Advertisement

Cave Ecology pp 331-349 | Cite as

Ice Caves

  • Ľubomír KováčEmail author
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 235)

Abstract

Ice caves represent a unique type of oligotrophic subterranean habitats characterised by low temperature and low amounts of organic material. Ice accumulations may be found in different geological conditions, most often in karst caves and lava tubes. The global distribution of ice caves is limited to the Northern Hemisphere where their occurrence follows a general trend of decreasing altitude with increasing latitude. At mid-altitudes the presence of ice is restricted to downward sloping spaces with only one entrance in which the dense, cold winter air sinks and remains trapped. In spite of harsh conditions, biological communities in ice caves consist of a variety of organisms, although in a lower biomass than in other caves. Life conditions in ice caves are extreme for most living creatures, and colonisation of these habitats requires specific adaptations. Perennial ice accumulations in caves provide a wide range of palaeoenvironmental proxies, such as stable isotopes and radionuclide composition of ice and residuals of organic materials. There are about 20 show ice caves worldwide which require sensitive conservation management. Perennial ice masses are especially vulnerable to any warming trend, and caves hosting ice bodies suffer significant loss of ice mass over the past decades.

Notes

Acknowledgements

I am very grateful to Oana T. Moldovan and Stuart Halse for the very useful suggestions and comments that improved the quality of the manuscript. I am indebted to Jaroslav Stankovič (Slovakia) for the photographs of Silická ľadnica Ice Cave and Zuzana Višňovská (Slovakia) for the photograph of a hymenopteran insect on ice. The contribution was partly supported from the research grants APVV-17-0477 and VEGA 1/0346/18.

References

  1. Audra P, Pavuza R (2004) Calcareous Alps, Austria. In: Gunn J (ed) Encyclopedia of caves and karst science. Fitzroy Dearborn, New York, pp 356–359Google Scholar
  2. Avesani D, Latella L (2016) Spatio-temporal distribution of the genus Chionea (Diptera, Limoniidae) in the Buso del Valon ice cave and other caves in the Lessini Mountains (Northern Italy). Boll Mus Civ St Nat Verona 40:11–16Google Scholar
  3. Barović G, Kicińska D, Mandić M et al (2018) Ice caves in Montenegro and Bosnia and Herzegovina. In: Perşoiu A, Lauritzen S-E (eds) Ice caves. Elsevier, Amsterdam, pp 263–283CrossRefGoogle Scholar
  4. Bella P, Zelinka J (2018) Ice caves in Slovakia. In: Perşoiu A, Lauritzen S-E (eds) Ice caves. Elsevier, Amsterdam, pp 657–689CrossRefGoogle Scholar
  5. Birstein JA, Ljovuschkin SI (1967) Order Bathynellacea (Crustacea, Malacostraca) in the USSR. I. Family Bathynellidae. Byulleten Moskovskogo Obshchestva Ispytatelei Prirody. Otdel Biologicheskii 72:51–66Google Scholar
  6. Bognolo M (2016) Revision of the genus Pretneria Müller, 1931 (Coleoptera, Cholevidae, Leptodirinae). Att Mus Civ St Nat Trieste 58:85–123Google Scholar
  7. Christian E, Spötl C (2010) Karst geology and cave fauna of Austria: a concise review. Int J Speleol 39:71–90CrossRefGoogle Scholar
  8. Clausen HB, Vrana K, Hansen SB et al (2007) Continental ice body in Dobšinská Ice Cave (Slovakia) – Part II. – Results of chemical and isotopic study. In: Zelinka J (ed) Proceedings 2nd International Workshop on Ice Caves, Demänovská Dolina, Slovak Republic, 8–12 May 2006. Slovak Caves Administration, Liptovský Mikuláš, pp 29–37Google Scholar
  9. Colucci RR, Fontana D, Forte E et al (2016) Response of ice caves to weather extremes in the southeastern Alps, Europe. Geomorphology 261:1–11CrossRefGoogle Scholar
  10. Decu V, Juberthie C (2004) Insecta: Coleoptera (Beetles). In: Gunn J (ed) Encyclopedia of caves and karst science. Fitzroy Dearborn, New York, pp 965–974Google Scholar
  11. Espinasa L, McCahill A, Kavanagh A et al (2015) A troglobitic amphipod in the Ice Caves of the Shawangunk Ridge: behavior and resistance to freezing. Subterr Biol 15:95–104Google Scholar
  12. Feurdean A, Perşoiu A, Pazdur A et al (2011) Evaluating the palaeoecological potential of pollen recovered from ice in caves: a case study from Scǎrişoara Ice Cave, Romania. Rev Palaeobot Palynol 165:1–10CrossRefGoogle Scholar
  13. Hågvar S (2010) A review of Fennoscandian arthropods living on and in snow. Eur J Entomol 107:281–298CrossRefGoogle Scholar
  14. Halliday WR (2004) Pseudokarst. In: Gunn J (ed) Encyclopedia of caves and karst science. Fitzroy Dearborn, New York, pp 1291–1301Google Scholar
  15. Hillebrand-Voiculescu A, Iţcuş C, Ardelean I et al (2014) Searching for cold-adapted microorganisms in the underground glacier of Scarisoara Ice Cave, Romania. Acta Carsol 43:319–329Google Scholar
  16. Holmlund P, Onac BP, Hansson M et al (2005) Assessing the paleoclimate potential of cave glaciers: the example of the Scărişoara ice cave (Romania). Geogra Ann Phys Geogr 87:193–201CrossRefGoogle Scholar
  17. Holsinger JR, Mort JS, Recklies AD (1983) The subterranean crustacean fauna of Castleguard Cave and its zoogeographic significance. Arctic Alpine Res 15:543–549CrossRefGoogle Scholar
  18. Iepure S (2018) Ice cave fauna. In: Perşoiu A, Lauritzen S-E (eds) Ice caves. Elsevier, Amsterdam, pp 163–171CrossRefGoogle Scholar
  19. Issartel J, Voituron Y, Odagescu V et al (2006) Freezing or supercooling: how does an aquatic subterranean crustacean survive exposures at subzero temperatures? J Exp Biol 209:3469–3475CrossRefGoogle Scholar
  20. Iţcuş C, Pascu M-D, Brad T et al (2016) Diversity of cultured bacteria from the perennial ice block of Scărişoara Ice Cave, Romania. Int J Speleol 45:89–100CrossRefGoogle Scholar
  21. Jarvis KJ, Whiting MF (2006) Phylogeny and biogeography of ice crawlers (Insecta: Grylloblattodea) based on six molecular loci: designating conservation status for Grylloblattodea species. Mol Phylogenet Evol 41:222–237CrossRefGoogle Scholar
  22. Kern Z (2018) Dating cave ice deposits. In: Perşoiu A, Lauritzen S-E (eds) Ice caves. Elsevier, Amsterdam, pp 109–122CrossRefGoogle Scholar
  23. Kern Z, Perşoiu A (2013) Cave ice – the imminent loss of untapped mid-latitude cryospheric palaeoenvironmental archives. Quat Sci Rev 67:1–7CrossRefGoogle Scholar
  24. Korzystka M, Piasecki J, Sawiński T et al (2011) Climatic system of the Dobšinská Ice Cave. In: Bella P, Gažík P (eds) Proceedings 6th congress international show caves association, Demänovská Dolina, Slovak Republic, October 18–23, 2010. Slovak Caves Administration, Liptovský Mikuláš, pp 85–97Google Scholar
  25. Kováč Ľ, Mock A, Ľuptáčik P et al (2006) Bezstavovce (Evertebrata) Dobšinskej ľadovej jaskyne (Slovenský raj). In: Bella P (ed) Výskum, využívanie a ochrana jaskýň 5. Správa slovenských jaskýň, Liptovský Mikuláš, pp 179–186Google Scholar
  26. Kováč Ľ, Elhottová D, Mock A et al (2014) The cave biota of Slovakia. Speleologia Slovaca 5. State Nature Conservancy SR, Slovak Caves Administration, Liptovský MikulášGoogle Scholar
  27. Lencioni V, Bernabò P, Latella L (2010) Cold resistance in two species of cave-dwelling beetles (Coleoptera: Cholevidae). J Therm Biol 35:354–359CrossRefGoogle Scholar
  28. Luetscher M, Jeannin PY (2004) A process-based classification of alpine ice caves. Theor Appl Karst 17:5–10Google Scholar
  29. Mammola S, Goodacre SL, Isaia M (2018) Climate change may drive cave spiders to extinction. Ecography 41:233–243CrossRefGoogle Scholar
  30. Mavlyudov BR, Kadebskaja OI (2018) Ice caves in Russia. In: Perşoiu A, Lauritzen S-E (eds) Ice caves. Elsevier, Amsterdam, pp 529–610CrossRefGoogle Scholar
  31. May B, Spötl C, Wagenbach D et al (2011) First investigations of an ice core from Eisriesenwelt cave (Austria). Cryosphere 5:81–93CrossRefGoogle Scholar
  32. Novak T, Šajna N, Antolinc E et al (2014) Cold tolerance in terrestrial invertebrates inhabiting subterranean habitats. Int J Speleol 43:265–272CrossRefGoogle Scholar
  33. Nováková A (2006) Mikroskopické houby v Dobšinské ledové jeskyni a ve vybraných jeskyních NP Slovenský kras. In: Bella P (ed) Výskum, využívanie a ochrana jaskýň 5. Správa slovenských jaskýň, Liptovský Mikuláš, pp 203–210Google Scholar
  34. Oedl F (2018) The management of ice show caves. In: Perşoiu A, Lauritzen S-E (eds) Ice caves. Elsevier, Amsterdam, pp 199–206CrossRefGoogle Scholar
  35. Ogórek R, Kozak B, Višňovská Z et al (2017) Phenotypic and genotypic diversity of airborne fungal spores in Demänovská Ice Cave (Low Tatras, Slovakia). Aerobiologia. https://doi.org/10.1007/s10453-017-9491-5CrossRefGoogle Scholar
  36. Parimuchová A, Kováč Ľ, Žurovcová M et al (2017) A glacial relict in the Carpathian caves – population variability or a species complex? Arthropod Syst Phylo 75:351–362Google Scholar
  37. Perşoiu A (2018) Paleoclimatic significance of cave ice. In: Perşoiu A, Lauritzen S-E (eds) Ice caves. Elsevier, Amsterdam, pp 189–198CrossRefGoogle Scholar
  38. Perşoiu A, Lauritzen S-E (eds) (2018) Ice caves. Elsevier, AmsterdamGoogle Scholar
  39. Perşoiu A, Onac BP (2012) Ice in caves. In: White WB, Culver DC (eds) Encyclopedia of caves, 2nd edn. Academic, Cambridge, pp 399–404CrossRefGoogle Scholar
  40. Perşoiu A, Pazdur A (2011) Ice genesis and its long-term mass balance and dynamics in Scǎrişoara Ice Cave, Romania. Cryosphere 5:45–53CrossRefGoogle Scholar
  41. Perşoiu A, Onac BP, Perşoiu I (2011a) The interplay between air temperature and ice mass balance changes in Scǎrişoara Ice Cave, Romania. Acta Carstol 40:445–456Google Scholar
  42. Perşoiu A, Onac BP, Wynn JG et al (2011b) Stable isotope behavior during cave ice formation by water freezing in Scărişoara Ice Cave, Romania. J Geophys Res 116:D02111CrossRefGoogle Scholar
  43. Perșoiu A, Onac BP, Wynn JG et al (2017) Holocene winter climate variability in Central and Eastern Europe. Sci Rep 7:1196CrossRefGoogle Scholar
  44. Pflitsch A, Piasecki J, Sawinski T et al (2007) Development and degradation of ice crystals sediment in Dobšinská Ice Cave (Slovakia). In: Zelinka J (ed) Proceedings 2nd international workshop on ice caves, Demänovská Dolina, Slovak Republic, 8–12 May 2006. Slovak Caves Administration, Liptovský Mikuláš, pp 38–49Google Scholar
  45. Poulson TL (2005) Food sources. In: Culver DC, White WB (eds) Encyclopedia of caves. Elsevier, Amsterdam, pp 255–264Google Scholar
  46. Purcarea C (2018) Microbial life in ice caves. In: Perşoiu A, Lauritzen S-E (eds) Ice caves. Elsevier, Amsterdam, pp 173–187CrossRefGoogle Scholar
  47. Racoviță G (1976) La phénomène de migration chez les Coléoptères cavernicoles. Trav Inst Spéol “E. Racovitza” 15:103–111Google Scholar
  48. Racoviță G (1980) Aspects evolutifs de l’écologie des coléoptères cavernicoles. Mém Biospéol 7:119–125Google Scholar
  49. Racoviță G (1987) Variations à longue échéance dans la dynamique d’une population troglobie. Stud Univ “Babeş-Bolyai” Biol 32:39–51Google Scholar
  50. Racoviță G (2000) Ice caves in temperate regions. In: Wilkens H, Culver DC, Humphreys WF (eds) Subterranean ecosystems. Ecosystems of the world, vol 30. Elsevier, Amsterdam, pp 561–568Google Scholar
  51. Racoviţǎ G, Onac BP (2000) Scărişoara glacier cave. Monographic study. Cluj-Napoca, Editura CarpaticaGoogle Scholar
  52. Raschmanová N, Žurovcová M, Kováč Ľ et al (2017) The cold-adapted population of Folsomia manolachei (Hexapoda, Collembola) from a glaciated karst doline of Central Europe: evidence for a cryptic species? J Zoolog Syst Evol Res 55:19–28CrossRefGoogle Scholar
  53. Romero A (2009) Cave biology – life in darkness. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  54. Schöner W, Weyss G, Mursch-Radlgruber E (2011) Linkage of cave-ice changes to weather patterns inside and outside the cave Eisriesenwelt (Tennengebirge, Austria). Cryosphere 5:603–616CrossRefGoogle Scholar
  55. Sidorov LP, Pankov NN, Holsinger JR (2012) Distribution and ecology of the subterranean amphipod Crangonyx chlebnikovi Borutzky, 1928 (Crustacea: Crangonyctidae), with lectotype designation and comments on morphology of the lateral cephalic lobe. Arthropoda Sel 21:149–160Google Scholar
  56. Silvestru E (1999) Perennial ice in caves in temperate climate and its significance. Theor Appl Karst 11–12:83–93Google Scholar
  57. Sket B (2014) Diversity patterns in the Dinaric Karst. In: White WB, Culver DC (eds) Encyclopedia of caves, 2nd edn. Academic, Amsterdam, pp 228–238CrossRefGoogle Scholar
  58. Sømme L (1999) The physiology of cold hardiness in terrestrial arthropods. Eur J Entomol 96:1–10Google Scholar
  59. Tebo BM, Davis RE, Anitori RP et al (2015) Microbial communities in dark oligotrophic volcanic ice cave ecosystems of Mt. Erebus, Antarctica. Front Microbiol 6:179Google Scholar
  60. Vandel A (1965) Biospeleology: the biology of cavernicolous animals. Pergamon Press, OxfordGoogle Scholar
  61. Vrana K, Baker J, Clausen HB et al (2007) Continental ice body in Dobšinská Ice Cave (Slovakia) – Part 1. – Project and sampling phase of isotopic and chemical study. In: Zelinka J (ed) Proceedings 2nd international workshop on ice caves, Demänovská Dolina, Slovak Republic, 8–12 May 2006. Slovak Caves Administration, Liptovský Mikuláš, pp 24–28Google Scholar
  62. Westcott RL (1968) A new subfamily of blind beetle from Idaho ice caves with notes on its bionomics and evolution (Coleoptera: Leiodidae). Los Angeles County Museum Contrib Sci 141:1–14Google Scholar
  63. White WB, Culver DC (2012) Encyclopedia of caves. Academic, AmsterdamCrossRefGoogle Scholar
  64. Willmer P, Stone G, Johnston I (2005) Environmental physiology of animals, 2nd edn. Blackwell, MaldenGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Faculty of ScienceP. J. Šafárik UniversityKošiceSlovakia

Personalised recommendations