Cave Ecology pp 255-267 | Cite as

Cave Communities and Species Interactions

  • Stefano Mammola
  • Marco Isaia
Part of the Ecological Studies book series (ECOLSTUD, volume 235)


Despite subterranean communities being relatively simple, their precise characterization still represents an interesting ecological challenge. This is mostly because, due to the inaccessibility of most subterranean habitats, the spatial boundaries and the species composition of the communities are difficult to define. In this chapter, we describe the general structure and composition of a cave community, keeping in mind different theoretical approaches. We discuss how spatial and temporal turnover occur within most cave biocoenosis, leading to complex species interactions among the resident species. Particular attention is paid to characterizing the ecological niche and the interspecific competition dynamics in cave ecosystems, showing how competition often arises from niche overlaps in species exploiting similar resources and microhabitats. The use of caves as model systems to study basic ecological concepts such as communities, niche, and species interactions has great potential for advancing ecological knowledge.



We are grateful to Wolfgang Nentwig for providing insightful comments on an early version of the chapter.


  1. Albertano P (2012) Cyanobacterial biofilms in monuments and caves. In: Whitton BA (ed) Ecology of cyanobacteria II: their diversity in space and time. Springer, Dordrecht, pp 317–343CrossRefGoogle Scholar
  2. Bento DDM, Ferreira RL, Prous X et al (2016) Seasonal variations in cave invertebrate communities in the semi-arid Caatinga, Brazil. J Cave Karst Stud 78:61–71Google Scholar
  3. Blonder B, Lamanna C, Violle C et al (2014) The n-dimensional hyper-volume. Glob Ecol Biogeogr 23:595–609CrossRefGoogle Scholar
  4. Bloom T, Binford GA, Esposito L et al (2014) Discovery of two new species of eyeless spiders within a single Hispaniola cave. J Arachnol 42:148–154CrossRefGoogle Scholar
  5. Bourne JD (1976) Notes préliminaires sur la distribution spatiale du Meta menardi, Triphosa dubitata, Triphosa sabaudiata, Nelima aurantiaca et Culex pipiens au sain d’un écosystéme cavernicole (Grotte de Scierce: Mte. Savoie). Int J Speleol 8:253–267CrossRefGoogle Scholar
  6. Cardoso P (2012) Diversity and community assembly patterns of epigean vs. troglobiont spiders in the Iberian Peninsula. Int J Speleol 41:83–94CrossRefGoogle Scholar
  7. Chapman PRJ (1985) Are the cavernicoles found in Hawaiian lava tubes just visiting? Proc Univ Bristol Spel Soc 17:175–182Google Scholar
  8. Chelini MC, Willemart RH, Gnaspini P (2011) Caves as a winter refuge by a Neotropical harvestman (Arachnida, Opiliones). J Insect Behav 24:393–398CrossRefGoogle Scholar
  9. Christman MC, Culver DC, Madden MK et al (2005) Patterns of endemism of the eastern North American cave fauna. J Biogeogr 32:1441–1452CrossRefGoogle Scholar
  10. Clements FE (1916) Plant succession: an analysis of the development of vegetation. Carnegie Institute of Washington Publication, Washington, DCCrossRefGoogle Scholar
  11. Crouau-Roy B, Crouau Y, Source CF (1992) Dynamic and temporal structure of the troglobitic beetle Speonomus hydrophilus (Coleoptera: Bathysciinae). Ecography 15:12–18CrossRefGoogle Scholar
  12. Culver DC (1973) Competition in spatially heterogeneous systems: an analysis of simple cave communities. Ecology 54:102–110CrossRefGoogle Scholar
  13. Culver DC (1975) Interaction between competition and predation in cave stream communities. Int J Speleol 7:229–245CrossRefGoogle Scholar
  14. Culver DC, Pipan T (2009) The biology of caves and other subterranean habitats. Oxford University Press, OxfordGoogle Scholar
  15. Culver DC, Pipan T (2014) Shallow subterranean habitats: ecology, evolution, and conservation. Oxford University Press, OxfordCrossRefGoogle Scholar
  16. Culver DC, Pipan T (2015) Shifting paradigms of the evolution of cave life. Acta Carsol 44:415–425Google Scholar
  17. Culver DC, Sket B (2000) Hotspots of subterranean biodiversity in caves and wells. J Cave Karst Stud 62:11–17Google Scholar
  18. Delay B (1969) Recherches sur le peuplement de la zone de percolation temporaire des massifs karstiques. These Doc., 3éme Cycle, Fac. Sciences, ToulouseGoogle Scholar
  19. Fišer C, Blejec A, Trontelj P (2012) Niche-based mechanisms operating within extreme habitats: a case study of subterranean amphipod communities. Biol Lett 8:578–581CrossRefGoogle Scholar
  20. Fišer C, Luštrik R, Sarbu S et al (2015) Morphological evolution of coexisting amphipod species pairs from sulfidic caves suggests competitive interactions and character displacement, but no environmental filtering and convergence. PLoS One 10:e0123535CrossRefGoogle Scholar
  21. Gers C (1995) Stratégies alimentaires de coléoptères troglobies du genre Aphaenops (Coleoptera, Trechinae). Mem Biospeol 22:35–45Google Scholar
  22. Gibert J, Deharveng L (2002) Subterranean ecosystems: a truncated functional biodiversity. Bioscience 52:473–481CrossRefGoogle Scholar
  23. Gleason HA (1926) The structure and development of the plant association. Bull Torrey Bot Club 43:463–481Google Scholar
  24. Howarth FG (1983) Ecology of cave arthropods. Annu Rev Entomol 28:365–389CrossRefGoogle Scholar
  25. Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, PrincetonGoogle Scholar
  26. Hutchinson G (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–427CrossRefGoogle Scholar
  27. Jeannel R (1926) Faune cavernicole de la France, avec une etude des conditions d’existence dans le domaine souterraine. Le Chevalier, ParisGoogle Scholar
  28. Kozel P, Novak T, Klokočovnik V et al (2015) Comparison of overwinterings in two harvestman species (Arachnida: Opiliones) in subterranean habitats. In: Abstracts of the 29th European congress of arachnology, Brno (CZ), 24–28 August 2015Google Scholar
  29. Lipovšek S, Novak T, Janžekovič F et al (2016) Malpighian tubule cells in overwintering cave crickets Troglophilus cavicola (Kollar, 1833) and T. neglectus Krauss, 1879 (Rhaphidophoridae, Ensifera). PLoS One 11:e0158598CrossRefGoogle Scholar
  30. Malard F, Boutin C, Camacho AI et al (2009) Diversity patterns of stygobiotic crustaceans across multiple spatial scales in Europe. Freshw Biol 54:756–776CrossRefGoogle Scholar
  31. Mammola S, Isaia M (2016) The ecological niche of a specialized subterranean spider. Invertebr Biol 135:20–30CrossRefGoogle Scholar
  32. Mammola S, Isaia M (2017) Spiders in caves. Proc R Soc Biol B 284:20170193CrossRefGoogle Scholar
  33. Mammola S, Piano E, Giachino PM et al (2015) Seasonal dynamics and micro-climatic preference of two Alpine endemic hypogean beetles. Int J Speleol 44:239–249CrossRefGoogle Scholar
  34. Mammola S, Giachino PM, Piano E et al (2016a) Ecology and sampling techniques of an understudied subterranean habitat: the Milieu Souterrain Superficiel (MSS). Sci Nat 103:88CrossRefGoogle Scholar
  35. Mammola S, Piano E, Isaia M (2016b) Step back! Niche dynamics in cave-dwelling predators. Acta Oecol 75:35–42CrossRefGoogle Scholar
  36. Moseley M (2009) Size matters: scalar phenomena and a proposal for an ecological definition of ‘cave. J Cave Karst Stud 35:89–94Google Scholar
  37. Northup DE, Lavoie KH (2001) Geomicrobiology of caves: a review. Geomicrobiol J 18:199–222CrossRefGoogle Scholar
  38. Novak T, Perc M, Lipovšek S et al (2012) Duality of terrestrial subterranean fauna. Int J Speleol 41:181–188CrossRefGoogle Scholar
  39. Poulson TL (1977) A tale of two spiders. Cave Research Foundation Annual Report, pp 245–248Google Scholar
  40. Poulson TL, White WB (1969) The cave environment. Science 165:971–981CrossRefGoogle Scholar
  41. Prous X, Ferreira RS, Martins RP (2004) Ecotone delimitation: Epigean-hypogean transition in cave ecosystems. Aust Ecol 29:374–382CrossRefGoogle Scholar
  42. Prous X, Lopes Ferreira R, Jacobi CM (2015) The entrance as a complex ecotone in a Neotropical cave. Int J Speleol 44:177–189CrossRefGoogle Scholar
  43. Resende LPA, Bichuette ME (2016) Sharing the space: coexistence among terrestrial predators in Neotropical caves. J Nat Hist 50:2107–2128CrossRefGoogle Scholar
  44. Ricklefs RE (2006) The unified neutral theory of biodiversity: do the numbers add up? Ecology 87:1424–1423CrossRefGoogle Scholar
  45. Sendra A, Reboleira ASPS (2012) The world deepest subterranean community – Krubera-Voronja Cave (Western Caucasus). Int J Speleol 41:221–230CrossRefGoogle Scholar
  46. Sharratt NJ, Picker MD, Samways MJ (2000) The invertebrate fauna of the sandstone caves of the Cape Peninsula (South Africa): patterns of endemism and conservation priorities. Biodivers Conserv 9:107–143CrossRefGoogle Scholar
  47. Souza-Silva M, Ferreira RL (2016) The first two hotspots of subterranean biodiversity in South America. Subterr Biol 19:1–21CrossRefGoogle Scholar
  48. Stoch F, Galassi DM (2010) Stygobiotic crustacean species richness: a question of numbers, a matter of scale. Hydrobiologia 653:217–234CrossRefGoogle Scholar
  49. Tobin BW, Hutchins BT, Schwartz BF (2013) Spatial and temporal changes in invertebrate assemblage structure from the entrance to deep-cave zone of a temperate marble cave. Int J Speleol 42:203–214CrossRefGoogle Scholar
  50. Trajano E, Gallão JE, Bichuette ME (2016) Spots of high diversity of troglobites in Brazil: the challenge of measuring subterranean diversity. Biodivers Conserv 25:1805–1828CrossRefGoogle Scholar
  51. Whittaker RH (1960) Vegetation of the Siskiyou mountains, Oregon and California. Ecol Monogr 30:279–338CrossRefGoogle Scholar
  52. Zagmajster M, Eme D, Fišer C et al (2014) Geographic variation in range size and beta diversity of groundwater crustaceans: insights from habitats with low thermal seasonality. Glob Ecol Biogeogr 23:1135–1145CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Stefano Mammola
    • 1
  • Marco Isaia
    • 1
  1. 1.Department of Life Sciences and Systems BiologyUniversity of TorinoTorinoItaly

Personalised recommendations