Cave Ecology pp 309-328 | Cite as

Food Webs in Caves

  • Michael P. Venarsky
  • Brock M. Huntsman
Part of the Ecological Studies book series (ECOLSTUD, volume 235)


Energy (carbon) availability is considered the primary mechanism influencing both evolutionary and ecological processes in cave ecosystems, and both experimental and observational studies broadly support this hypothesis. However, we suggest that this conceptual model overlooks several factors that also influence cave community dynamics. In this chapter we explore these additional factors in two types of cave food webs, those supported by energy from detritus (dead animal or plant matter) and chemolithoautotrophic bacteria. We begin by examining the origin of each energy source and then explore what factors influence the input and/or productivity rates of each energy source, including the strength of surface connectivity, the productivity of surface habitats, and the compounds available for oxidation. We then explore how several factors are influencing cave community dynamics, including resource quantity and quality, size of resource surpluses, spatial distribution of resources, consumer-resource stoichiometry, top-down forces, and the relative harshness of certain cave environments. We hope this discussion both provides a broad overview of how food web dynamics influence cave community structure and highlights areas of future research.



Comments from Alex Huryn, Paul Cryan, Daniel Nelson, Michael Kendrick, Stuart Halse, and Oana Moldovan greatly improved this book chapter.


  1. Abrams PA (1995) Monotonic or unimodal diversity-productivity gradients: what does competition theory predict? Ecology 76:2019–2027CrossRefGoogle Scholar
  2. Arsuffi TL, Suberkropp K (1989) Selective feeding by shredders on leaf-colonizing stream fungi: comparison of macroinvertebrate taxa. Oecologia 79:30–37PubMedCrossRefPubMedCentralGoogle Scholar
  3. Baiser B, Buckley HL, Gotelli NJ et al (2013) Predicting food-web structure with metacommunity models. Oikos 122:492–506CrossRefGoogle Scholar
  4. Bakalowicz M (2005) Karst groundwater: a challenge for new resources. Hydrogeol J 13:148–160CrossRefGoogle Scholar
  5. Baker A, Genty D (1999) Fluorescence wavelength and intensity variations of cave waters. J Hydrol 217:19–34CrossRefGoogle Scholar
  6. Ban F, Pan G, Zhu J et al (2008) Temporal and spatial variations in the discharge and dissolved organic carbon of drip waters in Beijing Shihua Cave, China. Hydrol Process 22:3749–3758CrossRefGoogle Scholar
  7. Begon M, Townsend CR, Harper JL (2006) Ecology: from individuals to ecosystems. Blackwell, MaldenGoogle Scholar
  8. Birdwell JE, Engel AS (2010) Characterization of dissolved organic matter in cave and spring waters using UV–Vis absorbance and fluorescence spectroscopy. Org Geochem 41:270–280CrossRefGoogle Scholar
  9. Brussock PP, Willis LD, Brown AV (1988) Leaf decomposition in an Ozark cave and spring. J Freshw Ecol 4:263–269CrossRefGoogle Scholar
  10. Cebrian J, Lartigue J (2004) Patterns of herbivory and decomposition in aquatic and terrestrial ecosystems. Ecol Monogr 74:237–259CrossRefGoogle Scholar
  11. Chelius MK, Moore JC (2004) Molecular phylogenetic analysis of archaea and bacteria in Wind Cave, South Dakota. Geomicrobiol J 21:123–134CrossRefGoogle Scholar
  12. Chelius MK, Beresford G, Horton H et al (2009) Impacts of alterations of organic inputs on the bacterial community within the sediments of Wind Cave, South Dakota, USA. Int J Speleol 38:1–10CrossRefGoogle Scholar
  13. Chen B, Wise DH (1999) Bottom-up limitation of predaceous arthropods in a detritus-based terrestrial food web. Ecology 80:761–772CrossRefGoogle Scholar
  14. Christman MC, Culver DC, Madden MK et al (2005) Patterns of endemism of the eastern North American cave fauna. J Biogeogr 32:1441–1452CrossRefGoogle Scholar
  15. Cooney TJ, Simon KS (2009) Influence of dissolved organic matter and invertebrates on the function of microbial films in groundwater. Microb Ecol 58:599–610PubMedCrossRefPubMedCentralGoogle Scholar
  16. Craig C (2013) Investigating limiting factors in surface vs. subterranean systems: a threshold elemental ratio approach. University of Alabama, Master’s Thesis, Tuscaloosa, AlabamaGoogle Scholar
  17. Cross WF, Benstead JP, Rosemond AD et al (2003) Consumer-resource stoichiometry in detritus-based streams. Ecol Lett 6:721–732CrossRefGoogle Scholar
  18. Cross WF, Benstead JP, Frost PC et al (2005) Ecological stoichiometry in freshwater benthic systems: recent progress and perspectives. Freshwater Biol 50:1895–1912CrossRefGoogle Scholar
  19. Cross WF, Wallace JB, Rosemond AD et al (2006) Whole-system nutrient enrichment increases secondary production in a detritus-based ecosystem. Ecology 87:1556–1565PubMedCrossRefPubMedCentralGoogle Scholar
  20. Cross WF, Wallace JB, Rosemond AD (2007) Nutrient enrichment reduces constraints on material flows in a detritus-based food web. Ecology 88:2563–2575PubMedCrossRefPubMedCentralGoogle Scholar
  21. Culver DC, Pipan T (2009) The biology of caves and other subterranean habitats. Oxford University Press, OxfordGoogle Scholar
  22. Culver DC, Sket B (2000) Hotspots of subterranean biodiversity in caves and wells. J Cave Karst Stud 62:11–17Google Scholar
  23. Culver DC, Christman MC, Elliott WR et al (2003) The North American obligate cave fauna: regional patterns. Biodivers Conserv 12:441–468CrossRefGoogle Scholar
  24. Culver DC, Christman MC, Šereg I et al (2004) The location of terrestrial species-rich caves in a cave-rich area. Subterr Biol 2:27–32Google Scholar
  25. Culver D, Deharveng L, Bedos A et al (2006) The mid-latitude biodiversity ridge in terrestrial cave fauna. Ecography 29:120–128CrossRefGoogle Scholar
  26. Cummins KW, Klug MJ (1979) Feeding ecology of stream invertebrates. Annu Rev Ecol Syst 10:147–172CrossRefGoogle Scholar
  27. Datry T, Malard F, Gibert J (2005) Response of invertebrate assemblages to increased groundwater recharge rates in a phreatic aquifer. J North Am Benthol Soc 24:461–477CrossRefGoogle Scholar
  28. Dattagupta S, Schaperdoth I, Montanari A et al (2009) A novel symbiosis between chemoautotrophic bacteria and a freshwater cave amphipod. ISME J 3:935–943PubMedPubMedCentralCrossRefGoogle Scholar
  29. Eberhard S (2004) Ecology and hydrology of a threatened groundwater-dependent ecosystem: the Jewel Cave karst system in Western Australia. Murdoch University, Ph.D. dissertation, PerthGoogle Scholar
  30. Edler C, Dodds WK (1996) The ecology of a subterranean isopod, Caecidotea tridentata. Freshw Biol 35:249–259CrossRefGoogle Scholar
  31. Elser JJ, O'Brien WJ, Dobberfuhl DR et al (2000) The evolution of ecosystem processes: growth rate and elemental stoichiometry of a key herbivore in temperate and arctic habitats. J Evol Biol 13:845–853CrossRefGoogle Scholar
  32. Emerson JK, Roark AM (2007) Composition of guano produced by frugivorous, sanguivorous, and insectivorous bats. Acta Chiropterol 9:261–267CrossRefGoogle Scholar
  33. Engel AS (2007) Observations on the biodiversity of sulfidic karst habitats. J Cave Karst Stud 69:187–206Google Scholar
  34. Engel AS (2010) Microbial diversity of cave ecosystems. In: Barton LL, Mandl M, Loy A (eds) Geomicrobiology: molecular and environmental perspective. Springer, Dordrecht, pp 219–238CrossRefGoogle Scholar
  35. Fagan WF, Siemann E, Mitter C et al (2002) Nitrogen in insects: implications for trophic complexity and species diversification. Am Nat 160:784–802PubMedCrossRefPubMedCentralGoogle Scholar
  36. Fenolio DB, Graening GO, Collier BA et al (2006) Coprophagy in a cave-adapted salamander; the importance of bat guano examined through nutritional and stable isotope analyses. Proc R Soc Lond B Bio 273:439–443CrossRefGoogle Scholar
  37. Fenolio DB, Niemiller ML, Bonett RM et al (2014) Life history, demography, and the influence of cave-roosting bats on a population of the grotto salamander (Eurycea spelaea) from the Ozark Plateaus of Oklahoma (Caudata: Plethodontidae). Herpetol Conserv Bio 9:394–405Google Scholar
  38. Ferreira RL, Martins RP, Yanega D (2000) Ecology of bat guano arthropod communities in a Brazilian dry cave. Ecotropica 6:105–116Google Scholar
  39. Foulquier A, Malard F, Mermillod-Blondin F et al (2010) Vertical change in dissolved organic carbon and oxygen at the water table region of an aquifer recharged with stormwater: biological uptake or mixing? Biogeochemistry 99:31–47CrossRefGoogle Scholar
  40. Foulquier A, Malard F, Mermillod-Blondin F et al (2011a) Surface water linkages regulate trophic interactions in a groundwater food web. Ecosystems 14:1339–1353CrossRefGoogle Scholar
  41. Foulquier A, Mermillod-Blondin F, Malard F et al (2011b) Response of sediment biofilm to increased dissolved organic carbon supply in groundwater artificially recharged with stormwater. J Soil Sediment 11:382–393CrossRefGoogle Scholar
  42. Fretwell SD (1977) The regulation of plant communities by the food chains exploiting them. Perspect Biol Med 20:169–185CrossRefGoogle Scholar
  43. Galas J, Bednarz T, Dumnicka E et al (1996) Litter decomposition in a mountain cave water. Arch Hydrobiol 138:199–211Google Scholar
  44. Gers C (1998) Diversity of energy fluxes and interactions between arthropod communities: from soil to cave. Acta Oecol 19:205–213CrossRefGoogle Scholar
  45. Gnaspini P, Trajano E (2000) Guano communities in tropical caves. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world: subterranean ecosystems. Elsevier Science, New York, pp 251–268Google Scholar
  46. Goldscheider N (2012) A holistic approach to groundwater protection and ecosystem services in karst terrains. AQUA Mundi 3:117–124Google Scholar
  47. Graening GO, Brown AV (2003) Ecosystem dynamics and pollution effects in an Ozark cave stream. J Am Water Resour Assoc 39:1497–1507CrossRefGoogle Scholar
  48. Griebler C, Lueders T (2009) Microbial biodiversity in groundwater ecosystems. Freshw Biol 54:649–677CrossRefGoogle Scholar
  49. Hairston NG, Smith FE, Slobodkin LB (1960) Community structure, population control, and competition. Am Nat 94:421–425CrossRefGoogle Scholar
  50. Hall RO Jr, Meyer JL (1998) The trophic significance of bacteria in a detritus-based stream food web. Ecology 79:1995–2012CrossRefGoogle Scholar
  51. Hall RO Jr, Wallace JB, Eggert SL (2000) Organic matter flow in stream food webs with reduced detrital resource base. Ecology 81:3445–3463CrossRefGoogle Scholar
  52. Hall RO Jr, Likens GE, Malcom HM (2001) Trophic basis of invertebrate production in 2 streams at the Hubbard Brook Experimental Forest. J N Am Benthol Soc 20:432–447CrossRefGoogle Scholar
  53. Hall SJ, Raffaelli D (1991) Food-web patterns: lessons from a species-rich web. J Anim Ecol 60:823–841CrossRefGoogle Scholar
  54. Howarth FG, James SA, McDowell W et al (2007) Identification of roots in lava tube caves using molecular techniques: implications for conservation of cave arthropod faunas. J Insect Conserv 11:251–261CrossRefGoogle Scholar
  55. Humphreys WF (1991) Experimental re-establishment of pulse-driven populations in a terrestrial troglobite community. J Anim Ecol 60:609–623CrossRefGoogle Scholar
  56. Humphreys WF (2001) Background and glossary. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world: subterranean ecosystems. Elsevier Science, New York, pp 3–14Google Scholar
  57. Hunt M, Millar I (2001) Cave invertebrate collecting guide, vol 26. Department of Conservation Technical SeriesGoogle Scholar
  58. Huntsman BM, Venarsky MP, Benstead JP (2011a) Relating carrion breakdown rates to ambient resource level and community structure in four cave stream ecosystems. J N Am Benthol Soc 30:882–892CrossRefGoogle Scholar
  59. Huntsman BM, Venarsky MP, Benstead JP et al (2011b) Effects of organic matter availability on the life history and production of a top vertebrate predator (Plethodontidae: Gyrinophilus palleucus) in two cave streams. Freshw Biol 56:1746–1760CrossRefGoogle Scholar
  60. Hüppop K (2001) How do cave animals cope with the food scarcity in caves? In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world: subterranean ecosystems. Elsevier Science, New York, pp 159–188Google Scholar
  61. Hutchins BT (2013) The trophic ecology of phreatic karst aquifers. Texas State University, Ph.D. dissertation, San MarcosGoogle Scholar
  62. Hutchins BT, Schwartz BF, Nowlin WH (2014) Morphological and trophic specialization in a subterranean amphipod assemblage. Freshw Biol 59:2447–2461CrossRefGoogle Scholar
  63. Ings TC, Montoya JM, Bascompte J et al (2009) Review: ecological networks–beyond food webs. J Anim Ecol 78:253–269PubMedCrossRefGoogle Scholar
  64. Iskali G, Zhang YX (2015) Guano subsidy and the invertebrate community in Bracken Cave: the world’s largest colony of bats. J Cave Karst Stud 77:28–36CrossRefGoogle Scholar
  65. Jasinska EJ, Knott B, McComb AJ (1996) Root mats in ground water: a fauna-rich cave habitat. J N Am Benthol Soc 15:508–519CrossRefGoogle Scholar
  66. Johnson BR, Wallace JB, Rosemond AD et al (2006) Larval salamander growth responds to enrichment of a nutrient poor headwater stream. Hydrobiologia 573:227–232CrossRefGoogle Scholar
  67. Kinkle BK, Kane TC (2001) Chemolithoautotrophic micro-organisms and their potential role in subsurface environments. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world: subterranean ecosystems. Elsevier Science, New York, pp 309–318Google Scholar
  68. Kinner NE, Harvey RW, Blakeslee K et al (1998) Size-selective predation on groundwater bacteria by nanoflagellates in an organic-contaminated aquifer. Appl Environ Microbiol 64:618–625PubMedPubMedCentralGoogle Scholar
  69. Kinsey J, Cooney TJ, Simon KS (2007) A comparison of the leaf shredding ability and influence on microbial films of surface and cave forms of Gammarus minus Say. Hydrobiologia 589:199–205CrossRefGoogle Scholar
  70. Kostalos M, Seymour RL (1976) Role of microbial enriched detritus in the nutrition of Gammarus minus (Amphipoda). Oikos 27:512–516CrossRefGoogle Scholar
  71. Lavoie KH, Helf KL, Poulson TL (2007) The biology and ecology of North American cave crickets. J Cave Karst Stud 69:114–134Google Scholar
  72. Madigan MT, Martinko JM, Stahl DA et al (2010) Brock biology of microorganisms. Benjamin Cummings, San FranciscoGoogle Scholar
  73. Madsen EL, Sinclair JL, Ghiorse WC (1991) In situ biodegradation: microbiological patterns in a contaminated aquifer. Science 252:830–833PubMedCrossRefPubMedCentralGoogle Scholar
  74. Moore JC, Berlow EL, Coleman DC et al (2004) Detritus, trophic dynamics and biodiversity. Ecol Lett 7:584–600CrossRefGoogle Scholar
  75. Neisch J, Pohlman J, Iliffe T (2012) The use of stable and radiocarbon isotopes as a method for delineating sources of organic material in anchialine systems. Nat Croat 21(Suppl 1):83–85Google Scholar
  76. Notenboom J, Plénet S, Turquin MJ (1994) Groundwater contamination and its impact on groundwater animals and ecosystems. In: Gibert J, Danielopol DL (eds) Groundwater ecology. Academic, San Diego, pp 477–504CrossRefGoogle Scholar
  77. Oksanen L, Fretwell SD, Arruda J et al (1981) Exploitation ecosystems in gradients of primary productivity. Am Nat 118:240–261CrossRefGoogle Scholar
  78. Opsahl SP, Chanton JP (2006) Isotopic evidence for methane-based chemosynthesis in the Upper Floridan aquifer food web. Oecologia 150:89–96PubMedCrossRefPubMedCentralGoogle Scholar
  79. Pabich WJ, Valiela I, Hemond HF (2001) Relationship between DOC concentration and vadose zone thickness and depth below water table in groundwater of Cape Cod, USA. Biogeochemistry 55:247–268CrossRefGoogle Scholar
  80. Pace ML, Cole JJ (1994) Comparative and experimental approaches to top-down and bottom-up regulation of bacteria. Microb Ecol 28:181–193PubMedCrossRefPubMedCentralGoogle Scholar
  81. Pellegrini TG, Ferreira LR (2013) Structure and interactions in a cave guano – soil continuum community. Eur J Soil Biol 57:19–26CrossRefGoogle Scholar
  82. Pianka ER (1966) Latitudinal gradients in species diversity: a review of concepts. Am Nat 100:33–46CrossRefGoogle Scholar
  83. Plath M, Tobler M, Riesch R et al (2007) Survival in an extreme habitat: the roles of behaviour and energy limitation. Naturwissenschaften 94:991–996PubMedCrossRefPubMedCentralGoogle Scholar
  84. Pohlman JW (2011) The biogeochemistry of anchialine caves: progress and possibilities. Hydrobiologia 677:33–51CrossRefGoogle Scholar
  85. Pohlman JW, Iliffe TM, Cifuentes LA (1997) A stable isotope study of organic cycling and the ecology of an anchialine cave ecosystem. Mar Ecol Prog Ser 155:17–27CrossRefGoogle Scholar
  86. Polis GA, Strong DR (1996) Food web complexity and community dynamics. Am Nat 147:813–846CrossRefGoogle Scholar
  87. Porter ML, Engel AS, Kane TC et al (2009) Productivity-diversity relationships from chemolithoautotrophically based sulfidic karst systems. Int J Speleol 38:27–40CrossRefGoogle Scholar
  88. Poulson TL, Lavoie K (2001) The trophic basis of subsurface ecosystems. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world: subterranean ecosystems. Elsevier Science, New York, pp 231–250Google Scholar
  89. Power ME (1992) Top-down and bottom-up forces in food webs: do plants have primacy. Ecology 73:733–746CrossRefGoogle Scholar
  90. Power ME, Dietrich WE (2002) Food webs in river networks. Ecol Res 17:451–471CrossRefGoogle Scholar
  91. Riesch R, Plath M, Schlupp I (2010) Toxic hydrogen sulfide and dark caves: life-history adaptations in a livebearing fish (Poecilia mexicana, Poeciliidae). Ecology 91:1494–1505PubMedCrossRefPubMedCentralGoogle Scholar
  92. Roach KA, Tobler M, Winemiller KO (2011) Hydrogen sulfide, bacteria, and fish: a unique, subterranean food chain. Ecology 92:2056–2062PubMedCrossRefPubMedCentralGoogle Scholar
  93. Salgado SS, Motta PC, Aguiar LMD et al (2014) Tracking dietary habits of cave arthropods associated with deposits of hematophagous bat guano: a study from a neotropical savanna. Aust Ecol 39:560–566CrossRefGoogle Scholar
  94. Sarbu SM (2001) Movile Cave: a chemoautotrophically based groundwater ecosystem. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world: subterranean ecosystems. Elsevier Science, New York, pp 319–343Google Scholar
  95. Sarbu SM, Kane TC, Kinkle BK (1996) A chemoautotrophically based cave ecosystem. Science 272:1953–1955CrossRefGoogle Scholar
  96. Schiff SL, Aravena R, Trumbore SE et al (1997) Export of DOC from forested catchments on the Precambrian Shield of Central Ontario: clues from 13C and 14C. Biogeochemistry 36:43–65CrossRefGoogle Scholar
  97. Schneider K, Christman MC, Fagan WF (2011) The influence of resource subsidies on cave invertebrates: results from an ecosystem-level manipulation experiment. Ecology 92:765–776PubMedCrossRefPubMedCentralGoogle Scholar
  98. Shabarova T, Villiger J, Morenkov O et al (2014) Bacterial community structure and dissolved organic matter in repeatedly flooded subsurface karst water pools. FEMS Microbiol Ecol 89:111–126PubMedCrossRefPubMedCentralGoogle Scholar
  99. Shahack-Gross R, Berna F, Karkanas P et al (2004) Bat guano and preservation of archaeological remains in cave sites. J Archaeol Sci 31:1259–1272CrossRefGoogle Scholar
  100. Shurin JB, Gruner DS, Hillebrand H (2006) All wet or dried up? Real differences between aquatic and terrestrial food webs. Proc R Soc Ser B Bio 273:1–9CrossRefGoogle Scholar
  101. Simon KS (2008) Ecosystem science and karst systems, vol 13. Frontiers of Karst Research Special Publication, pp 49–53Google Scholar
  102. Simon KS, Benfield EF (2001) Leaf and wood breakdown in cave streams. J N Am Benthol Soc 20:550–563CrossRefGoogle Scholar
  103. Simon KS, Buikema AL Jr (1997) Effects of organic pollution on an Appalachian cave: changes in macroinvertebrate populations and food supplies. Am Midl Nat 138:387–401CrossRefGoogle Scholar
  104. Simon KS, Benfield EF, Macko SA (2003) Food web structure and the role of epilithic biofilms in cave streams. Ecology 84:2395–2406CrossRefGoogle Scholar
  105. Simon KS, Pipan T, Culver DC (2007) A conceptual model of the flow and distribution of organic carbon in caves. J Cave Karst Stud 69:279–284Google Scholar
  106. Simon KS, Fong D, Hinderstein L et al (2008) Focus group on ecosystem function, vol 13. Frontiers of Karst Research Special Publication, pp 96–97Google Scholar
  107. Simon KS, Pipan T, Ohno T et al (2010) Spatial and temporal patterns in abundance and character of dissolved organic matter in two karst aquifers. Fund Appl Limnol/Arch Hydrobiol 177:81–92CrossRefGoogle Scholar
  108. Sintes E, Martinez-Taberner A, Moya G et al (2004) Dissecting the microbial food web: structure and function in the absence of autotrophs. Aquat Microb Ecol 37:283–293CrossRefGoogle Scholar
  109. Sinton LW (1984) The macroinvertebrates in a sewage-polluted aquifer. Hydrobiologia 119:161–169CrossRefGoogle Scholar
  110. Sket B (1999) The nature of biodiversity in hypogean waters and how it is endangered. Biodivers Conserv 8:1319–1338CrossRefGoogle Scholar
  111. Sket B (2005) Dinaric karst, diversity. In: Culver DC, White WB (eds) Encyclopedia of caves. Elsevier, New York, pp 158–165Google Scholar
  112. Smith GA, Nickels JS, Kerger BD et al (1986) Quantitative characterization of microbial biomass and community structure in subsurface material: a prokaryotic consortium responsive to organic contamination. Can J Microbiol 32:104–111CrossRefGoogle Scholar
  113. Smock LA, Roeding CE (1986) The trophic basis of production of the macroinvertebrate community of a southeastern USA Blackwater stream. Holarct Ecol 9:165–174Google Scholar
  114. Souza-Silva M, Martins RP, Ferreira RL (2011) Trophic dynamics in a neotropical limestone cave. Subterr Biol 9:127–138CrossRefGoogle Scholar
  115. Souza-Silva M, Bernardi LFDO, Martins RP et al (2012) Transport and consumption of organic detritus in a neotropical limestone cave. Acta Carsol 41:139–150Google Scholar
  116. Souza-Silva M, Junior AS, Ferreira RL (2013) Food resource availability in a quartzite cave in the Brazilian montane Atlantic forest. J Cave Karst Stud 75:177–188CrossRefGoogle Scholar
  117. Stagliano DM, Whiles MR (2002) Macroinvertebrate production and trophic structure in a tallgrass prairie headwater stream. J N Am Benthol Soc 21:97–113CrossRefGoogle Scholar
  118. Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, PrincetonGoogle Scholar
  119. Tank JL, Rosi-Marshall EJ, Griffiths NA et al (2010) A review of allochthonous organic matter dynamics and metabolism in streams. J N Am Benthol Soc 29:118–146CrossRefGoogle Scholar
  120. Tatár E, Mihucz VG, Zámbó L et al (2004) Seasonal changes of fulvic acid, Ca and Mg concentrations of water samples collected above and in the Béke Cave of the Aggtelek karst system (Hungary). Appl Geochem 19:1727–1733CrossRefGoogle Scholar
  121. Tissier G, Perrette Y, Dzikowski M et al (2013) Seasonal changes of organic matter quality and quantity at the outlet of a forested karst system (La Roche Saint Alban, French Alps). J Hydrol 482:139–148CrossRefGoogle Scholar
  122. Tobler M (2008) Divergence in trophic ecology characterizes colonization of extreme habitats. Biol J Linn Soc 95:517–528CrossRefGoogle Scholar
  123. Tobler M, Schlupp I, Heubel KU et al (2006) Life on the edge: hydrogen sulfide and the fish communities of a Mexican cave and surrounding waters. Extremophiles 10:577–585PubMedCrossRefPubMedCentralGoogle Scholar
  124. Tobler M, Roach K, Winemiller KO et al (2013) Population structure, habitat use, and diet of giant waterbugs in a sulfidic cave. Southwest Nat 58:420–426CrossRefGoogle Scholar
  125. Torres-Ruiz M, Wehr JD, Perrone AA (2007) Trophic relations in a stream food web: importance of fatty acids for macroinvertebrate consumers. J N Am Benthol Soc 26:509–522CrossRefGoogle Scholar
  126. Tuttle MD, Stevenson DE (1977) Variation in the cave environment and its biological implications. In: Zuber R, Chester J, Gilbert S, Rhodes D (eds) National cave management symposium proceedings. Adobe Press, Albuquerque, pp 108–121Google Scholar
  127. van Beynen P, Ford D, Schwarcz H (2000) Seasonal variability in organic substances in surface and cave waters at Marengo Cave, Indiana. Hydrol Process 14:1177–1197CrossRefGoogle Scholar
  128. van Beynen PE, Schwarcz HP, Ford DC et al (2002) Organic substances in cave drip waters: studies from Marengo Cave, Indiana. Can J Earth Sci 39:279–284CrossRefGoogle Scholar
  129. Venarsky MP, Benstead JP, Huryn AD (2012a) Effects of organic matter and season on leaf litter colonisation and breakdown in cave streams. Freshw Biol 57:773–786CrossRefGoogle Scholar
  130. Venarsky MP, Huryn AD, Benstead JP (2012b) Re-examining extreme longevity of the cave crayfish Orconectes australis using new mark-recapture data: a lesson on the limitations of iterative size-at-age models. Freshw Biol 57:1471–1481CrossRefGoogle Scholar
  131. Venarsky MP, Huntsman BM, Huryn AD et al (2014) Quantitative food web analysis supports the energy-limitation hypothesis in cave stream ecosystems. Oecologia 176:859–869PubMedCrossRefGoogle Scholar
  132. Venarsky MP, Benstead JP, Huryn AD et al (2018) Experimental detritus manipulations unite surface and cave stream ecosystems along a common energy gradient. Ecosystems 21:629–642CrossRefGoogle Scholar
  133. Wallace JB, Eggert SL, Meyer JL et al (1999) Effects of resource limitation on a detrital-based ecosystem. Ecol Monogr 69:409–442CrossRefGoogle Scholar
  134. Webster JR, Benfield EF (1986) Vascular plant breakdown in freshwater ecosystems. Annu Rev Ecol Syst 17:567–594CrossRefGoogle Scholar
  135. Williams PW (2008) The role of the epikarst in karst and cave hydrogeology: a review. Int J Speleol 37:1–10CrossRefGoogle Scholar
  136. Wood PJ, Gunn J, Perkins J (2002) The impact of pollution on aquatic invertebrates within a subterranean ecosystem – out of sight out of mind. Arch Hydrobiol 155:223–237CrossRefGoogle Scholar
  137. Wood PJ, Gunn J, Rundle SD (2008) Response of benthic cave invertebrates to organic pollution events. Aquat Conserv 18:909–922CrossRefGoogle Scholar
  138. Wurster CM, Munksgaard N, Zwart C et al (2015) The biogeochemistry of insectivorous cave guano: a case study from insular Southeast Asia. Biogeochemistry 124:163–175CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Michael P. Venarsky
    • 1
    • 2
  • Brock M. Huntsman
    • 3
  1. 1.Australian Rivers InstituteGriffith UniversityNathanAustralia
  2. 2.United States Geological Survey, Fort Collins Science CenterFort CollinsUSA
  3. 3.Division of Forestry and Natural ResourcesWest Virginia UniversityMorgantownUSA

Personalised recommendations