Advertisement

A Local-Global Principle for the Real Continuum

  • Olivier Rioul
  • José Carlos Magossi
Chapter
Part of the Trends in Logic book series (TREN, volume 47)

Abstract

We discuss the implications of a local-global (or global-limit) principle for proving the basic theorems of real analysis. The aim is to improve the set of available tools in real analysis, where the local-global principle is used as a unifying principle from which the other completeness axioms and several classical theorems are proved in a fairly direct way. As a consequence, the study of the local-global concept can help establish better pedagogical approaches for teaching classical analysis.

Notes

Acknowledgements

The authors would like to thank Pete Clark for his detailed review of the paper and his many useful comments and suggestions.

References

  1. 1.
    Andre, N.R., M.E. Susannah and E.P. Adam. 2013. An Analysis of the First Proofs of the Heine-Borel Theorem. Convergence, vol. 10 Mathematical Association of America.Google Scholar
  2. 2.
    Bartle, R.G. 1964, 1976. The Elements of Real Analysis. Wiley.Google Scholar
  3. 3.
    Bers, L. 1967. On avoiding the mean value theorem. American Mathematical Monthly 74: 5, 583.CrossRefGoogle Scholar
  4. 4.
    Bottazzini, U. 1986. The Higher Calculus: A History of Real and Complex Analysis from Euler to Weierstrass. Springer.Google Scholar
  5. 5.
    Clark, P.L. 2011. The instructor’s guide to real induction. Preprint.Google Scholar
  6. 6.
    Cohen, L.W. 1967. On being mean to the mean value theorem. American Mathematical Monthly 74 (5): 581–582.CrossRefGoogle Scholar
  7. 7.
    Courant, R., and F. John. 1965. Introduction to Calculus and Analysis I. Wiley. Springer (1989).Google Scholar
  8. 8.
    Dedekind, R. 1901. Essays on the theory of numbers-Continuity and Irrational Numbers – The Nature and Meaning of Numbers. The Open Court Publishing Company. Dover Publications (1963, 2010).Google Scholar
  9. 9.
    Dieudonné, J. 1960, 1969. Foundations of Modern Analysis. Academic Press.Google Scholar
  10. 10.
    Duren, W.L. 1957. Mathematical induction in sets. American Mathematical Monthly 64 (8): 19–22.CrossRefGoogle Scholar
  11. 11.
    Ford, L.R. 1957. Interval-additive propositions. American Mathematical Monthly 64 (2): 106–108.CrossRefGoogle Scholar
  12. 12.
    Gordon, R.A. 1994. The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Graduate Studies in Mathematics, vol. 4, American Mathematical Society.Google Scholar
  13. 13.
    Gordon, R.A. 1998. The use of tagged partitions in elementary real analysis. American Mathematical Monthly 105 (2): 107–117.CrossRefGoogle Scholar
  14. 14.
    Grabiner, J.V. 1983. Who gave you the epsilon? Cauchy and the origins of rigorous calculus. American Mathematical Monthly 91: 185–194.CrossRefGoogle Scholar
  15. 15.
    Guedes de Figueiredo, D. 1973, 1996. Análise I, LTC Editora.Google Scholar
  16. 16.
    Guyou, C. 1946. Algèbre et Analyse à l’Usage des Candidats aux Grandes Écoles. Paris: Vuibert.Google Scholar
  17. 17.
    Hathaway, D. 2011. Using continuity induction. The College Mathematics Journal 42 (3): 240–242.CrossRefGoogle Scholar
  18. 18.
    Henstock, R. 1963. Theory of Integration. Butterworths.Google Scholar
  19. 19.
    Jungck, G. 1966. Interval induction. American Mathematical Monthly 73 (3): 295–297.CrossRefGoogle Scholar
  20. 20.
    Kalantari, I. 2007. Induction over the continuum. In Induction, Algorithmic Learning Theory, and Philosophy, chap. 5, pp. 145–154. Springer.Google Scholar
  21. 21.
    Kimber, J.E. 1965. Two extended Bolzano-Weierstrass theorems. American Mathematical Monthly 72 (9): 1007–1012.Google Scholar
  22. 22.
    Klein, F. 1895. Ueber Arithmetisirung der Mathematik. In Göttinger Nachrichten (Geschäftliche Mittheilungen), p. 82.Google Scholar
  23. 23.
    Kurzweil, J. 1957. Generalized ordinary differential equations and continuous dependence on a parameter. Czechoslovak Mathematical Journal 7 (3): 418–449.Google Scholar
  24. 24.
    Lages Lima, E. 1989. Análise Real I. Coleção Matemática Universitária.Google Scholar
  25. 25.
    Lang, S. 1968. Analysis I. Addison-Wesley, Springer (1983, 1997).Google Scholar
  26. 26.
    Leinfelder, H. 1982. A unifying principle in real analysis. Real Analysis Exchange 8: 511–518.Google Scholar
  27. 27.
    Lützen, J. 2003. The foundation of analysis in the 19th century. In A History of Analysis, chap. 6. Edited by Jahnke, H.N., pp. 155–195. American Mathematical Society.Google Scholar
  28. 28.
    Moss, R., and G. Roberts. 1968. A creeping lemma. American Mathematical Monthly 75: 649–652.Google Scholar
  29. 29.
    Rudin, W. 1953, 1964, 1976. Principles of Mathematical Analysis. McGraw-Hill.Google Scholar
  30. 30.
    Shanahan, P. 1972. A unified proof of several basic theorems of real analysis. American Mathematical Monthly 79 (8): 895–898.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Télécom ParisTechUniversité Paris-SaclayParisFrance
  2. 2.Faculdade de TecnologiaUnicampLimeiraBrasil

Personalised recommendations