Advertisement

Learning Interpretable Entity Representation in Linked Data

  • Takahiro Komamizu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11029)

Abstract

Linked Data has become a valuable source of factual records. However, because of its simple representations of records (i.e., a set of triples), learning representations of entities is required for various applications such as information retrieval and data mining. Entity representations can be roughly classified into two categories; (1) interpretable representations, and (2) latent representations. Interpretability of learned representations is important for understanding relationship between two entities, like why they are similar. Therefore, this paper focuses on the former category. Existing methods are based on heuristics which determine relevant fields (i.e., predicates and related entities) to constitute entity representations. Since the heuristics require laboursome human decisions, this paper aims at removing the labours by applying a graph proximity measurement. To this end, this paper proposes RWRDoc, an RWR (random walk with restart)-based representation learning method which learns representations of entities by weighted combinations of minimal representations of whole reachable entities w.r.t. RWR. Comprehensive experiments on diverse applications (such as ad-hoc entity search, recommender system using Linked Data, and entity summarization) indicate that RWRDoc learns proper interpretable entity representations.

Keywords

Entity representation learning Random walk with restart Linked data Entity search Entity summarization 

Notes

Acknowledgments

This work was partly supported by JSPS KAKENHI Grant Number JP18K18056.

References

  1. 1.
    Resource Description Framework (RDF): Concepts and Abstract Syntax. https://www.w3.org/TR/rdf11-concepts/
  2. 2.
    Alfarhood, S., Labille, K., Gauch, S.: PLDSD: propagated linked data semantic distance. In: WETICE 2017, pp. 278–283 (2017)Google Scholar
  3. 3.
    Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J. Semant. Web Inf. Syst. 5(3), 1–22 (2009)CrossRefGoogle Scholar
  4. 4.
    Cheng, G., Tran, T., Qu, Y.: RELIN: relatedness and informativeness-based centrality for entity summarization. In: Aroyo, L., et al. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 114–129. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25073-6_8CrossRefGoogle Scholar
  5. 5.
    Shijia, E., Xiang, Y.: Entity search based on the representation learning model with different embedding strategies. IEEE Access 5, 15174–15183 (2017)CrossRefGoogle Scholar
  6. 6.
    Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: SIGKDD 2016, pp. 855–864 (2016)Google Scholar
  7. 7.
    Gunaratna, K., Thirunarayan, K., Sheth, A.P.: FACES: diversity-aware entity summarization using incremental hierarchical conceptual clustering. In: AAAI 2015, pp. 116–122 (2015)Google Scholar
  8. 8.
    Hasibi, F., et al.: DBpedia-entity v2: a test collection for entity search. In: SIGIR 2017, pp. 1265–1268 (2017)Google Scholar
  9. 9.
    Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques. ACM Trans. Inf. Syst. 20(4), 422–446 (2002)CrossRefGoogle Scholar
  10. 10.
    Komamizu, T., Okumura, S., Amagasa, T., Kitagawa, H.: FORK: feedback-aware ObjectRank-based keyword search over linked data. In: Sung, W.K., et al. (eds.) AIRS 2017. LNCS, vol. 10648, pp. 58–70. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70145-5_5CrossRefGoogle Scholar
  11. 11.
    Kotov, A.: Knowledge graph entity representation and retrieval. In: Tutorial Chapter, RuSSIR 2016 (2016)Google Scholar
  12. 12.
    Li, J., Dani, H., Hu, X., Tang, J., Chang, Y., Liu, H.: Attributed network embedding for learning in a dynamic environment. In: CIKM 2017, pp. 387–396 (2017)Google Scholar
  13. 13.
    Nguyen, P., Tomeo, P., Noia, T.D., Sciascio, E.D.: An evaluation of SimRank and personalized PageRank to build a recommender system for the web of Data. In: WWW 2015, pp. 1477–1482 (2015)Google Scholar
  14. 14.
    Nikolaev, F., Kotov, A., Zhiltsov, N.: Parameterized fielded term dependence models for ad-hoc entity retrieval from knowledge graph. In: SIGIR 2016, pp. 435–444 (2016)Google Scholar
  15. 15.
    Noia, T.D., Ostuni, V.C., Tomeo, P., Sciascio, E.D.: SPrank: semantic path-based ranking for top-N recommendations using linked open data. ACM TIST 8(1), 9:1–9:34 (2016)Google Scholar
  16. 16.
    Passant, A.: Measuring semantic distance on linking data and using it for resources recommendations. In: AAAI Spring Symposium 2010 (2010)Google Scholar
  17. 17.
    Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: SIGKDD 2014, pp. 701–710 (2014)Google Scholar
  18. 18.
    Pound, J., Mika, P., Zaragoza, H.: Ad-hoc object retrieval in the web of data. In: WWW 2010, pp. 771–780 (2010)Google Scholar
  19. 19.
    Raviv, H., Kurland, O., Carmel, D.: Document retrieval using entity-based language models. In: SIGIR 2016, pp. 65–74 (2016)Google Scholar
  20. 20.
    Ristoski, P., Paulheim, H.: RDF2Vec: RDF graph embeddings for data mining. In: Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 498–514. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46523-4_30CrossRefGoogle Scholar
  21. 21.
    Robertson, S.E., Zaragoza, H.: The probabilistic relevance framework: BM25 and beyond. Found. Trends Inf. Retrieval 3(4), 333–389 (2009)CrossRefGoogle Scholar
  22. 22.
    Sartori, E., Velegrakis, Y., Guerra, F.: Entity-based keyword search in web documents. Trans. Comput. Collect. Intell. 21, 21–49 (2016)Google Scholar
  23. 23.
    Thalhammer, A., Lasierra, N., Rettinger, A.: LinkSUM: using link analysis to summarize entity data. In: Bozzon, A., Cudre-Maroux, P., Pautasso, C. (eds.) ICWE 2016. LNCS, vol. 9671, pp. 244–261. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-38791-8_14CrossRefGoogle Scholar
  24. 24.
    Tong, H., Faloutsos, C., Pan, J.: Random walk with restart: fast solutions and applications. Knowl. Inf. Syst. 14(3), 327–346 (2008)CrossRefGoogle Scholar
  25. 25.
    Yang, C., Liu, Z., Zhao, D., Sun, M., Chang, E.Y.: Network representation learning with rich text information. In: IJCAI 2015, pp. 2111–2117 (2015)Google Scholar
  26. 26.
    Yoon, M., Jung, J., Kang, U.: TPA: two phase approximation for random walk with restart. CoRR abs/1708.02574 (2017). http://arxiv.org/abs/1708.02574

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Nagoya UniversityNagoyaJapan

Personalised recommendations