Research Institute Symposium 1, pp 1–11Google Scholar
  19. Kumaresan D, Wischer D, Stephenson J et al (2014) Microbiology of movile cave—a chemolithoautotrophic ecosystem. Geomicrobiol J 31:186–193CrossRefGoogle Scholar
  20. Lascu C (1989) Paleogeographical and hydrogeological hypothesis regarding the origin of a peculiar cave fauna. Miscellanea Speologica Romanica 1:13–18Google Scholar
  21. Lascu C, Popa R, Sarbu S (1995) Le karst de Movile (Dobroudja de Sud) (II). Rev Roum Géogr 39:31–40Google Scholar
  22. Levy G (2007) The first troglobite scorpion from Israel and a new chaetoid family (Arachnida: Scorpiones). Zool Middle East 40:91–96CrossRefGoogle Scholar
  23. Muschiol D, Giere O, Traunspurger W (2015) Population dynamics of a cavernicolous nematode community in a chemoautotrophic groundwater system. Limnol Oceanogr 60:127–135CrossRefGoogle Scholar
  24. Nováková A, Hubka V, Valinová Š et al (2018) Cultivable microscopic fungi from an underground chemosynthesis-based ecosystem: a preliminary study. Folia Microbiol 63:43–55CrossRefGoogle Scholar
  25. Palacios M, Arias-Rodriguez L, Plath M et al (2013) The rediscovery of a long described species reveals additional complexity in speciation patterns of poeciliid fishes in sulfide springs. PLoS One 8:e71069CrossRefGoogle Scholar
  26. Palacios-Vargas JG (2009) Los estudios bioespeleologicos de la cueva de Las Sardinas y sus perspectivas. Mundos Subterraneos 20:170–173Google Scholar
  27. Palacios-Vargas JG, Castaño-Meneses G, Estrada DA (2011) Diversity and dynamics of microarthropods from different biotopes of Las Sardinas cave (Mexico). Subterr Biol 9:113–126CrossRefGoogle Scholar
  28. Palacios-Vargas JG, Juberthie C, Reddell JR (2014–2015) Mexico. In: Encyclopaedia Biospeologica, vol IIa, 25–26. Mundos Subterráneos, México, pp 1–101Google Scholar
  29. Palmer AN (1991) Origin and morphology of limestone caves. Geol Soc Am Bull 103:1–21CrossRefGoogle Scholar
  30. Panin N, Strechie C (2006) Late quaternary sea-level and environmental changes in the Black Sea: a brief review of published data. J Archaeomythol 2:3–16Google Scholar
  31. Por FD, Dimentman C, Frumkin A et al (2013) Animal life in the chemoautotrophic ecosystem of the hypogenic groundwater cave of Ayyalon (Israel): a summing up. Nat Sci 5:7–13Google Scholar
  32. Rohwerder T, Sand W, Lascu C (2003) Preliminary evidence for a sulphur cycle in Movile Cave, Romania. Acta Biotechnol 23:101–107CrossRefGoogle Scholar
  33. Sarbu SM (2000) Movile Cave: a chemoautotrophically based groundwater ecosystem. In: Wilken H, Culver DC, Humphreys WF (eds) Subterranean ecosystems. Elsevier, Amsterdam, pp 319–343Google Scholar
  34. Sarbu SM, Kane TC (1995) A subterranean chemoautotrophically based ecosystem. J Cave Karst Stud 57:91–98Google Scholar
  35. Sarbu S, Lascu C (1997) Condensation corrosion in Movile Cave, Romania. J Cave Karst Stud 59:99–102Google Scholar
  36. Sarbu SM, Kinkle BK, Vlasceanu L et al (1994a) Microbiological characterisation of a sulfide-rich groundwater ecosystem. Geomicrobiol J 12:175–182CrossRefGoogle Scholar
  37. Sarbu SM, Vlasceanu L, Popa R et al (1994b) Microbial mats in a thermomineral sulfurous cave. In: Stal LJ, Caumeue P (eds) Microbial mats, NATO ASI series G, vol 35. Springer, BerlinGoogle Scholar
  38. Sarbu SM, Kane TC, Kinkle BK (1996) A chemoautotrophically based groundwater ecosystem. Science 272:1953–1955CrossRefGoogle Scholar
  39. Sarbu SM, Lascu C, Brad T (2018) Dobrogea: movile cave. In: Ponta GML, Onac BP (eds) Cave and karst systems of Romania. Cave and karst systems of the world. Springer, ISBN: 978-3-319-90745-1. https://doi.org/10.1007/978-3-319-90747-5_48Google Scholar
  40. Schirmack J, Mangelsdorf K, Ganzert L et al (2014) Methanobacterium movilense sp. nov., a hydrogenotrophic, secondary-alcohol-utilizing methanogen from the anoxic sediment of a subsurface lake. Int J Syst Evol Microbiol 64:522–527CrossRefGoogle Scholar
  41. Schirmack J, Alawi M, Wagner D (2015) Influence of Martian regolith analogs on the activity and growth of methanogenic archaea, with special regard to long-term desiccation. Front Microbiol 6:210CrossRefGoogle Scholar
  42. Stocchino GA, Sluys R, Kawakatsu M et al (2017) A new species of freshwater flat worm (Platyhelminthes, Tricladida, Dendrocoelidae) inhabiting a chemoautotrophic groundwater ecosystem in Romania. Eur J Taxon 342:1–21Google Scholar
  43. Summers Engel A (2007) Observations on the biodiversity of sulfidic karst habitats. J Cave Karst Stud 69:187–206Google Scholar
  44. Tobler M, Schlupp I, Heubel KU et al (2006) Life on the edge: hydrogen sulfide and the fish communities of a Mexican cave and surrounding waters. Extremophiles 10:577–585CrossRefGoogle Scholar
  45. Tobler M, Schlupp I, Plath M (2007) Predation of a cave fish (Poecilia mexicana, Poeciliidae) by a giant water-bug (Belostoma, Belostomatidae) in a Mexican sulphur cave. Ecol Entomol 32:492–495CrossRefGoogle Scholar
  46. Tobler M, DeWitt TJ, Schlupp I et al (2008) Toxic hydrogen sulfide and dark caves: phenotypic and genetic divergence across two abiotic environmental gradients in Poecilia mexicana. Evolution 62:2643–2659CrossRefGoogle Scholar
  47. Tobler M, Culumber ZW, Plath M et al (2011) An indigenous religious ritual selects for resistance to a toxicant in a livebearing fish. Biol Lett 7:229–232CrossRefGoogle Scholar
  48. Winogradsky S (1887) Ueber Schwefelbacterien. Botanische Zeitung 45:489–610Google Scholar
  49. Wischer D, Kumaresan D, Johnston A et al (2015) Bacterial metabolism of methylated amines and identification of novel methylotrophs in Movile Cave. ISME J 9:195–206CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Alexandra Hillebrand-Voiculescu
    • 1
  1. 1.Emil Racoviţă Institute of Speleology & Group for Underwater and Speleological ExplorationBucharestRomania

Personalised recommendations