Advertisement

Cave Ecology pp 297-307 | Cite as

Caves as Oligotrophic Ecosystems

  • Ľubomír KováčEmail author
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 235)

Abstract

Oligotrophic caves are characterized by very limited sources of organic material and simplified trophic structure due to their predominant isolation from surface ecosystems. Trophic structure of caves depends on their connectivity and interactions with the epigean environment. The food base for biota in nutrient poor caves is mostly confined to organic substances encompassed in percolating water, which also mediates transport of microbes and microfauna into subterranean habitats. Many of the cave microbes are genetically divergent from surface microbes and adapted to the aphotic and oligotrophic cave environment. In nutrient-poor caves heterotrophic bacteria dominate accompanied by a number of chemoautotrophs that gain energy from inorganic chemicals through chemosynthesis and fix inorganic carbon. Chemoautotrophs may thus impact many geological or geochemical processes in subterranean systems and serve as the food source for microbivorous and omnivorous subterranean animals. In caves, food scarcity acts as a selective force and requires evolutionary adaptations in animals related to their morphological and biological traits. In warmer regions of the globe, oligotrophic habitats are characterized by high proportions of the community being troglobiotic or stygobiotic. The amount and nature of the food supply control the presence of troglo- and stygobionts and the overall composition of animal assemblages.

Notes

Acknowledgments

During writing this chapter, the author was supported from project of the Slovak Development and Research Agency APVV-17-0477 and the Slovak Scientific Grant Agency VEGA 1/0346/18.  I am very indebted to Oana T. Moldovan, Stuart Halse and Francis G. Howarth for the useful suggestions and comments that improved the quality of the manuscript.

References

  1. Albuquerque EF, Coineau N (2004) Interstitial habitats (aquatic). In: Gunn J (ed) Encyclopedia of caves and karst science. Fitzroy Dearborn, New York, pp 979–983Google Scholar
  2. Andersen T, Baranov V, Hagenlund LK et al (2016) Blind flight? A new troglobiotic orthoclad (Diptera, Chironomidae) from the Lukina Jama – Trojama Cave in Croatia. PLoS One 11:e0152884PubMedPubMedCentralGoogle Scholar
  3. Aubrecht R, Barrio-Amorós CL, Breure ASH et al (2012) Venezuelan tepuis: their caves and biota. Acta Geologica Slovaca – Monograph. Comenius University, BratislavaGoogle Scholar
  4. Barton HA, Taylor MR, Pace NR (2004) Molecular phylogenetic analysis of a bacterial community in an oligotrophic cave environment. Geomicrobiol J 21:11–20CrossRefGoogle Scholar
  5. Barton HA, Taylor NM, Kreate MP et al (2007) The impact of host rock geomicrobiology on bacterial community structure in oligotrophic cave environments. Int J Speleol 36:93–104CrossRefGoogle Scholar
  6. Barton HA, Giarrizzo JG, Suarez P et al (2014) Microbial diversity in a Venezuelan orthoquartzite cave is dominated by the Chloroflexi (Class Ktedonobacterales) and Thaumarchaeota Group I.1c. Front Microbiol 5:1–14CrossRefGoogle Scholar
  7. Bedek J, Lukić M, Jalžić B et al (2012) Subterranean community from Lukina jama – Trojama Cave System, the deepest cave in Dinaric Karst (Northern Velebit Mt., Croatia). In: Kováč Ľ, Uhrin M, Mock A, Ľuptáčik P (eds) Abstract book, 21st international conference on subterranean biology, 2–7 September 2012, Košice, Slovakia. P. J. Šafárik University, Košice, pp 26–27Google Scholar
  8. Christiansen KA (1965) Behavior and form in the evolution of cave Collembola. Evolution 19:529–537CrossRefGoogle Scholar
  9. Christiansen KA (2012) Morphological adaptations. In: White WB, Culver DC (eds) Encyclopedia of caves. Academic Press, Waltham, MA, pp 517–528CrossRefGoogle Scholar
  10. Cuezva S, Sanchez-Moral S, Saiz-Jimenez C et al (2009) Microbial communities and associated mineral fabrics in Altamira Cave, Spain. Int J Speleol 38:83–92CrossRefGoogle Scholar
  11. Culver DC (1982) Cave life – evolution and ecology. Harvard University Press, Cambridge, MACrossRefGoogle Scholar
  12. Culver DC, Pipan T (2009) The biology of caves and other subterranean habitats. Oxford University Press, OxfordGoogle Scholar
  13. Culver DC, Brancelj A, Pipan T (2012) Epikarst communities. In: White WB, Culver DC (eds) Encyclopedia of caves. Academic Press, Waltham, MA, pp 288–295CrossRefGoogle Scholar
  14. De Mandal S, Chatterjee R, Kumar NS (2017) Dominant bacterial phyla in caves and their predicted functional roles in C and N cycle. BMC Microbiol 17:90CrossRefGoogle Scholar
  15. Deharveng L (2004a) Asia, Southeast: biospeleology. In: Gunn J (ed) Encyclopedia of caves and karst science. Fitzroy Dearborn, New York, pp 229–234Google Scholar
  16. Deharveng L (2004b) Insecta: Apterygota. In: Gunn J (ed) Encyclopedia of caves and karst science. Fitzroy Dearborn, New York, pp 962–965Google Scholar
  17. Deharveng L, Bedos A (2000) The cave fauna of Southeast Asia, origin, evolution and ecology. In: Wilkens H, Culver DC, Humphreys WF (eds) Subterranean ecosystems. Ecosystems of the world, vol 30. Elsevier, Amsterdam, pp 603–632Google Scholar
  18. Derka T, Fedor P (2010) Hydrolutos breweri sp. n., a new aquatic Lutosini species (Orthoptera: Anostostomatidae) from Churí-tepui (Chimantá Massif, Venezuela). Zootaxa 2653:51–59Google Scholar
  19. Dunne JA, Williams RJ, Martinez ND (2002) Food-web structure and network theory: the role of connectance and size. Proc Natl Acad Sci USA 99:12917–12922CrossRefGoogle Scholar
  20. Engel AS (2012) Microbes. In: White WB, Culver DC (eds) Encyclopedia of caves. Academic Press, Waltham, MA, pp 490–499CrossRefGoogle Scholar
  21. Fenolio D (2016) Life in the dark. Illuminating biodiversity in the shadowy faunts of planet Earth. John Hopkins University Press, Baltimore, MDGoogle Scholar
  22. Gibert J, Deharveng L (2002) Subterranean ecosystems: a truncated functional biodiversity. BioScience 52:473–481CrossRefGoogle Scholar
  23. Hervant F, Malard F (2012) Responses to low oxygen. In: White WB, Culver DC (eds) Encyclopedia of caves. Academic Press, Waltham, MA, pp 651–658CrossRefGoogle Scholar
  24. Hoese G, Addison A, Toulkeridis T et al (2015) Observation of the catfish Chaetostoma microps climbing in a cave in Tena, Ecuador. Subt Biol 15:29–35Google Scholar
  25. Howarth FG (1993) High-stress subterranean habitats and evolutionary change in cave-inhabiting arthropods. Am Nat 142:S65–S77CrossRefGoogle Scholar
  26. Howarth FG, Stone FD (1990) Elevated carbon dioxide levels in Bayliss Cave, Australia: implications for the evolution of obligate cave species. Pac Sci 44:207–218Google Scholar
  27. Humphreys WF (2000a) Background and glossary. In: Wilkens H, Culver DC, Humphreys WF (eds) Subterranean ecosystems. Ecosystems of the world, vol 30. Elsevier, Amsterdam, pp 3–14Google Scholar
  28. Humphreys WF (2000b) The hypogean fauna of the Cape Range Peninsula and Barrow Island, Northwestern Australia. In: Wilkens H, Culver DC, Humphreys WF (eds) Subterranean ecosystems. Ecosystems of the world, vol 30. Elsevier, Amsterdam, pp 581–601Google Scholar
  29. Hüppop K (2000) How do cave animals cope with the food scarcity in caves? In: Wilkens H, Culver DC, Humphreys WF (eds) Subterranean ecosystems. Ecosystems of the world, vol 30. Elsevier, Amsterdam, pp 159–188Google Scholar
  30. Hüppop K (2012) Adaptation to low food. In: White WB, Culver DC (eds) Encyclopedia of caves. Academic Press, Waltham, MA, pp 1–9Google Scholar
  31. Juberthie C (1984) La colonisation du milieu souterrain: théories et modéles, relations avec la spéciation et l’évolution souterraine. Mém Biospéol 11:65–102Google Scholar
  32. Klimchouk A, Palmer AN, De Waele J et al (2017) Hypogene karst regions and caves of the world. Springer, ChamCrossRefGoogle Scholar
  33. Kováč Ľ, Elhottová D, Mock A et al (2014) The cave biota of Slovakia. Speleologia Slovaca 5. State Nature Conservancy SR, Slovak Caves Administration, Liptovský MikulášGoogle Scholar
  34. Moldovan OT (2004) Adaptation: morphological (internal). In: Gunn J (ed) Encyclopedia of caves and karst science. Fitzroy Dearborn, New York, pp 19–22Google Scholar
  35. Moldovan OT, Jalžić B, Erichsen E (2004) Adaptation of the mouthparts in some subterranean Cholevinae (Coleoptera, Leiodidae). Natura Croatica 13:1–18Google Scholar
  36. Northup DA, Lavoie KH (2004) Microorganisms in caves. In: Gunn J (ed) Encyclopedia of caves and karst science. Fitzroy Dearborn, New York, pp 1083–1089Google Scholar
  37. Oliveira C, Gunderman L, Coles CA et al (2017) 16S rRNA gene-based metagenomic analysis of Ozark cave Bacteria. Diversity 9:31CrossRefGoogle Scholar
  38. Ortiz M, Legatski A, Neilson JW et al (2014) Making a living whiles tarving in the dark: metagenomic insights into the energy dynamics of a carbonate cave. ISME J 8:478–491CrossRefGoogle Scholar
  39. Palmer AN (2011) Distinction between epigenic and hypogenic maze caves. Geomorphol 134:9–22CrossRefGoogle Scholar
  40. Poulson TL (1963) Cave adaptation in amblyopsid fishes. Am Midl Nat 70:257–290CrossRefGoogle Scholar
  41. Poulson TL (2012) Food sources. In: White WB, Culver DC (eds) Encyclopedia of caves. Academic Press, Waltham, MA, pp 323–334CrossRefGoogle Scholar
  42. Poulson TL, Lavoie KH (2000) The trophic basis of subsurface ecosystems. In: Wilkens H, Culver DC, Humphreys WF (eds) Subterranean ecosystems. Ecosystems of the world, vol 30. Elsevier, Amsterdam, pp 231–249Google Scholar
  43. Romero A (2009) Cave biology – life in darkness. Cambridge University Press, Cambridge, NYCrossRefGoogle Scholar
  44. Sendra A, Reboleira ASPS (2012) The world’s deepest subterranean community – Krubera-Voronja Cave (Western Caucasus). Int J Speleol 41:221–230CrossRefGoogle Scholar
  45. Sendra A, Garay P, Ortuño VM et al (2014) Hypogenic versus epigenic subterranean ecosystem: lessons from eastern Iberian Peninsula. Int J Speleol 43:253–264CrossRefGoogle Scholar
  46. Simon KS, Pipan T, Culver DC (2007a) A conceptual model of the flow and distribution of organic carbon in caves. J Cave Karst Stud 69:279–284Google Scholar
  47. Simon KS, Pipan T, Culver DC (2007b) Spatial and temporal heterogeneity in the flux of organic carbon in caves. In: Groundwater and ecosystems, International Association of Hydrogeologists, LisbonGoogle Scholar
  48. Sket B (2004) The cave hygropetric – a little known habitat and its inhabitants. Arch Hydrobiol 160:413–425CrossRefGoogle Scholar
  49. Sket B (2012) Diversity patterns in the Dinaric Karst. In: White WB, Culver DC (eds) Encyclopedia of caves. Academic Press, Waltham, MA, pp 228–238CrossRefGoogle Scholar
  50. Thibaud J-M, Deharveng L (1994) Collembola. In: Juberthie C, Decu V (eds) Encyclopaedia Biospeologica, Tome I. Société de Biospéologie, Moulis-Bucarest, pp 267–276Google Scholar
  51. Timmermann M, Schlupp I, Plath M (2004) Shoaling behaviour in a surface-dwelling and a cave-dwelling population of a barb Garra barreimiae (Cyprinidae, Teleostei). Acta Ethol 7:59–64CrossRefGoogle Scholar
  52. Trajano E, Mugue N, Krejca J et al (2002) Habitat, distribution, ecology and behavior of cave balitorids from Thailand (Teleostei: Cypriniformes). Ichthyol Explor Fres 13:169–184Google Scholar
  53. Trontelj P (2012) Natural selection. In: White WB, Culver DC (eds) Encyclopedia of caves. Elsevier, Waltham, MA, pp 543–549CrossRefGoogle Scholar
  54. Weber A (2000) Fish and amphibian. In: Wilkens H, Culver DC, Humphreys WF (eds) Subterranean ecosystems. Ecosystems of the world, vol 30. Elsevier, Amsterdam, pp 109–132Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Faculty of ScienceP. J. Šafárik UniversityKošiceSlovakia

Personalised recommendations