Advertisement

Boosting PageRank Scores by Optimizing Internal Link Structure

  • Naoto Ohsaka
  • Tomohiro Sonobe
  • Naonori Kakimura
  • Takuro Fukunaga
  • Sumio Fujita
  • Ken-ichi Kawarabayashi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11029)

Abstract

We consider and formulate problems of PageRank score boosting motivated by applications such as effective web advertising. More precisely, given a graph and target vertices, one is required to find a fixed-size set of missing edges that maximizes the minimum PageRank score among the targets. We provide theoretical analyses to show that all of them are NP-hard. To overcome the hardness, we develop heuristic-based algorithms for them. We finally perform experiments on several real-world networks to verify the effectiveness of the proposed algorithms compared to baselines. Specifically, our algorithm achieves 100 times improvements of the minimum PageRank score among selected 100 vertices by adding only dozens of edges.

References

  1. 1.
    Adar, E., Teevan, J., Dumais, S.T.: Resonance on the web: web dynamics and revisitation patterns. In: CHI, pp. 1381–1390 (2009)Google Scholar
  2. 2.
    Avrachenkov, K., Litvak, N.: Decomposition of the Google PageRank and optimal linking strategy. Technical report (2004). http://doc.utwente.nl/80247/
  3. 3.
    Avrachenkov, K., Litvak, N.: The effect of new links on Google PageRank. Stoch. Model. 22(2), 319–332 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Baeza-Yates, R.A., Castillo, C., López, V.: PageRank increase under different collusion topologies. In: AIRWeb, pp. 25–32 (2005)Google Scholar
  5. 5.
    Becchetti, L., Castillo, C.: The distribution of PageRank follows a power-law only for particular values of the damping factor. In: WWW, pp. 941–942 (2006)Google Scholar
  6. 6.
    Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Comput. Netw. ISDN Syst. 30(1), 107–117 (1998)CrossRefGoogle Scholar
  7. 7.
    Broder, A., Josifovski, V.: MS&E 239: Introduction to Computational Advertising (2011). http://web.stanford.edu/class/msande239/
  8. 8.
    Chvatal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res. 4, 233–235 (1979)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Csáji, B.C., Jungers, R.M., Blondel, V.D.: PageRank optimization in polynomial time by stochastic shortest path reformulation. In: ALT, pp. 89–103 (2010)Google Scholar
  10. 10.
    Csáji, B.C., Jungers, R.M., Blondel, V.D.: PageRank optimization by edge selection. Discrete Appl. Math. 169, 73–87 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Dinur, I., Safra, S.: On the hardness of approximating minimum vertex cover. Ann. Math. 1, 439–485 (2005)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Feige, U.: Vertex cover is hardest to approximate on regular graphs. Technical report (2004)Google Scholar
  13. 13.
    Fortunato, S., Boguñá, M., Flammini, A., Menczer, F.: Approximating PageRank from in-degree. In: WAW, pp. 59–71 (2006)Google Scholar
  14. 14.
    Gleich, D.F.: PageRank beyond the web. SIAM Rev. 57(3), 321–363 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Gyöngyi, Z., Garcia-Molina, H.: Link spam alliances. In: VLDB, pp. 517–528 (2005)Google Scholar
  16. 16.
    Ipsen, I.C.F., Wills, R.S.: Mathematical properties and analysis of Google’s PageRank. Bol. Soc. Esp. Mat. Apl. 34, 191–196 (2006)MathSciNetMATHGoogle Scholar
  17. 17.
    Ishii, H., Tempo, R.: Computing the PageRank variation for fragile web data. SICE J. Control Measur. Syst. Integr. 2(1), 1–9 (2009)CrossRefGoogle Scholar
  18. 18.
    Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci. 9(3), 256–278 (1974)MathSciNetCrossRefGoogle Scholar
  19. 19.
    de Kerchove, C., Ninove, L., Van Dooren, P.: Maximizing PageRank via outlinks. Linear Algebra Appl. 429, 1254–1276 (2008)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2-epsilon. J. Comput. Syst. Sci. 74(3), 335–349 (2008)CrossRefGoogle Scholar
  21. 21.
    Kunegis, J.: KONECT - the Koblenz network collection. In: WWW Companion, pp. 1343–1350 (2013)Google Scholar
  22. 22.
    Leskovec, J., Krevl, A.: SNAP Datasets: Stanford Large Network Dataset Collection, June 2014. http://snap.stanford.edu/data
  23. 23.
    Lovász, L.: On the ratio of optimal integral and fractional covers. Discrete Math. 13(4), 383–390 (1975)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Ohsaka, N., Maehara, T., Kawarabayashi, K.: Efficient PageRank tracking in evolving networks. In: KDD, pp. 875–884 (2015)Google Scholar
  25. 25.
    Olsen, M.: The computational complexity of link building. In: COCOON, pp. 119–129 (2008)Google Scholar
  26. 26.
    Olsen, M.: Maximizing PageRank with new backlinks. In: CIAC, pp. 37–48 (2010)Google Scholar
  27. 27.
    Olsen, M., Viglas, A., Zvedeniouk, I.: A constant-factor approximation algorithm for the link building problem. In: COCOA, pp. 87–96 (2010)Google Scholar
  28. 28.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: bringing order to the web. Technical report, Stanford InfoLab (1999)Google Scholar
  29. 29.
    Pandurangan, G., Raghavan, P., Upfal, E.: Using PageRank to characterize web structure. In: COCOON, pp. 330–339 (2002)Google Scholar
  30. 30.
    Sydow, M.: Can one out-link change your PageRank? In: AWIC, pp. 408–414 (2005)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Naoto Ohsaka
    • 1
  • Tomohiro Sonobe
    • 2
    • 6
  • Naonori Kakimura
    • 3
  • Takuro Fukunaga
    • 4
  • Sumio Fujita
    • 5
  • Ken-ichi Kawarabayashi
    • 2
    • 6
  1. 1.NEC CorporationTokyoJapan
  2. 2.National Institute of InformaticsTokyoJapan
  3. 3.Keio UniversityTokyoJapan
  4. 4.RIKEN Center for Advanced Intelligence ProjectTokyoJapan
  5. 5.Yahoo Japan CorporationTokyoJapan
  6. 6.JST, ERATOKawarabayashi Large Graph ProjectTokyoJapan

Personalised recommendations