Advertisement

Sodium Hypochlorite

  • Günter Kampf
Chapter

Abstract

Sodium hypochlorite is mostly bactericidal at 5,000 mg/l (30 min) and yeasticidal at 1,000 mg/l (5 min). An almost comprehensive fungicidal activity was seen with 30,000 mg/l (10 min). High MIC values indicating tolerance to sodium hypochlorite have been reported for Methylobacterium spp. and R. erythropolis. Epidemiological cut-off values to determine acquired resistance have been proposed for eight species (4,100 or 8,200 mg/l active chlorine). Resistance to sodium hypochlorite is explained by genes which also involved in resistance to hydrogen peroxide. No cross-tolerance to antibiotics has been reported in S. aureus but in selected strains of Salmonella spp. In most bacterial species, there is no or only a small MIC increase after low-level exposure. Low-level exposure can induce the VBNC state in E. coli with enhanced antibiotic tolerance. Cross-tolerance can be found to benzalkonium chloride, another quaternary ammonium compound and alkylamine (L. monocytogenes) or sodium nitrite and hydrogen peroxide (E. coli). Sodium hypochlorite can increase biofilm formation in E. coli, MRSA and S. Typhimurium, whereas it is inhibited in E. faecalis and Candida spp. Biofilm removal is variable in single-species biofilms and very poor in mixed natural biofilms. The potential to cause biofilm fixation is unknown.

References

  1. 1.
    Aarnisalo K, Lundén J, Korkeala H, Wirtanen G (2007) Susceptibility of Listeria monocytogenes strains to disinfectants and chlorinated alkaline cleaners at cold temperatures. LWT Food Sci Technol 40(6):1041–1048CrossRefGoogle Scholar
  2. 2.
    Akamatsu T, Tabata K, Hironga M, Kawakami H, Uyeda M (1996) Transmission of Helicobacter pylori infection via flexible fiberoptic endoscopy. Am J Infect Control 24(5):396–401CrossRefPubMedGoogle Scholar
  3. 3.
    Akhtar M, Maserati A, Diez-Gonzalez F, Sampedro F (2016) Does antibiotic resistance influence shiga-toxigenic Escherichia coli O26 and O103 survival to stress environments? Food Control 68:330–336.  https://doi.org/10.1016/j.foodcont.2016.04.011CrossRefGoogle Scholar
  4. 4.
    Almatroudi A, Gosbell IB, Hu H, Jensen SO, Espedido BA, Tahir S, Glasbey TO, Legge P, Whiteley G, Deva A, Vickery K (2016) Staphylococcus aureus dry-surface biofilms are not killed by sodium hypochlorite: implications for infection control. J Hosp Infect 93(3):263–270.  https://doi.org/10.1016/j.jhin.2016.03.020CrossRefPubMedGoogle Scholar
  5. 5.
    Alonso-Calleja C, Guerrero-Ramos E, Alonso-Hernando A, Capita R (2015) Adaptation and cross-adaptation of Escherichia coli ATCC 12806 to several food-grade biocides. Food Control 56(Supplement C):86–94.  https://doi.org/10.1016/j.foodcont.2015.03.012
  6. 6.
    Antony T, Srikanth P, Edwin B (2014) Mycobactericidal activity of various concentrations of bleach. Indian J Tuberc 61(3):257–260PubMedGoogle Scholar
  7. 7.
    Aparecida Guimaraes M, Rocchetto Coelho L, Rodrigues Souza R, Ferreira-Carvalho BT, Marie Sa Figueiredo A (2012) Impact of biocides on biofilm formation by methicillin-resistant Staphylococcus aureus (ST239-SCCmecIII) isolates. Microbiol Immunol 56(3):203–207.  https://doi.org/10.1111/j.1348-0421.2011.00423.xCrossRefPubMedGoogle Scholar
  8. 8.
    Arias-Moliz MT, Ordinola-Zapata R, Baca P, Ruiz-Linares M, Garcia Garcia E, Hungaro Duarte MA, Monteiro Bramante C, Ferrer-Luque CM (2015) Antimicrobial activity of Chlorhexidine, Peracetic acid and Sodium hypochlorite/etidronate irrigant solutions against Enterococcus faecalis biofilms. Int Endod J 48(12):1188–1193.  https://doi.org/10.1111/iej.12424CrossRefPubMedGoogle Scholar
  9. 9.
    Arioli S, Elli M, Ricci G, Mora D (2013) Assessment of the susceptibility of lactic acid bacteria to biocides. Int J Food Microbiol 163(1):1–5.  https://doi.org/10.1016/j.ijfoodmicro.2013.02.002CrossRefPubMedGoogle Scholar
  10. 10.
    Arruda CNF, Salles MM, Badaro MM, de Cassia Oliveira V, Macedo AP, Silva-Lovato CH, de Freitas Oliveira Paranhos H (2017) Effect of sodium hypochlorite and Ricinus communis solutions on control of denture biofilm: a randomized crossover clinical trial. J Prosthet Dent 117(6):729–734.  https://doi.org/10.1016/j.prosdent.2016.08.035CrossRefPubMedGoogle Scholar
  11. 11.
    Arslan S, Ozbilge H, Kaya EG, Er O (2011) In vitro antimicrobial activity of propolis, BioPure MTAD, sodium hypochlorite, and chlorhexidine on Enterococcus faecalis and Candida albicans. Saudi Med J 32(5):479–483PubMedGoogle Scholar
  12. 12.
    Ashok R, Ganesh A, Deivanayagam K (2017) Bactericidal effect of different anti-microbial agents on Fusobacterium nucleatum biofilm. Cureus 9(6):e1335.  https://doi.org/10.7759/cureus.1335CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Avrain L, Allain L, Vernozy-Rozand C, Kempf I (2003) Disinfectant susceptibility testing of avian and swine Campylobacter isolates by a filtration method. Vet Microbiol 96(1):35–40CrossRefPubMedGoogle Scholar
  14. 14.
    Ban GH, Kang DH (2016) Effect of sanitizer combined with steam heating on the inactivation of foodborne pathogens in a biofilm on stainless steel. Food Microbiol 55:47–54.  https://doi.org/10.1016/j.fm.2015.11.003CrossRefPubMedGoogle Scholar
  15. 15.
    Bardouniotis E, Huddleston W, Ceri H, Olson ME (2001) Characterization of biofilm growth and biocide susceptibility testing of Mycobacterium phlei using the MBEC assay system. FEMS Microbiol Lett 203(2):263–267PubMedGoogle Scholar
  16. 16.
    Best M, Kennedy ME, Coates F (1990) Efficacy of a variety of disinfectants against Listeria spp. Appl Environ Microbiol 56(2):377–380PubMedPubMedCentralGoogle Scholar
  17. 17.
    Best M, Sattar SA, Springthorpe VS, Kennedy ME (1988) Comparative mycobactericidal efficacy of chemical disinfectants in suspension and carrier tests. Appl Environ Microbiol 54:2856–2858PubMedPubMedCentralGoogle Scholar
  18. 18.
    Best M, Sattar SA, Springthorpe VS, Kennedy ME (1990) Efficacies of selected disinfectants against Mycobacterium tuberculosis. J Clin Microbiol 28(10):2234–2239PubMedPubMedCentralGoogle Scholar
  19. 19.
    Best M, Springthorpe VS, Sattar SA (1994) Feasibility of a combined carrier test for disinfectants: studies with a mixture of five types of microorganisms. Am J Infect Control 22(3):152–162CrossRefPubMedGoogle Scholar
  20. 20.
    Bhatia M, Mishra B, Thakur A, Dogra V, Loomba PS (2017) Evaluation of susceptibility of glycopeptide-resistant and glycopeptide-sensitive enterococci to commonly used biocides in a super-speciality hospital: a pilot study. J Nat Sci, Biol, Med 8(2):199–202.  https://doi.org/10.4103/0976-9668.210010CrossRefGoogle Scholar
  21. 21.
    Bloomfield SF, Miller EA (1989) A comparison of hypochlorite and phenolic disinfectants for disinfection of clean and soiled surfaces and blood spillages. J Hosp Infect 13(3):231–239CrossRefPubMedGoogle Scholar
  22. 22.
    Bore E, Langsrud S (2005) Characterization of micro-organisms isolated from dairy industry after cleaning and fogging disinfection with alkyl amine and peracetic acid. J Appl Microbiol 98(1):96–105.  https://doi.org/10.1111/j.1365-2672.2004.02436.xCrossRefPubMedGoogle Scholar
  23. 23.
    Borgmann-Strahsen R (2003) Comparative assessment of deferent biocides in swimming pool water. Int Biodeter Biodegr 51(4):291–297CrossRefGoogle Scholar
  24. 24.
    Brugnoni LI, Cubitto MA, Lozano JE (2012) Candida krusei development on turbulent flow regimes: Biofilm formation and efficiency of cleaning and disinfection program. J Food Eng 111(4):546–552.  https://doi.org/10.1016/j.jfoodeng.2012.03.023CrossRefGoogle Scholar
  25. 25.
    Buergers R, Rosentritt M, Schneider-Brachert W, Behr M, Handel G, Hahnel S (2008) Efficacy of denture disinfection methods in controlling Candida albicans colonization in vitro. Acta Odontol Scand 66(3):174–180.  https://doi.org/10.1080/00016350802165614CrossRefPubMedGoogle Scholar
  26. 26.
    Bukhary S, Balto H (2017) Antibacterial efficacy of Octenisept, Alexidine, Chlorhexidine, and Sodium Hypochlorite against Enterococcus faecalis Biofilms. J Endod 43(4):643–647.  https://doi.org/10.1016/j.joen.2016.09.013CrossRefPubMedGoogle Scholar
  27. 27.
    Bundgaard-Nielsen K, Nielsen PV (1996) Fungicidal effect of 15 disinfectants against 25 fungal contaminants commonly found in bread and cheese manufacturing. J Food Prot 59(3):268–275CrossRefPubMedGoogle Scholar
  28. 28.
    Burgers R, Witecy C, Hahnel S, Gosau M (2012) The effect of various topical peri-implantitis antiseptics on Staphylococcus epidermidis, Candida albicans, and Streptococcus sanguinis. Arch Oral Biol 57(7):940–947.  https://doi.org/10.1016/j.archoralbio.2012.01.015CrossRefPubMedGoogle Scholar
  29. 29.
    Buzón-Durán L, Alonso-Calleja C, Riesco-Peláez F, Capita R (2017) Effect of sub-inhibitory concentrations of biocides on the architecture and viability of MRSA biofilms. Food Microbiol 65(Supplement C):294–301.  https://doi.org/10.1016/j.fm.2017.01.003
  30. 30.
    Calero-Caceres W, Muniesa M (2016) Persistence of naturally occurring antibiotic resistance genes in the bacteria and bacteriophage fractions of wastewater. Water Res 95:11–18.  https://doi.org/10.1016/j.watres.2016.03.006CrossRefPubMedGoogle Scholar
  31. 31.
    Capita R, Buzon-Duran L, Riesco-Pelaez F, Alonso-Calleja C (2017) Effect of Sub-lethal concentrations of biocides on the structural parameters and viability of the biofilms formed by Salmonella Typhimurium. Foodborne Pathog Dis 14(6):350–356.  https://doi.org/10.1089/fpd.2016.2241
  32. 32.
    Capita R, Riesco-Pelaez F, Alonso-Hernando A, Alonso-Calleja C (2014) Exposure of Escherichia coli ATCC 12806 to sublethal concentrations of food-grade biocides influences its ability to form biofilm, resistance to antimicrobials, and ultrastructure. Appl Environ Microbiol 80(4):1268–1280.  https://doi.org/10.1128/aem.02283-13CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Chamakura K, Perez-Ballestero R, Luo Z, Bashir S, Liu J (2011) Comparison of bactericidal activities of silver nanoparticles with common chemical disinfectants. Colloids Surf B 84(1):88–96.  https://doi.org/10.1016/j.colsurfb.2010.12.020CrossRefGoogle Scholar
  34. 34.
    Christo JE, Zilm PS, Sullivan T, Cathro PR (2016) Efficacy of low concentrations of sodium hypochlorite and low-powered Er, Cr:YSGG laser activated irrigation against an Enterococcus faecalis biofilm. Int Endod J 49(3):279–286.  https://doi.org/10.1111/iej.12447CrossRefPubMedGoogle Scholar
  35. 35.
    Coaguila-Llerena H, Stefanini da Silva V, Tanomaru-Filho M, Guerreiro Tanomaru JM, Faria G (2018) Cleaning capacity of octenidine as root canal irrigant: a scanning electron microscopy study. Microsc Res Tech.  https://doi.org/10.1002/jemt.23007CrossRefPubMedGoogle Scholar
  36. 36.
    Coates D (1985) A comparison of sodium hypochlorite and sodium dichloroisocyanurate products. J Hosp Infect 6(1):31–40CrossRefPubMedGoogle Scholar
  37. 37.
    Coetzee E, Whitelaw A, Kahn D, Rode H (2012) The use of topical, un-buffered sodium hypochlorite in the management of burn wound infection. Burns: J Int Soc Burn Injuries 38(4):529–533.  https://doi.org/10.1016/j.burns.2011.10.008CrossRefGoogle Scholar
  38. 38.
    Cooper IR, Hanlon GW (2010) Resistance of Legionella pneumophila serotype 1 biofilms to chlorine-based disinfection. J Hosp Infect 74(2):152–159.  https://doi.org/10.1016/j.jhin.2009.07.005CrossRefPubMedGoogle Scholar
  39. 39.
    Corcoran M, Morris D, De Lappe N, O’Connor J, Lalor P, Dockery P, Cormican M (2014) Commonly used disinfectants fail to eradicate Salmonella enterica biofilms from food contact surface materials. Appl Environ Microbiol 80(4):1507–1514.  https://doi.org/10.1128/aem.03109-13CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Cruz CD, Fletcher GC (2012) Assessing manufacturers’ recommended concentrations of commercial sanitizers on inactivation of Listeria monocytogenes. Food Control 26(1):194–199.  https://doi.org/10.1016/j.foodcont.2012.01.041CrossRefGoogle Scholar
  41. 41.
    da Silva PM, Acosta EJ, Pinto Lde R, Graeff M, Spolidorio DM, Almeida RS, Porto VC (2011) Microscopical analysis of Candida albicans biofilms on heat-polymerised acrylic resin after chlorhexidine gluconate and sodium hypochlorite treatments. Mycoses 54(6):e712–e717.  https://doi.org/10.1111/j.1439-0507.2010.02005.x [doi]CrossRefPubMedGoogle Scholar
  42. 42.
    de Freitas Fernandes FS, Pereira-Cenci T, da Silva WJ, Filho AP, Straioto FG, Del Bel Cury AA (2011) Efficacy of denture cleansers on Candida spp. biofilm formed on polyamide and polymethyl methacrylate resins. J Prosthet Dent 105(1):51–58Google Scholar
  43. 43.
    de Souza EL, Meira QG, de Medeiros Barbosa I, Athayde AJ, da Conceicao ML, de Siqueira Junior JP (2014) Biofilm formation by Staphylococcus aureus from food contact surfaces in a meat-based broth and sensitivity to sanitizers. Braz J Microbiol: [Publication of the Brazilian Society for Microbiology] 45(1):67–75CrossRefGoogle Scholar
  44. 44.
    Decker EM, Bartha V, Kopunic A, von Ohle C (2017) Antimicrobial efficiency of mouthrinses versus and in combination with different photodynamic therapies on periodontal pathogens in an experimental study. J Periodontal Res 52(2):162–175.  https://doi.org/10.1111/jre.12379CrossRefPubMedGoogle Scholar
  45. 45.
    Degrossoli A, Muller A, Xie K, Schneider JF, Bader V, Winklhofer KF, Meyer AJ, Leichert LI (2018) Neutrophil-generated HOCl leads to non-specific thiol oxidation in phagocytized bacteria. eLife 7.  https://doi.org/10.7554/elife.32288
  46. 46.
    DeQueiroz GA, Day DF (2007) Antimicrobial activity and effectiveness of a combination of sodium hypochlorite and hydrogen peroxide in killing and removing Pseudomonas aeruginosa biofilms from surfaces. J Appl Microbiol 103(4):794–802.  https://doi.org/10.1111/j.1365-2672.2007.03299.xCrossRefPubMedGoogle Scholar
  47. 47.
    Dominciano LCC, Oliveira CAF, Lee SH, Corassin CH (2016) Individual and combined antimicrobial activity of Oleuropein and chemical sanitizers. J Food Chem Nanotechnol 2(3):124–127Google Scholar
  48. 48.
    dos Anjos MM, Ruiz SP, Nakamura CV, de Abreu Filho BA (2013) Resistance of Alicyclobacillus acidoterrestris spores and biofilm to industrial sanitizers. J Food Prot 76(8):1408–1413.  https://doi.org/10.4315/0362-028x.jfp-13-020CrossRefPubMedGoogle Scholar
  49. 49.
    Dukan S, Touati D (1996) Hypochlorous acid stress in Escherichia coli: resistance, DNA damage, and comparison with hydrogen peroxide stress. J Bacteriol 178(21):6145–6150CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Ekizoglu MT, Özalp M, Sultan N, Gür D (2003) An investigation of the bactericidal effect of certain antiseptics and disinfectants on some hospital isolates of gram-negative bacteria. Infect Control Hosp Epidemiol 24(3):225–227CrossRefPubMedGoogle Scholar
  51. 51.
    Eldeniz AU, Guneser MB, Akbulut MB (2015) Comparative antifungal efficacy of light-activated disinfection and octenidine hydrochloride with contemporary endodontic irrigants. Lasers Med Sci 30(2):669–675.  https://doi.org/10.1007/s10103-013-1387-1CrossRefPubMedGoogle Scholar
  52. 52.
    Elli M, Arioli S, Guglielmetti S, Mora D (2013) Biocide susceptibility in bifidobacteria of human origin. J Glob Antimicrob Res 1(2):97–101.  https://doi.org/10.1016/j.jgar.2013.03.007CrossRefGoogle Scholar
  53. 53.
    Espigares E, Bueno A, Espigares M, Galvez R (2006) Isolation of Salmonella serotypes in wastewater and effluent: effect of treatment and potential risk. Int J Hyg Environ Health 209(1):103–107.  https://doi.org/10.1016/j.ijheh.2005.08.006CrossRefPubMedGoogle Scholar
  54. 54.
    Estrela CR, Estrela C, Reis C, Bammann LL, Pecora JD (2003) Control of microorganisms in vitro by endodontic irrigants. Braz Dent J 14(3):187–192CrossRefPubMedGoogle Scholar
  55. 55.
    European Chemicals Agency (ECHA) Sodium hypochlorite. Substance information. https://echa.europa.eu/substance-information/-/substanceinfo/100.028.790. Accessed 27 Oct 2017
  56. 56.
    Fatemi P, Frank JF (1999) Inactivation of Listeria monocytogenes/Pseudomonas biofilms by peracid sanitizers. J Food Prot 62(7):761–765CrossRefPubMedGoogle Scholar
  57. 57.
    Ferguson JW, Hatton JF, Gillespie MJ (2002) Effectiveness of intracanal irrigants and medications against the yeast Candida albicans. J Endod 28(2):68–71.  https://doi.org/10.1097/00004770-200202000-00004CrossRefPubMedGoogle Scholar
  58. 58.
    Ferreira GLS, Rosalen PL, Peixoto LR, Perez A, Carlo FGC, Castellano LRC, Lima JM, Freires IA, Lima EO, Castro RD (2017) Antibiofilm activity and mechanism of action of the disinfectant chloramine T on Candida spp., and Its toxicity against human cells. Molecules (Basel, Switzerland) 22(9).  https://doi.org/10.3390/molecules22091527
  59. 59.
    Ficici SE, Durmaz G, Ilhan S, Akgun Y, Kosgeroglu N (2002) Bactericidal effects of commonly used antiseptics/disinfectants on nosocomial bacterial pathogens and the relationship between antibacterial and biocide resistance. Mikrobiyoloji Bul 36(3–4):259–269Google Scholar
  60. 60.
    Fidalgo SG, Longbottom CJ, Rjley TV (2002) Susceptibility of Erysipelothrix rhusiopathiae to antimicrobial agents and home disinfectants. Pathology 34(5):462–465CrossRefPubMedGoogle Scholar
  61. 61.
    Frough-Reyhani M, Ghasemi N, Soroush-Barhaghi M, Amini M, Gholizadeh Y (2016) Antimicrobial efficacy of different concentration of sodium hypochlorite on the biofilm of Enterococcus faecalis at different stages of development. J Clin Exp Dent 8(5):e480–e484.  https://doi.org/10.4317/jced.53158CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Fu Y, Deering AJ, Bhunia AK, Yao Y (2017) Biofilm of Escherichia coli O157:H7 on cantaloupe surface is resistant to lauroyl arginate ethyl and sodium hypochlorite. Int J Food Microbiol 260:11–16.  https://doi.org/10.1016/j.ijfoodmicro.2017.08.008CrossRefPubMedGoogle Scholar
  63. 63.
    Gao H, Liu C (2014) Biochemical and morphological alteration of Listeria monocytogenes under environmental stress caused by chloramine-T and sodium hypochlorite. Food Control 46(Supplement C):455–461.  https://doi.org/10.1016/j.foodcont.2014.05.016
  64. 64.
    Garvey MI, Ashford R, Bradley CW, Bradley CR, Martin TA, Walker J, Jumaa P (2016) Decontamination of heater-cooler units associated with contamination by atypical mycobacteria. J Hosp Infect 93(3):229–234.  https://doi.org/10.1016/j.jhin.2016.02.007CrossRefPubMedGoogle Scholar
  65. 65.
    Ghivari SB, Bhattacharya H, Bhat KG, Pujar MA (2017) Antimicrobial activity of root canal irrigants against biofilm forming pathogens- An in vitro study. J Conservative Dent: JCD 20(3):147–151.  https://doi.org/10.4103/jcd.jcd_38_16CrossRefGoogle Scholar
  66. 66.
    Gkana EN, Giaouris ED, Doulgeraki AI, Kathariou S, Nychas GJE (2017) Biofilm formation by Salmonella Typhimurium and Staphylococcus aureus on stainless steel under either mono- or dual-species multi-strain conditions and resistance of sessile communities to sub-lethal chemical disinfection. Food Control 73(Part B):838–846.  https://doi.org/10.1016/j.foodcont.2016.09.038
  67. 67.
    Gomes IB, Simoes M, Simoes LC (2016) The effects of sodium hypochlorite against selected drinking water-isolated bacteria in planktonic and sessile states. Sci Total Environ 565:40–48.  https://doi.org/10.1016/j.scitotenv.2016.04.136CrossRefPubMedGoogle Scholar
  68. 68.
    Gosau M, Hahnel S, Schwarz F, Gerlach T, Reichert TE, Burgers R (2010) Effect of six different peri-implantitis disinfection methods on in vivo human oral biofilm. Clin Oral Implant Res 21(8):866–872.  https://doi.org/10.1111/j.1600-0501.2009.01908.xCrossRefGoogle Scholar
  69. 69.
    Guneser MB, Akbulut MB, Eldeniz AU (2016) Antibacterial effect of chlorhexidine-cetrimide combination, Salvia officinalis plant extract and octenidine in comparison with conventional endodontic irrigants. Dent Mater J 35(5):736–741.  https://doi.org/10.4012/dmj.2015-159CrossRefPubMedGoogle Scholar
  70. 70.
    Gupta AK, Ahmad I, Summerbell RC (2002) Fungicidal activities of commonly used disinfectants and antifungal pharmaceutical spray preparations against clinical strains of Aspergillus and Candida species. Med Mycol 40(2):201–208CrossRefPubMedGoogle Scholar
  71. 71.
    Gutierrez-Martin CB, Yubero S, Martinez S, Frandoloso R, Rodriguez-Ferri EF (2011) Evaluation of efficacy of several disinfectants against Campylobacter jejuni strains by a suspension test. Res Vet Sci 91(3):e44–e47.  https://doi.org/10.1016/j.rvsc.2011.01.020CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Hahnel S, Rosentritt M, Burgers R, Handel G, Lang R (2012) Candida albicans biofilm formation on soft denture liners and efficacy of cleaning protocols. Gerodontology 29(2):e383–e391.  https://doi.org/10.1111/j.1741-2358.2011.00485.xCrossRefPubMedGoogle Scholar
  73. 73.
    Hoffman PN, Death JE, DC (1981) The stability of sodium hypochlorite solutions. In: Collins CH, Allwood MC, Bloomfield SF, Fox A (eds) Disinfectants: their use and evaluation of effectiveness. Academic Press, London, pp 77–83Google Scholar
  74. 74.
    Iniguez-Moreno M, Avila-Novoa MG, Iniguez-Moreno E, Guerrero-Medina PJ, Gutierrez-Lomeli M (2017) Antimicrobial activity of disinfectants commonly used in the food industry in Mexico. J Glob Antimicrob Res 10:143–147.  https://doi.org/10.1016/j.jgar.2017.05.013CrossRefGoogle Scholar
  75. 75.
    Italy (2017) Assessment report. Active chlorine released from sodium hypochlorite. Product-type 2.Google Scholar
  76. 76.
    Izano EA, Shah SM, Kaplan JB (2009) Intercellular adhesion and biocide resistance in nontypeable Haemophilus influenzae biofilms. Microb Pathog 46(4):207–213.  https://doi.org/10.1016/j.micpath.2009.01.004CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Jaglic Z, Červinková D, Vlková H, Michu E, Kunová G, Babák V (2012) Bacterial biofilms resist oxidising agents due to the presence of organic matter. Czech J Food Sci 30(2):178–187CrossRefGoogle Scholar
  78. 78.
    Jayahari NK, Niranjan NT, Kanaparthy A (2014) The efficacy of passion fruit juice as an endodontic irrigant compared with sodium hypochlorite solution: an in vitro study. J Invest Clin Dent 5(2):154–160.  https://doi.org/10.1111/jicd.12023CrossRefGoogle Scholar
  79. 79.
    Jomha MY, Yusef H, Holail H (2014) Antimicrobial and biocide resistance of bacteria in a Lebanese tertiary care hospital. J Glob Ant Res 2(4):299–305.  https://doi.org/10.1016/j.jgar.2014.09.001CrossRefGoogle Scholar
  80. 80.
    Joy Sinha D, K DSN, Jaiswal N, Vasudeva A, Prabha Tyagi S, Pratap Singh U (2017) Antibacterial effect of Azadirachta indica (Neem) or Curcuma longa (Turmeric) against Enterococcus faecalis compared with that of 5% sodium hypochlorite or 2% chlorhexidine in vitro. Bull Tokyo Dent Coll 58(2):103–109Google Scholar
  81. 81.
    Juncker JC (2017) COMMISSION IMPLEMENTING REGULATION (EU) 2017/1273 of 14 July 2017 approving active chlorine released from sodium hypochlorite as an existing active substance for use in biocidal products of product-types 1, 2, 3, 4 and 5. Off J Eur Union 60(L 184):13–16Google Scholar
  82. 82.
    Jurczyk K, Nietzsche S, Ender C, Sculean A, Eick S (2016) In-vitro activity of sodium-hypochlorite gel on bacteria associated with periodontitis. Clin Oral Invest 20(8):2165–2173.  https://doi.org/10.1007/s00784-016-1711-9CrossRefGoogle Scholar
  83. 83.
    Kalkanci A, Elli M, Adil Fouad A, Yesilyurt E, Jabban Khalil I (2015) Assessment of susceptibility of mould isolates towards biocides. Journal de mycologie medicale 25(4):280–286.  https://doi.org/10.1016/j.mycmed.2015.08.001CrossRefPubMedGoogle Scholar
  84. 84.
    Kastbjerg VG, Gram L (2012) Industrial disinfectants do not select for resistance in Listeria monocytogenes following long term exposure. Int J Food Microbiol 160(1):11–15.  https://doi.org/10.1016/j.ijfoodmicro.2012.09.009CrossRefPubMedGoogle Scholar
  85. 85.
    Kastbjerg VG, Larsen MH, Gram L, Ingmer H (2010) Influence of sublethal concentrations of common disinfectants on expression of virulence genes in Listeria monocytogenes. Appl Environ Microbiol 76(1):303–309.  https://doi.org/10.1128/aem.00925-09CrossRefPubMedGoogle Scholar
  86. 86.
    Kean R, Sherry L, Townsend E, McKloud E, Short B, Akinbobola A, Mackay WG, Williams C, Jones BL, Ramage G (2018) Surface disinfection challenges for Candida auris: an in-vitro study. J Hosp Infect 98(4):433–436.  https://doi.org/10.1016/j.jhin.2017.11.015CrossRefPubMedGoogle Scholar
  87. 87.
    Khan S, Beattie TK, Knapp CW (2016) Relationship between antibiotic- and disinfectant-resistance profiles in bacteria harvested from tap water. Chemosphere 152:132–141.  https://doi.org/10.1016/j.chemosphere.2016.02.086CrossRefPubMedGoogle Scholar
  88. 88.
    Kiesow A, Sarembe S, Pizzey RL, Axe AS, Bradshaw DJ (2016) Material compatibility and antimicrobial activity of consumer products commonly used to clean dentures. J Prosthet Dent 115 (2):189–198.e188.  https://doi.org/10.1016/j.prosdent.2015.08.010
  89. 89.
    Koban I, Geisel MH, Holtfreter B, Jablonowski L, Hubner NO, Matthes R, Masur K, Weltmann KD, Kramer A, Kocher T (2013) Synergistic effects of nonthermal plasma and disinfecting agents against dental biofilms in vitro. ISRN Dent 2013:573262.  https://doi.org/10.1155/2013/573262CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Korukluoglu M, Sahan Y, Yigit A (2006) The fungicidal efficacy of various commercial disinfectants used in the food industry. Ann Microbiol 56(4):325–330CrossRefGoogle Scholar
  91. 91.
    Köse H, Yapar N (2017) The comparison of various disinfectants’ efficacy on Staphylococcus aureus and Pseudomonas aeruginosa biofilm layers. Turkish J Med Sci 47(4):1287–1294CrossRefGoogle Scholar
  92. 92.
    Kostaki M, Chorianopoulos N, Braxou E, Nychas GJ, Giaouris E (2012) Differential biofilm formation and chemical disinfection resistance of sessile cells of Listeria monocytogenes strains under monospecies and dual-species (with Salmonella enterica) conditions. Appl Environ Microbiol 78(8):2586–2595.  https://doi.org/10.1128/aem.07099-11CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Kramer A, Dissemond J, Kim S, Willy C, Mayer D, Papke R, Tuchmann F, Assadian O (2017) Consensus on wound antisepsis: update 2018. Skin Pharmacol Physiol 31(1):28–58.  https://doi.org/10.1159/000481545CrossRefPubMedGoogle Scholar
  94. 94.
    Kubota H, Senda S, Tokuda H, Uchiyama H, Nomura N (2009) Stress resistance of biofilm and planktonic Lactobacillus plantarum subsp. plantarum JCM 1149. Food Microbiol 26(6):592–597.  https://doi.org/10.1016/j.fm.2009.04.001CrossRefPubMedGoogle Scholar
  95. 95.
    Kusumaningrum HD, Paltinaite R, Koomen AJ, Hazeleger WC, Rombouts FM, Beumer RR (2003) Tolerance of Salmonella Enteritidis and Staphylococcus aureus to surface cleaning and household bleach. J Food Prot 66(12):2289–2295CrossRefPubMedGoogle Scholar
  96. 96.
    Lagace L, Jacques M, Mafu AA, Roy D (2006) Biofilm formation and biocides sensitivity of Pseudomonas marginalis isolated from a maple sap collection system. J Food Prot 69(10):2411–2416CrossRefPubMedGoogle Scholar
  97. 97.
    Lanker Klossner B, Widmer HR, Frey F (1997) Nondevelopment of resistance by bacteria during hospital use of povidone-iodine. Dermatology (Basel, Switzerland) 195(Suppl 2):10–13.  https://doi.org/10.1159/000246024
  98. 98.
    Leung CY, Chan YC, Samaranayake LP, Seneviratne CJ (2012) Biocide resistance of Candida and Escherichia coli biofilms is associated with higher antioxidative capacities. J Hosp Infect 81(2):79–86.  https://doi.org/10.1016/j.jhin.2011.09.014CrossRefPubMedGoogle Scholar
  99. 99.
    Liaqat I, Sabri AN (2008) Effect of biocides on biofilm bacteria from dental unit water lines. Curr Microbiol 56(6):619–624.  https://doi.org/10.1007/s00284-008-9136-6CrossRefPubMedGoogle Scholar
  100. 100.
    Lin F, Xu Y, Chang Y, Liu C, Jia X, Ling B (2017) Molecular characterization of reduced susceptibility to biocides in clinical isolates of Acinetobacter baumannii. Front Microbiol 8:1836.  https://doi.org/10.3389/fmicb.2017.01836CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Lin H, Ye C, Chen S, Zhang S, Yu X (2017) Viable but non-culturable E. coli induced by low level chlorination have higher persistence to antibiotics than their culturable counterparts. Environ Poll (Barking, Essex: 1987) 230:242–249.  https://doi.org/10.1016/j.envpol.2017.06.047
  102. 102.
    Lin W, Li S, Zhang S, Yu X (2016) Reduction in horizontal transfer of conjugative plasmid by UV irradiation and low-level chlorination. Water Res 91(Supplement C):331–338.  https://doi.org/10.1016/j.watres.2016.01.020
  103. 103.
    Liu Q, Liu M, Wu Q, Li C, Zhou T, Ni Y (2009) Sensitivities to biocides and distribution of biocide resistance genes in quaternary ammonium compound tolerant Staphylococcus aureus isolated in a teaching hospital. Scand J Infect Dis 41(6–7):403–409.  https://doi.org/10.1080/00365540902856545CrossRefPubMedGoogle Scholar
  104. 104.
    Locker J, Fitzgerald P, Sharp D (2014) Antibacterial validation of electrogenerated hypochlorite using carbon-based electrodes. Lett Appl Microbiol 59(6):636–641.  https://doi.org/10.1111/lam.12324CrossRefPubMedGoogle Scholar
  105. 105.
    Lunden J, Autio T, Markkula A, Hellstrom S, Korkeala H (2003) Adaptive and cross-adaptive responses of persistent and non-persistent Listeria monocytogenes strains to disinfectants. Int J Food Microbiol 82(3):265–272CrossRefPubMedGoogle Scholar
  106. 106.
    Luppens SB, Reij MW, van der Heijden RW, Rombouts FM, Abee T (2002) Development of a standard test to assess the resistance of Staphylococcus aureus biofilm cells to disinfectants. Appl Environ Microbiol 68(9):4194–4200CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Ma J, Tong Z, Ling J, Liu H, Wei X (2015) The effects of sodium hypochlorite and chlorhexidine irrigants on the antibacterial activities of alkaline media against Enterococcus faecalis. Arch Oral Biol 60(7):1075–1081.  https://doi.org/10.1016/j.archoralbio.2015.04.008CrossRefPubMedGoogle Scholar
  108. 108.
    Mariscal A, Carnero-Varo M, Gutierrez-Bedmar M, Garcia-Rodriguez A, Fernandez-Crehuet J (2007) A fluorescent method for assessing the antimicrobial efficacy of disinfectant against Escherichia coli ATCC 35218 biofilm. Appl Microbiol Biotechnol 77(1):233–240.  https://doi.org/10.1007/s00253-007-1137-zCrossRefPubMedGoogle Scholar
  109. 109.
    Mariscal A, Lopez-Gigosos RM, Carnero-Varo M, Fernandez-Crehuet J (2009) Fluorescent assay based on resazurin for detection of activity of disinfectants against bacterial biofilm. Appl Microbiol Biotechnol 82(4):773–783.  https://doi.org/10.1007/s00253-009-1879-xCrossRefPubMedGoogle Scholar
  110. 110.
    Mattei AS, Madrid IM, Santin R, Schuch LF, Meireles MC (2013) In vitro activity of disinfectants against Aspergillus spp. Braz J Microbiol: [Publication of the Brazilian Society for Microbiology] 44(2):481–484.  https://doi.org/10.1590/s1517-83822013000200024CrossRefGoogle Scholar
  111. 111.
    Matthes R, Jablonowski L, Koban I, Quade A, Hubner NO, Schlueter R, Weltmann KD, von Woedtke T, Kramer A, Kocher T (2015) In vitro treatment of Candida albicans biofilms on denture base material with volume dielectric barrier discharge plasma (VDBD) compared with common chemical antiseptics. Clin Oral Invest 19(9):2319–2326.  https://doi.org/10.1007/s00784-015-1463-yCrossRefGoogle Scholar
  112. 112.
    Mazaheritehrani E, Sala A, Orsi CF, Neglia RG, Morace G, Blasi E, Cermelli C (2014) Human pathogenic viruses are retained in and released by Candida albicans biofilm in vitro. Virus Res 179:153–160.  https://doi.org/10.1016/j.virusres.2013.10.018CrossRefPubMedGoogle Scholar
  113. 113.
    Mekonnen D, Admassu A, Wassie B, Biadglegne F (2015) Evaluation of the efficacy of bleach routinely used in health facilities against Mycobacterium tuberculosis isolates in Ethiopia. Pan Afr Med J 21:317.  https://doi.org/10.11604/pamj.2015.21.317.5456CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Melo RT, Mendonca EP, Monteiro GP, Siqueira MC, Pereira CB, Peres P, Fernandez H, Rossi DA (2017) Intrinsic and extrinsic aspects on Campylobacter jejuni Biofilms. Front Microbiol 8:1332.  https://doi.org/10.3389/fmicb.2017.01332CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Mercade M, Duran-Sindreu F, Kuttler S, Roig M, Durany N (2009) Antimicrobial efficacy of 4.2% sodium hypochlorite adjusted to pH 12, 7.5, and 6.5 in infected human root canals. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 107(2):295–298.  https://doi.org/10.1016/j.tripleo.2008.05.006CrossRefPubMedGoogle Scholar
  116. 116.
    Meylheuc T, Renault M, Bellon-Fontaine MN (2006) Adsorption of a biosurfactant on surfaces to enhance the disinfection of surfaces contaminated with Listeria monocytogenes. Int J Food Microbiol 109(1–2):71–78.  https://doi.org/10.1016/j.ijfoodmicro.2006.01.013CrossRefPubMedGoogle Scholar
  117. 117.
    Miyano N, Oie S, Kamiya A (2003) Efficacy of disinfectants and hot water against biofilm cells of Burkholderia cepacia. Biol Pharm Bull 26(5):671–674CrossRefPubMedGoogle Scholar
  118. 118.
    Mohmmed SA, Vianna ME, Penny MR, Hilton ST, Mordan N, Knowles JC (2016) A novel experimental approach to investigate the effect of different agitation methods using sodium hypochlorite as an irrigant on the rate of bacterial biofilm removal from the wall of a simulated root canal model. Dent Mater: Off Publ Acad Den Mater 32(10):1289–1300.  https://doi.org/10.1016/j.dental.2016.07.013CrossRefGoogle Scholar
  119. 119.
    Molina-González D, Alonso-Calleja C, Alonso-Hernando A, Capita R (2014) Effect of sub-lethal concentrations of biocides on the susceptibility to antibiotics of multi-drug resistant Salmonella enterica strains. Food Control 40(Supplement C):329–334.  https://doi.org/10.1016/j.foodcont.2013.11.046
  120. 120.
    Moore G, Schelenz S, Borman AM, Johnson EM, Brown CS (2017) Yeasticidal activity of chemical disinfectants and antiseptics against Candida auris. J Hosp Infect 97(4):371–375.  https://doi.org/10.1016/j.jhin.2017.08.019CrossRefPubMedGoogle Scholar
  121. 121.
    Morrissey I, Oggioni MR, Knight D, Curiao T, Coque T, Kalkanci A, Martinez JL (2014) Evaluation of epidemiological cut-off values indicates that biocide resistant subpopulations are uncommon in natural isolates of clinically-relevant microorganisms. PLoS ONE 9(1):e86669.  https://doi.org/10.1371/journal.pone.0086669CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Nandy P, Lucas AD, Gonzalez EA, Hitchins VM (2016) Efficacy of commercially available wipes for disinfection of pulse oximeter sensors. Am J Infect Control 44(3):304–310.  https://doi.org/10.1016/j.ajic.2015.09.028CrossRefPubMedGoogle Scholar
  123. 123.
    Narui K, Takano M, Noguchi N, Sasatsu M (2007) Susceptibilities of methicillin-resistant Staphylococcus aureus isolates to seven biocides. Biol Pharma Bull 30(3):585–587CrossRefGoogle Scholar
  124. 124.
    National Center for Biotechnology Information Sodium hypochlorite. PubChem Compound Database; CID=23665760. https://pubchem.ncbi.nlm.nih.gov/compound/23665760. Accessed 27 Oct 2017
  125. 125.
    Nguyen HDN, Yuk HG (2013) Changes in resistance of Salmonella Typhimurium biofilms formed under various conditions to industrial sanitizers. Food Control 29(1):236–240.  https://doi.org/10.1016/j.foodcont.2012.06.006CrossRefGoogle Scholar
  126. 126.
    Norman G, Christie J, Liu Z, Westby MJ, Jefferies JM, Hudson T, Edwards J, Mohapatra DP, Hassan IA, Dumville JC (2017) Antiseptics for burns. Cochrane database Syst Rev 7:Cd011821.  https://doi.org/10.1002/14651858.cd011821.pub2
  127. 127.
    Norton CD, LeChevallier MW, Falkinham JO 3rd (2004) Survival of Mycobacterium avium in a model distribution system. Water Res 38(6):1457–1466.  https://doi.org/10.1016/j.watres.2003.07.008CrossRefPubMedGoogle Scholar
  128. 128.
    Ntsama-Essomba C, Bouttier S, Ramaldes M, Dubois-Brissonnet F, Fourniat J (1997) Resistance of Escherichia coli growing as biofilms to disinfectants. Vet Res 28(4):353–363PubMedGoogle Scholar
  129. 129.
    Oggioni MR, Coelho JR, Furi L, Knight DR, Viti C, Orefici G, Martinez JL, Freitas AT, Coque TM, Morrissey I (2015) Significant differences characterise the correlation coefficients between biocide and antibiotic susceptibility profiles in Staphylococcus aureus. Curr Pharm Des 21(16):2054–2057CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Oh J, Salcedo DE, Medriano CA, Kim S (2014) Comparison of different disinfection processes in the effective removal of antibiotic-resistant bacteria and genes. J Environ Sci (China) 26(6):1238–1242.  https://doi.org/10.1016/s1001-0742(13)60594-xCrossRefGoogle Scholar
  131. 131.
    Oie S, Huang Y, Kamiya A, Konishi H, Nakazawa T (1996) Efficacy of disinfectants against biofilm cells of methicillin-resistant Staphylococcus aureus. Microbios 85:223–230PubMedGoogle Scholar
  132. 132.
    Omidbakhsh N (2010) Theoretical and experimental aspects of microbicidal activities of hard surface disinfectants: are their label claims based on testing under field conditions? J AOAC Int 93(6):1944–1951PubMedGoogle Scholar
  133. 133.
    Pagedar A, Singh J (2015) Evaluation of antibiofilm effect of benzalkonium chloride, iodophore and sodium hypochlorite against biofilm of Pseudomonas aeruginosa of dairy origin. J Food Sci Technol 52(8):5317–5322.  https://doi.org/10.1007/s13197-014-1575-4CrossRefPubMedGoogle Scholar
  134. 134.
    Pariser M, Gard S, Gram D, Schmeitzel L (2013) An in vitro study to determine the minimal bactericidal concentration of sodium hypochlorite (bleach) required to inhibit meticillin-resistant Staphylococcus pseudintermedius strains isolated from canine skin. Vet Dermatol 24(6):632–634, e156–e637.  https://doi.org/10.1111/vde.12079
  135. 135.
    Peeters E, Nelis HJ, Coenye T (2008) Evaluation of the efficacy of disinfection procedures against Burkholderia cenocepacia biofilms. J Hosp Infect 70(4):361–368.  https://doi.org/10.1016/j.jhin.2008.08.015CrossRefPubMedGoogle Scholar
  136. 136.
    Petti S, Polimeni A, Dancer SJ (2013) Effect of disposable barriers, disinfection, and cleaning on controlling methicillin-resistant Staphylococcus aureus environmental contamination. Am J Infect Control 41(9):836–840.  https://doi.org/10.1016/j.ajic.2012.09.021CrossRefPubMedGoogle Scholar
  137. 137.
    Pires RH, da Silva Jde F, Gomes Martins CH, Fusco Almeida AM, Pienna Soares C, Soares Mendes-Giannini MJ (2013) Effectiveness of disinfectants used in hemodialysis against both Candida orthopsilosis and C. parapsilosis sensu stricto biofilms. Antimicrob Agents Chemother 57(5):2417–2421.  https://doi.org/10.1128/aac.01308-12CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Piskin B, Turkun M (1995) Stability of various sodium hypochlorite solutions. J Endod 21(5):253–255CrossRefPubMedGoogle Scholar
  139. 139.
    Quan Y, Choi KD, Chung D, Shin IS (2010) Evaluation of bactericidal activity of weakly acidic electrolyzed water (WAEW) against Vibrio vulnificus and Vibrio parahaemolyticus. Int J Food Microbiol 136(3):255–260.  https://doi.org/10.1016/j.ijfoodmicro.2009.11.005CrossRefPubMedGoogle Scholar
  140. 140.
    Rasmussen LH, Kjeldgaard J, Christensen JP, Ingmer H (2013) Multilocus sequence typing and biocide tolerance of Arcobacter butzleri from Danish broiler carcasses. BMC Res Notes 6:322.  https://doi.org/10.1186/1756-0500-6-322CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Riazi S, Matthews KR (2011) Failure of foodborne pathogens to develop resistance to sanitizers following repeated exposure to common sanitizers. Int Biodeter Biodegr 65(2):374–378.  https://doi.org/10.1016/j.ibiod.2010.12.001CrossRefGoogle Scholar
  142. 142.
    Rizzotti L, Rossi F, Torriani S (2016) Biocide and antibiotic resistance of Enterococcus faecalis and Enterococcus faecium isolated from the swine meat chain. Food Microbiol 60:160–164.  https://doi.org/10.1016/j.fm.2016.07.009CrossRefPubMedGoogle Scholar
  143. 143.
    Rodriguez Ferri EF, Martinez S, Frandoloso R, Yubero S, Gutierrez Martin CB (2010) Comparative efficacy of several disinfectants in suspension and carrier tests against Haemophilus parasuis serovars 1 and 5. Res Vet Sci 88(3):385–389.  https://doi.org/10.1016/j.rvsc.2009.12.001CrossRefPubMedGoogle Scholar
  144. 144.
    Rudd RW, Senia ES, McCleskey FK, Adams ED (1984) Sterilization of complete dentures with sodium hypochlorite. J Prosth Dent 51(3):318–321.  https://doi.org/10.1016/0022-3913(84)90212-9CrossRefGoogle Scholar
  145. 145.
    Ruiz-Linares M, Aguado-Perez B, Baca P, Arias-Moliz MT, Ferrer-Luque CM (2017) Efficacy of antimicrobial solutions against polymicrobial root canal biofilm. Int Endod J 50(1):77–83.  https://doi.org/10.1111/iej.12598CrossRefPubMedGoogle Scholar
  146. 146.
    Rutala WA, Cole EC, Wannamaker NS, Weber DJ (1991) Inactivation of Mycobacterium tuberculosis and Mycobacterium bovis by 14 hospital disinfectants. Am J Med 91(3b):267s–271sCrossRefPubMedGoogle Scholar
  147. 147.
    Saejung C, Hatai K, Sanoamuang L (2014) The in-vitro antibacterial effects of organic salts, chemical disinfectants and antibiotics against pathogens of black disease in fairy shrimp of Thailand. J Fish Dis 37(1):33–41.  https://doi.org/10.1111/j.1365-2761.2012.01452.xCrossRefPubMedGoogle Scholar
  148. 148.
    Sagripanti J-L, Eklund CA, Trost PA, Jinneman KC, Abeyta C, Kaysner CA, Hill WE (1997) Comparative sensitivity of 13 species of pathogenic bacteria to seven chemical germicides. Am J Infect Control 25(4):335–339CrossRefPubMedGoogle Scholar
  149. 149.
    Sattar SA, Bradley C, Kibbee R, Wesgate R, Wilkinson MA, Sharpe T, Maillard JY (2015) Disinfectant wipes are appropriate to control microbial bioburden from surfaces: use of a new ASTM standard test protocol to demonstrate efficacy. J Hosp Infect 91(4):319–325.  https://doi.org/10.1016/j.jhin.2015.08.026CrossRefPubMedGoogle Scholar
  150. 150.
    Seier-Petersen MA, Jasni A, Aarestrup FM, Vigre H, Mullany P, Roberts AP, Agerso Y (2014) Effect of subinhibitory concentrations of four commonly used biocides on the conjugative transfer of Tn916 in Bacillus subtilis. J Antimicrob Chemother 69(2):343–348.  https://doi.org/10.1093/jac/dkt370CrossRefPubMedGoogle Scholar
  151. 151.
    Simoes M, Pereira MO, Vieira MJ (2005) Effect of mechanical stress on biofilms challenged by different chemicals. Water Res 39(20):5142–5152.  https://doi.org/10.1016/j.watres.2005.09.028CrossRefPubMedGoogle Scholar
  152. 152.
    Siqueira JF Jr, Rocas IN, Paiva SS, Guimaraes-Pinto T, Magalhaes KM, Lima KC (2007) Bacteriologic investigation of the effects of sodium hypochlorite and chlorhexidine during the endodontic treatment of teeth with apical periodontitis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 104(1):122–130.  https://doi.org/10.1016/j.tripleo.2007.01.027CrossRefPubMedGoogle Scholar
  153. 153.
    Song L, Wu J, Xi C (2012) Biofilms on environmental surfaces: evaluation of the disinfection efficacy of a novel steam vapor system. Am J Infect Control 40(10):926–930.  https://doi.org/10.1016/j.ajic.2011.11.013CrossRefPubMedGoogle Scholar
  154. 154.
    Soumet C, Meheust D, Pissavin C, Le Grandois P, Fremaux B, Feurer C, Le Roux A, Denis M, Maris P (2016) Reduced susceptibilities to biocides and resistance to antibiotics in food-associated bacteria following exposure to quaternary ammonium compounds. J Appl Microbiol 121(5):1275–1281.  https://doi.org/10.1111/jam.13247CrossRefPubMedGoogle Scholar
  155. 155.
    Stewart PS, Grab L, Diemer JA (1998) Analysis of biocide transport limitation in an artificial biofilm system. J Appl Microbiol 85(3):495–500CrossRefPubMedGoogle Scholar
  156. 156.
    Sullivan BA, Vance CC, Gentry TJ, Karthikeyan R (2017) Effects of chlorination and ultraviolet light on environmental tetracycline-resistant bacteria and tet(W) in water. J Environ Chem Eng 5(1):777–784.  https://doi.org/10.1016/j.jece.2016.12.052CrossRefGoogle Scholar
  157. 157.
    Takeo Y, Oie S, Kamiya A, Konishi H, Nakazawa T (1994) Efficacy of disinfectants against biofilm cells of Pseudomonas aeruginosa. Microbios 79(318):19–26PubMedGoogle Scholar
  158. 158.
    Theraud M, Bedouin Y, Guiguen C, Gangneux JP (2004) Efficacy of antiseptics and disinfectants on clinical and environmental yeast isolates in planktonic and biofilm conditions. J Med Microbiol 53(Pt 10):1013–1018.  https://doi.org/10.1099/jmm.0.05474-0CrossRefPubMedGoogle Scholar
  159. 159.
    Tirali RE, Bodur H, Ece G (2012) In vitro antimicrobial activity of sodium hypochlorite, chlorhexidine gluconate and octenidine dihydrochloride in elimination of microorganisms within dentinal tubules of primary and permanent teeth. Medicina oral, patologia oral y cirugia bucal 17(3):e517–e522CrossRefPubMedGoogle Scholar
  160. 160.
    Tirali RE, Turan Y, Akal N, Karahan ZC (2009) In vitro antimicrobial activity of several concentrations of NaOCl and Octenisept in elimination of endodontic pathogens. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 108(5):e117–e120.  https://doi.org/10.1016/j.tripleo.2009.07.012CrossRefPubMedGoogle Scholar
  161. 161.
    Tote K, Horemans T, Vanden Berghe D, Maes L, Cos P (2010) Inhibitory effect of biocides on the viable masses and matrices of Staphylococcus aureus and Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 76(10):3135–3142.  https://doi.org/10.1128/aem.02095-09CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Ueda S, Kuwabara Y (2007) Susceptibility of biofilm Escherichia coli, Salmonella Enteritidis and Staphylococcus aureus to detergents and sanitizers. Biocontrol Sci 12(4):149–153CrossRefPubMedGoogle Scholar
  163. 163.
    Ulusoy AT, Kalyoncuoglu E, Reis A, Cehreli ZC (2016) Antibacterial effect of N-acetylcysteine and taurolidine on planktonic and biofilm forms of Enterococcus faecalis. Dent Traumatol: Off Publ Int Assoc Dent Traumatol 32(3):212–218.  https://doi.org/10.1111/edt.12237CrossRefGoogle Scholar
  164. 164.
    United States Environmental Protection Agency (1991) EPA R.E.D. Facts. Sodium and calcium hypochlorite salts. https://www3.epa.gov/pesticides/chem_search/reg_actions/reregistration/fs_G-77_1-Sep-91.pdf
  165. 165.
    Vaziri S, Kangarlou A, Shahbazi R, Nazari Nasab A, Naseri M (2012) Comparison of the bactericidal efficacy of photodynamic therapy, 2.5% sodium hypochlorite, and 2% chlorhexidine against Enterococcous faecalis in root canals; an in vitro study. Dent Res J 9(5):613–618Google Scholar
  166. 166.
    Vázquez-Sánchez D, Cabo ML, Ibusquiza PS, Rodríguez-Herrera JJ (2014) Biofilm-forming ability and resistance to industrial disinfectants of Staphylococcus aureus isolated from fishery products. Food Control 39(Supplement C):8–16.  https://doi.org/10.1016/j.foodcont.2013.09.029
  167. 167.
    Venturini ME, Blanco D, Oria R (2002) In vitro antifungal activity of several antimicrobial compounds against Penicillium expansum. J Food Prot 65(5):834–839CrossRefPubMedGoogle Scholar
  168. 168.
    Vetas D, Dimitropoulou E, Mitropoulou G, Kourkoutas Y, Giaouris E (2017) Disinfection efficiencies of sage and spearmint essential oils against planktonic and biofilm Staphylococcus aureus cells in comparison with sodium hypochlorite. Int J Food Microbiol 257:19–25.  https://doi.org/10.1016/j.ijfoodmicro.2017.06.003CrossRefPubMedGoogle Scholar
  169. 169.
    Vieira CD, Farias Lde M, Diniz CG, Alvarez-Leite ME, Camargo ER, Carvalho MA (2005) New methods in the evaluation of chemical disinfectants used in health care services. Am J Infect Control 33(3):162–169.  https://doi.org/10.1016/j.ajic.2004.10.007CrossRefPubMedGoogle Scholar
  170. 170.
    Walker J, Moore G, Collins S, Parks S, Garvey MI, Lamagni T, Smith G, Dawkin L, Goldenberg S, Chand M (2017) Microbiological problems and biofilms associated with Mycobacterium chimaera in heater-cooler units used for cardiopulmonary bypass. J Hosp Infect 96(3):209–220.  https://doi.org/10.1016/j.jhin.2017.04.014CrossRefPubMedGoogle Scholar
  171. 171.
    Wang H, Hu C, Liu L, Xing X (2017) Interaction of ciprofloxacin chlorination products with bacteria in drinking water distribution systems. J Hazard Mater 339:174–181.  https://doi.org/10.1016/j.jhazmat.2017.06.033CrossRefPubMedGoogle Scholar
  172. 172.
    Wang H, Tay M, Palmer J, Flint S (2017) Biofilm formation of Yersinia enterocolitica and its persistence following treatment with different sanitation agents. Food Control 73(Part B):433–437.  https://doi.org/10.1016/j.foodcont.2016.08.033
  173. 173.
    Wilson CE, Cathro PC, Rogers AH, Briggs N, Zilm PS (2015) Clonal diversity in biofilm formation by Enterococcus faecalis in response to environmental stress associated with endodontic irrigants and medicaments. Int Endod J 48(3):210–219.  https://doi.org/10.1111/iej.12301CrossRefPubMedGoogle Scholar
  174. 174.
    Wong HS, Townsend KM, Fenwick SG, Trengove RD, O’Handley RM (2010) Comparative susceptibility of planktonic and 3-day-old Salmonella Typhimurium biofilms to disinfectants. J Appl Microbiol 108(6):2222–2228.  https://doi.org/10.1111/j.1365-2672.2009.04630.xCrossRefPubMedGoogle Scholar
  175. 175.
    Wuthiekanun V, Wongsuwan G, Pangmee S, Teerawattanasook N, Day NP, Peacock SJ (2011) Perasafe, Virkon and bleach are bactericidal for Burkholderia pseudomallei, a select agent and the cause of melioidosis. J Hosp Infect 77(2):183–184.  https://doi.org/10.1016/j.jhin.2010.06.026CrossRefPubMedPubMedCentralGoogle Scholar
  176. 176.
    Yadav P, Chaudhary S, Saxena RK, Talwar S, Yadav S (2017) Evaluation of Antimicrobial and Antifungal efficacy of Chitosan as endodontic irrigant against Enterococcus Faecalis and Candida Albicans Biofilm formed on tooth substrate. J Clin Exp Dent 9(3):e361–e367.  https://doi.org/10.4317/jced.53210CrossRefPubMedPubMedCentralGoogle Scholar
  177. 177.
    Zand V, Lotfi M, Soroush MH, Abdollahi AA, Sadeghi M, Mojadadi A (2016) Antibacterial efficacy of different concentrations of sodium hypochlorite gel and solution on Enterococcus faecalis biofilm. Iran Endod J 11(4):315–319.  https://doi.org/10.22037/iej.2016.11CrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    Zheng J, Su C, Zhou J, Xu L, Qian Y, Chen H (2017) Effects and mechanisms of ultraviolet, chlorination, and ozone disinfection on antibiotic resistance genes in secondary effluents of municipal wastewater treatment plants. Chem Eng J 317(Supplement C):309–316.  https://doi.org/10.1016/j.cej.2017.02.076

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of Hygiene and Environmental MedicineUniversity of GreifswaldGreifswaldGermany

Personalised recommendations