Advertisement

Machine Learning Algorithms for Network Intrusion Detection

  • Jie Li
  • Yanpeng Qu
  • Fei Chao
  • Hubert P. H. Shum
  • Edmond S. L. Ho
  • Longzhi Yang
Chapter
Part of the Intelligent Systems Reference Library book series (ISRL, volume 151)

Abstract

Network intrusion is a growing threat with potentially severe impacts, which can be damaging in multiple ways to network infrastructures and digital/intellectual assets in the cyberspace. The approach most commonly employed to combat network intrusion is the development of attack detection systems via machine learning and data mining techniques. These systems can identify and disconnect malicious network traffic, thereby helping to protect networks. This chapter systematically reviews two groups of common intrusion detection systems using fuzzy logic and artificial neural networks, and evaluates them by utilizing the widely used KDD 99 benchmark dataset. Based on the findings, the key challenges and opportunities in addressing cyberattacks using artificial intelligence techniques are summarized and future work suggested.

References

  1. 1.
    Stampar M, Fertalj K (2015) Artificial intelligence in network intrusion detection. In: Biljanovic P, Butkovic Z, Skala K, Mikac B, Cicin-Sain M, Sruk V, Ribaric S, Gros S, Vrdoljak B, Mauher M, Sokolic A (eds) Proceedings of the 38th International Convention on Information and Communication Technology, Electronics and Microelectronics, pp 1318–1323.  https://doi.org/10.1109/MIPRO.2015.7160479
  2. 2.
    Sommer R, Paxson V (2010) Outside the closed world: on using machine learning for network intrusion detection. In: Proceedings of the 2010 IEEE Symposium on Security and Privacy. IEEE Computer Society, Los Alamitos, CA, USA, pp 305–316.  https://doi.org/10.1109/SP.2010.25
  3. 3.
    Buczak AL, Guven E (2016) A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE Commun Surv Tutor 18(2):1153–1176.  https://doi.org/10.1109/COMST.2015.2494502CrossRefGoogle Scholar
  4. 4.
    Russell SJ, Norvig P (2009) Artificial intelligence: a modern approach, 3rd edn. Pearson, EssexGoogle Scholar
  5. 5.
    Farnaaz N, Jabbar M (2016) Random forest modeling for network intrusion detection system. Procedia Comput Sci 89:213–217.  https://doi.org/10.1016/j.procs.2016.06.047CrossRefGoogle Scholar
  6. 6.
    Ma Z, Kaban A (2013) K-nearest-neighbours with a novel similarity measure for intrusion detection. In: Jin Y, Thomas SA (eds) Proceedings of the 13th UK Workshop on Computational Intelligence. IEEE, New York, pp 266–271.  https://doi.org/10.1109/UKCI.2013.6651315
  7. 7.
    Mukherjee S, Sharma N (2012) Intrusion detection using Naïve Bayes classifier with feature reduction. Proc Tech 4:119–128.  https://doi.org/10.1016/j.protcy.2012.05.017CrossRefGoogle Scholar
  8. 8.
    Thaseen IS, Kumar CA (2017) Intrusion detection model using fusion of chi-square feature selection and multi class SVM. J King Saud Univ Comput Inf Sci 29(4):462–472.  https://doi.org/10.1016/j.jksuci.2015.12.004CrossRefGoogle Scholar
  9. 9.
    Zhang C, Zhang G, Sun S (2009) A mixed unsupervised clustering-based intrusion detection model. In: Huang T, Li L, Zhao M (eds) Proceedings of the Third International Conference on Genetic and Evolutionary Computing. IEEE Computer Society, Los Alamitos, CA, USA, pp 426–428.  https://doi.org/10.1109/WGEC.2009.72
  10. 10.
    Kayacik HG, Zincir-Heywood AN, Heywood MI (2007) A hierarchical SOM-based intrusion detection system. Eng Appl Artif Intell 20(4):439–451.  https://doi.org/10.1016/j.engappai.2006.09.005CrossRefGoogle Scholar
  11. 11.
    Garfinkel S (2002) Network forensics: tapping the Internet. https://paulohm.com/classes/cc06/files/Week6%20Network%20Forensics.pdf
  12. 12.
    Liao HJ, Lin CHR, Lin YC, Tung KY (2013) Intrusion detection system: a comprehensive review. J Netw Comput Appl 36(1):16–24.  https://doi.org/10.1016/j.jnca.2012.09.004CrossRefGoogle Scholar
  13. 13.
    Bostani H, Sheikhan M (2017) Modification of supervised OPF-based intrusion detection systems using unsupervised learning and social network concept. Pattern Recogn 62:56–72.  https://doi.org/10.1016/j.patcog.2016.08.027CrossRefGoogle Scholar
  14. 14.
    Li J, Yang L, Qu Y, Sexton G (2018) An extended Takagi-Sugeno-Kang inference system (TSK+) with fuzzy interpolation and its rule base generation. Soft Comput 22(10):3155–3170.  https://doi.org/10.1007/s00500-017-2925-8CrossRefGoogle Scholar
  15. 15.
    Ramadas M, Ostermann S, Tjaden B (2003) Detecting anomalous network traffic with self-organizing maps. In: Vigna G, Krügel C, Jonsson E (eds) Recent advances in intrusion detection. Springer, Heidelberg, pp 36–54.  https://doi.org/10.1007/978-3-540-45248-5_3Google Scholar
  16. 16.
    Wang G, Hao J, Ma J, Huang L (2010) A new approach to intrusion detection using artificial neural networks and fuzzy clustering. Expert Syst Appl 37(9):6225–6232.  https://doi.org/10.1016/j.eswa.2010.02.102CrossRefGoogle Scholar
  17. 17.
    Wang W, Battiti R (2006) Identifying intrusions in computer networks with principal component analysis. In: Revell N, Wagner R, Pernul G, Takizawa M, Quirchmayr G, Tjoa AM (eds) Proceedings of the First International Conference on Availability, Reliability and Security. IEEE Computer Society, Los Alamitos, CA, USA.  https://doi.org/10.1109/ARES.2006.73
  18. 18.
    Yang L, Li J, Fehringer G, Barraclough P, Sexton G, Cao Y (2017) Intrusion detection system by fuzzy interpolation. In: Proceedings of the 2017 IEEE International Conference on Fuzzy Systems.  https://doi.org/10.1109/FUZZ-IEEE.2017.8015710
  19. 19.
    Sekar R, Gupta A, Frullo J, Shanbhag T, Tiwari A, Yang H, Zhou S (2002) Specification-based anomaly detection: a new approach for detecting network intrusions. In: Proceedings of the 9th ACM Conference on Computer and Communications Security. ACM, New York, pp 265–274.  https://doi.org/10.1145/586110.586146
  20. 20.
    Tseng CY, Balasubramanyam P, Ko C, Limprasittiporn R, Rowe J, Levitt K (2003) A specification-based intrusion detection system for AODV. In: Swarup V, Setia S (eds) Proceedings of the 1st ACM Workshop on Security of ad hoc and Sensor Networks. ACM, New York, pp 125–134.  https://doi.org/10.1145/986858.986876
  21. 21.
    Bostani H, Sheikhan M (2017) Hybrid of anomaly-based and specification-based IDS for Internet of Things using unsupervised OPF based on MapReduce approach. Comput Commun 98:52–71.  https://doi.org/10.1016/j.comcom.2016.12.001CrossRefGoogle Scholar
  22. 22.
    Mukkamala S, Sung A (2003) Feature selection for intrusion detection with neural networks and support vector machines. Trans Res Rec 1822:33–39.  https://doi.org/10.3141/1822-05CrossRefGoogle Scholar
  23. 23.
    Kumar M, Hanumanthappa M, Kumar TVS (2012) Intrusion detection system using decision tree algorithm. In: Proceedings of the 14th IEEE International Conference on Communication Technology. IEEE, New York, pp 629–634.  https://doi.org/10.1109/ICCT.2012.6511281
  24. 24.
    Moradi M, Zulkernine M (2004) A neural network based system for intrusion detection and classification of attacks. http://research.cs.queensu.ca/~moradi/148-04-MM-MZ.pdf
  25. 25.
    Ravale U, Marathe N, Padiya P (2015) Feature selection based hybrid anomaly intrusion detection system using K means and RBF kernel function. Procedia Comput Sci 45:428–435.  https://doi.org/10.1016/j.procs.2015.03.174CrossRefGoogle Scholar
  26. 26.
    Liu G, Yi Z (2006) Intrusion detection using PCASOM neural networks. In: Wang J, Yi Z, Zurada JM, Lu BL, Yin H (eds) Advances in neural networks–ISNN 2006. Springer, Heidelberg, pp 240–245.  https://doi.org/10.1007/11760191_35CrossRefGoogle Scholar
  27. 27.
    Chen Y, Abraham A, Yang B (2007) Hybrid flexible neural-tree-based intrusion detection systems. Int J Intell Syst 22(4):337–352.  https://doi.org/10.1002/int.20203CrossRefzbMATHGoogle Scholar
  28. 28.
    Mamdani EH (1977) Application of fuzzy logic to approximate reasoning using linguistic synthesis. IEEE Trans Comput C-26(12):1182–1191.  https://doi.org/10.1109/TC.1977.1674779CrossRefGoogle Scholar
  29. 29.
    Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern SMC-15(1):116–132.  https://doi.org/10.1109/TSMC.1985.6313399CrossRefGoogle Scholar
  30. 30.
    Li J, Shum HP, Fu X, Sexton G, Yang L (2016) Experience-based rule base generation and adaptation for fuzzy interpolation. In: Cordón O (ed) Proceedings of the 2016 IEEE International Conference on Fuzzy Systems. IEEE, New York, pp 102–109.  https://doi.org/10.1109/FUZZ-IEEE.2016.7737674
  31. 31.
    Tan Y, Li J, Wonders M, Chao F, Shum HP, Yang L (2016) Towards sparse rule base generation for fuzzy rule interpolation. In: Cordón O (ed) Proceedings of the 2016 IEEE International Conference on Fuzzy Systems. IEEE, New York, pp 110–117.  https://doi.org/10.1109/FUZZ-IEEE.2016.7737675
  32. 32.
    Chaudhary A, Tiwari V, Kumar A (2014) Design an anomaly based fuzzy intrusion detection system for packet dropping attack in mobile ad hoc networks. In: Batra U (ed) Proceedings of the 2014 IEEE International Advance Computing Conference. IEEE, New York, pp 256–261.  https://doi.org/10.1109/IAdCC.2014.6779330
  33. 33.
    Shanmugavadivu R, Nagarajan N (2011) Network intrusion detection system using fuzzy logic. Indian J Comput Sci Eng 2(1):101–111Google Scholar
  34. 34.
    Naik N, Diao R, Shen Q (2017) Dynamic fuzzy rule interpolation and its application to intrusion detection. IEEE Trans Fuzzy Syst  https://doi.org/10.1109/TFUZZ.2017.2755000CrossRefGoogle Scholar
  35. 35.
    Kóczy TL, Hirota K (1993) Approximate reasoning by linear rule interpolation and general approximation. Int J Approx Reason 9(3):197–225.  https://doi.org/10.1016/0888-613X(93)90010-BMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Huang Z, Shen Q (2006) Fuzzy interpolative reasoning via scale and move transformations. IEEE Trans Fuzzy Syst 14(2):340–359.  https://doi.org/10.1109/TFUZZ.2005.859324CrossRefGoogle Scholar
  37. 37.
    Huang Z, Shen Q (2008) Fuzzy interpolation and extrapolation: a practical approach. IEEE Trans Fuzzy Syst 16(1):13–28.  https://doi.org/10.1109/TFUZZ.2007.902038CrossRefGoogle Scholar
  38. 38.
    Li J, Yang L, Fu X, Chao F, Qu Y (2018) Interval Type-2 TSK+ fuzzy inference system. In: Proceedings of the 2018 IEEE International Conference on Fuzzy Systems. Curran Associates, Red Hook, NY, USAGoogle Scholar
  39. 39.
    Yang L, Shen Q (2010) Adaptive fuzzy interpolation and extrapolation with multiple-antecedent rules. In: Proceedings of the 2010 IEEE International Conference on Fuzzy Systems. Curran Associates, Red Hook, NY, USA.  https://doi.org/10.1109/FUZZY.2010.5584701
  40. 40.
    Naik N, Diao R, Quek C, Shen Q (2013) Towards dynamic fuzzy rule interpolation. In: Proceedings of the 2013 IEEE International Conference on Fuzzy Systems. Curran Associates, Red Hook, NY, USA.  https://doi.org/10.1109/FUZZ-IEEE.2013.6622404
  41. 41.
    Naik N, Diao R, Shen Q (2014) Genetic algorithm-aided dynamic fuzzy rule interpolation. In: Proceedings of the 2014 IEEE International Conference on Fuzzy Systems. Curran Associates, Red Hook, NY, USA.  https://doi.org/10.1109/FUZZ-IEEE.2014.6891816
  42. 42.
    Shen Q, Yang L (2011) Generalisation of scale and move transformation-based fuzzy interpolation. J Adv Comput Intell Int Inf 15(3):288–298.  https://doi.org/10.20965/jaciii.2011.p0288CrossRefGoogle Scholar
  43. 43.
    Yang L, Chao F, Shen Q (2017) Generalised adaptive fuzzy rule interpolation. IEEE Trans Fuzzy Syst 25(4):839–853.  https://doi.org/10.1109/TFUZZ.2016.2582526CrossRefGoogle Scholar
  44. 44.
    Yang L, Chen C, Jin N, Fu X, Shen Q (2014) Closed form fuzzy interpolation with interval type-2 fuzzy sets. In: Proceedings of the 2014 IEEE International Conference on Fuzzy Systems. IEEE, pp 2184–2191.  https://doi.org/10.1109/FUZZ-IEEE.2014.6891643
  45. 45.
    Yang L, Shen Q (2011) Adaptive fuzzy interpolation. IEEE Trans Fuzzy Syst 19(6):1107–1126.  https://doi.org/10.1109/TFUZZ.2011.2161584CrossRefGoogle Scholar
  46. 46.
    Yang L, Shen Q (2011) Adaptive fuzzy interpolation with uncertain observations and rule base. In: Lin C-T, Kuo Y-H (eds) Proceedings of the 2011 IEEE International Conference on Fuzzy Systems. IEEE, New York, pp 471–478.  https://doi.org/10.1109/FUZZY.2011.6007582
  47. 47.
    Yang L, Shen Q (2013) Closed form fuzzy interpolation. Fuzzy Sets Syst 225:1–22.  https://doi.org/10.1016/j.fss.2013.04.001MathSciNetCrossRefGoogle Scholar
  48. 48.
    Li J, Yang L, Fu X, Chao F, Qu Y (2017) Dynamic QoS solution for enterprise networks using TSK fuzzy interpolation. In: Proceedings of the 2017 IEEE International Conference on Fuzzy Systems. Curran Associates, Red Hook, NY, USA.  https://doi.org/10.1109/FUZZ-IEEE.2017.8015711
  49. 49.
    Li J, Yang L, Shum HP, Sexton G, Tan Y (2015) Intelligent home heating controller using fuzzy rule interpolation. In: UK Workshop on Computational Intelligence, 7–9 September 2015, Exeter, UKGoogle Scholar
  50. 50.
    Naik N (2015) Fuzzy inference based intrusion detection system: FI-Snort. In: Wu Y, Min G, Georgalas N, Hu J, Atzori L, Jin X, Jarvis S, Liu L, Calvo RA (eds) Proceedings of the 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing. IEEE Computer Society, Los Alamitos, CA, USA, pp 2062–2067.  https://doi.org/10.1109/CIT/IUCC/DASC/PICOM.2015.306
  51. 51.
    Yang L, Li J, Hackney P, Chao F, Flanagan M (2017) Manual task completion time estimation for job shop scheduling using a fuzzy inference system. In: Wu Y, Min G, Georgalas N, Al-Dubi A, Jin X, Yang L, Ma J, Yang P (eds) Proceedings of the 2017 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). IEEE Computer Society, Los Alamitos, CA, USA, pp 139–146.  https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2017.26
  52. 52.
    Li J, Qu Y, Shum HPH, Yang L (2017) TSK inference with sparse rule bases. In: Angelov P, Gegov A, Jayne C, Shen Q (eds) Advances in computational intelligence systems. Springer, Cham, pp 107–123.  https://doi.org/10.1007/978-3-319-46562-3_8Google Scholar
  53. 53.
    Guha S, Yau SS, Buduru AB (2016) Attack detection in cloud infrastructures using artificial neural network with genetic feature selection. In: Proceedings of the 14th International Conference on Dependable, Autonomic and Secure Computing, 14th International Conference on Pervasive Intelligence and Computing, 2nd International Conference on Big Data Intelligence and Computing and Cyber Science and Technology Congress. IEEE Computer Society, Los Alamitos, CA, USA, pp 414–419.  https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2016.32
  54. 54.
    Jensen R, Shen Q (2008) Computational intelligence and feature selection: rough and fuzzy approaches. Wiley-IEEE Press, New YorkGoogle Scholar
  55. 55.
    Jensen R, Shen Q (2009) New approaches to fuzzy-rough feature selection. IEEE Trans Fuzzy Syst 17(4):824–838.  https://doi.org/10.1109/TFUZZ.2008.924209CrossRefGoogle Scholar
  56. 56.
    Tsang EC, Chen D, Yeung DS, Wang XZ, Lee JW (2008) Attributes reduction using fuzzy rough sets. IEEE Trans Fuzzy Syst 16(5):1130–1141.  https://doi.org/10.1109/TFUZZ.2006.889960CrossRefGoogle Scholar
  57. 57.
    Zuo Z, Li J, Anderson P, Yang L, Naik N (2018) Grooming detection using fuzzy-rough feature selection and text classification. In: Proceedings of the 2018 IEEE International Conference on Fuzzy Systems. Curran Associates, Red Hook, NY, USAGoogle Scholar
  58. 58.
    Dash M, Liu H (1997) Feature selection for classification. Intell. Data Anal 1(3):131–156.  https://doi.org/10.1016/S1088-467X(97)00008-5CrossRefGoogle Scholar
  59. 59.
    Langley P (1994) Selection of relevant features in machine learning. In: Proceedings of the AAAI Fall Symposium on Relevance. AAAI Press, Palo Alto, CA, USA, pp 245–271Google Scholar
  60. 60.
    Jensen R, Shen Q (2009) Are more features better? A response to attributes reduction using fuzzy rough sets. IEEE Trans Fuzzy Syst 17(6):1456–1458.  https://doi.org/10.1109/TFUZZ.2009.2026639CrossRefGoogle Scholar
  61. 61.
    Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182. http://www.jmlr.org/papers/volume3/guyon03a/guyon03a.pdf
  62. 62.
    Jensen R, Shen Q (2004) Semantics-preserving dimensionality reduction: rough and fuzzy-rough-based approaches. IEEE Trans Knowl Data Eng 16(12):1457–1471.  https://doi.org/10.1109/TKDE.2004.96CrossRefGoogle Scholar
  63. 63.
    Parthaláin NM, Shen Q (2009) Exploring the boundary region of tolerance rough sets for feature selection. Pattern Recogn 42(5):655–667.  https://doi.org/10.1016/j.patcog.2008.08.029CrossRefzbMATHGoogle Scholar
  64. 64.
    Parthaláin NM, Shen Q, Jensen R (2010) A distance measure approach to exploring the rough set boundary region for attribute reduction. IEEE Trans Knowl Data Eng 22(3):305–317.  https://doi.org/10.1109/TKDE.2009.119CrossRefGoogle Scholar
  65. 65.
    Saeys Y, Inza I, Larrañaga P (2007) A review of feature selection techniques in bioinformatics. Bioinformatics 23(19):2507–2517.  https://doi.org/10.1093/bioinformatics/btm344CrossRefGoogle Scholar
  66. 66.
    Yu L, Liu H (2004) Efficient feature selection via analysis of relevance and redundancy. J Mach Learn Res 5:1205–1224MathSciNetzbMATHGoogle Scholar
  67. 67.
    Thorndike RL (1953) Who belongs in the family? Psychometrika 18(4):267–276.  https://doi.org/10.1007/BF02289263CrossRefGoogle Scholar
  68. 68.
    Anderson JA (1995) An introduction to neural networks. MIT Press, Cambridge, MA, USAzbMATHGoogle Scholar
  69. 69.
    Planquart J-P (2001) Application of neural networks to intrusion detection. Sans Institute. https://www.sans.org/reading-room/whitepapers/detection/application-neural-networks-intrusion-detection-336
  70. 70.
    Cameron R, Zuo Z, Sexton G, Yang L (2017) A fall detection/recognition system and an empirical study of gradient-based feature extraction approaches. In: Chao F, Schockaert S, Zhang Q (eds) Advances in computational intelligence systems. Springer, Cham, pp 276–289.  https://doi.org/10.1007/978-3-319-66939-7_24Google Scholar
  71. 71.
    Linda O, Vollmer T, Manic M (2009) Neural network based intrusion detection system for critical infrastructures. In: Proceedings of the 2009 International Joint Conference on Neural Networks. IEEE, Piscataway, NJ, USA, pp 1827–1834.  https://doi.org/10.1109/IJCNN.2009.5178592
  72. 72.
    Subba B, Biswas S, Karmakar S (2016) A neural network based system for intrusion detection and attack classification. In: Proceedings of the Twenty-Second National Conference on Communication. IEEE, New York.  https://doi.org/10.1109/NCC.2016.7561088
  73. 73.
    Zuo Z, Yang L, Peng Y, Chao F, Qu Y (2018) Gaze-informed egocentric action recognition for memory aid systems. IEEE Access 6:12894–12904.  https://doi.org/10.1109/ACCESS.2018.2808486CrossRefGoogle Scholar
  74. 74.
    Beghdad R (2008) Critical study of neural networks in detecting intrusions. Comput Secur 27(5):168–175.  https://doi.org/10.1016/j.cose.2008.06.001CrossRefGoogle Scholar
  75. 75.
    Ouadfel S, Batouche M (2007) Antclust: an ant algorithm for swarm-based image clustering. Inf Technol J 6(2):196–201.  https://doi.org/10.3923/itj.2007.196.201CrossRefGoogle Scholar
  76. 76.
    De la Hoz E, de la Hoz E, Ortiz A, Ortega J, Martínez-Álvarez A: Feature selection by multi-objective optimisation: application to network anomaly detection by hierarchical self-organising maps. Knowl Based Syst 71:322–338.  https://doi.org/10.1016/j.knosys.2014.08.013CrossRefGoogle Scholar
  77. 77.
    Labib K, Vemuri R (2002) NSOM: a real-time network-based intrusion detection system using self-organizing maps. http://web.cs.ucdavis.edu/~vemuri/papers/som-ids.pdf
  78. 78.
    Vasighi M, Amini H (2017) A directed batch growing approach to enhance the topology preservation of self-organizing map. Appl Soft Comput 55:424–435.  https://doi.org/10.1016/j.asoc.2017.02.015CrossRefGoogle Scholar
  79. 79.
    Vokorokos L, Balaz A, Chovanec M (2006) Intrusion detection system using self organizing map. Acta Electrotechnica et Informatica 6(1). http://www.aei.tuke.sk/papers/2006/1/Vokorokos.pdf
  80. 80.
    Prabhakar SY, Parganiha P, Viswanatham VM, Nirmala M (2017) Comparison between genetic algorithm and self organizing map to detect botnet network traffic. In: IOP conference series: materials science and engineering, vol 263. IOP Publishing, Bristol.  https://doi.org/10.1088/1757-899X/263/4/042103CrossRefGoogle Scholar
  81. 81.
    Haykin S (2009) Neural networks and learning machines, 3rd edn. Prentice Hall, Upper Saddle River, NJ, USAGoogle Scholar
  82. 82.
    Joo D, Hong T, Han I (2003) The neural network models for IDS based on the asymmetric costs of false negative errors and false positive errors. Expert Syst Appl 25(1):69–75.  https://doi.org/10.1016/S0957-4174(03)00007-1CrossRefGoogle Scholar
  83. 83.
    Patcha A, Park JM (2007) An overview of anomaly detection techniques: existing solutions and latest technological trends. Comput Netw 51(12):3448–3470.  https://doi.org/10.1016/j.comnet.2007.02.001CrossRefGoogle Scholar
  84. 84.
    Chiu SL (1994) Fuzzy model identification based on cluster estimation. J Intell Fuzzy Syst 2(3):267–278.  https://doi.org/10.3233/IFS-1994-2306CrossRefGoogle Scholar
  85. 85.
    Mahoney MV (2003) A machine learning approach to detecting attacks by identifying anomalies in network traffic. Ph.D. thesis, Florida Institute of Technology, Melbourne, FL, USAGoogle Scholar
  86. 86.
    Elisa N, Yang L, Naik N (2018) Dendritic cell algorithm with optimised parameters using genetic algorithm. In: Proceedings of the 2018 IEEE Congress on Evolutionary Computation. Curran Associates, Red Hook, NY, USAGoogle Scholar
  87. 87.
    Tavallaee M, Bagheri E, Lu W, Ghorbani A (2009) A detailed analysis of the KDD Cup 99 data set. In: Wesolkowski S, Abbass H, Abielmona R (eds) Proceedings of the 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications.  https://doi.org/10.1109/CISDA.2009.5356528
  88. 88.
    Gharib A, Sharafaldin I, Lashkari AH, Ghorbani AA (2016) An evaluation framework for intrusion detection dataset. In: Joukov N, Kim H (eds) Proceedings of the 2016 International Conference on Information Science and Security. Curran Associates, Red Hook, NY, USA.  https://doi.org/10.1109/ICISSEC.2016.7885840
  89. 89.
    Sharafaldin I, Lashkari AH, Ghorbani AA (2018) Toward generating a new intrusion detection dataset and intrusion traffic characterization. In: Mori P, Furnell S, Camp O (eds) Proceedings of the 4th International Conference on Information Systems Security and Privacy, vol 1, pp 108–116.  https://doi.org/10.5220/0006639801080116

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jie Li
    • 1
  • Yanpeng Qu
    • 2
  • Fei Chao
    • 3
  • Hubert P. H. Shum
    • 1
  • Edmond S. L. Ho
    • 1
  • Longzhi Yang
    • 1
  1. 1.Northumbria UniversityNewcastle upon TyneUK
  2. 2.Dalian Maritime UniversityDalianPeople’s Republic of China
  3. 3.Xiamen UniversityXiamenPeople’s Republic of China

Personalised recommendations