Advertisement

Glutaraldehyde

  • Günter Kampf
Chapter

Abstract

Glutaraldehyde (2%) has bactericidal and yeasticidal activity in 3 min and species-dependent mycobactericidal activity in 5–60 min. Some food-associated fungi, however, are less susceptible. An epidemiological cut-off value to determine acquired resistance has only been proposed for Bacillus spp. (4,000 mg/l). But elevated MIC values suggestive of resistance to glutaraldehyde (MIC ≥ 5,000 mg/l) have been reported for S. Typhimurium, P. aeruginosa, S. aureus, S. mutans, E. coli and B. fragilis. Some mycobacterial isolates from washer disinfectors (e.g., M. chelonae) were resistant to glutaraldehyde in suspension tests and caused endoscope-associated pseudo-outbreaks. Specific resistance mechanisms are occasionally known, e.g., efflux pumps, membrane changes or a plasmid. Cross-tolerance to other aldehydes can occur in E. coli, Halomonas spp. and B. cepacia. Hydrogen peroxide has the capacity to induce a function which reduces the killing effects of aldehydes in E. coli. Cross-resistances to rifampicin and sometimes also to isoniazid have been reported in glutaraldehyde-resistant M. chelonae. Low-level exposure does not significantly change the susceptibility of Salmonella spp. The effect of glutaraldehyde on biofilm formation is unknown. Biofilm fixation by glutaraldehyde is mostly strong (≥60%); biofilm removal is mostly poor (≤10%).

References

  1. 1.
    Akamatsu T, Tabata K, Hironaga M, Uyeda M (1997) Evaluation of the efficacy of a 3.2% glutaraldehyde product for disinfection of fibreoptic endoscopes with an automatic machine. J Hosp Infect 35(1):47–57CrossRefPubMedGoogle Scholar
  2. 2.
    Akamatsu T, Tabata K, Hironga M, Kawakami H, Uyeda M (1996) Transmission of Helicobacter pylori infection via flexible fiberoptic endoscopy. Am J Infect Control 24(5):396–401CrossRefPubMedGoogle Scholar
  3. 3.
    Alfa MJ, Howie R (2009) Modeling microbial survival in buildup biofilm for complex medical devices. BMC Infect Dis 9:56.  https://doi.org/10.1186/1471-2334-9-56CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Angelillo IF, Bianco A, Nobile CG, Pavia M (1998) Evaluation of the efficacy of glutaraldehyde and peroxygen for disinfection of dental instruments. Lett Appl Microbiol 27(5):292–296CrossRefPubMedGoogle Scholar
  5. 5.
    Aparecida Guimaraes M, Rocchetto Coelho L, Rodrigues Souza R, Ferreira-Carvalho BT, Marie Sa Figueiredo A (2012) Impact of biocides on biofilm formation by methicillin-resistant Staphylococcus aureus (ST239-SCCmecIII) isolates. Microbiol Immunol 56(3):203–207.  https://doi.org/10.1111/j.1348-0421.2011.00423.xCrossRefPubMedGoogle Scholar
  6. 6.
    Australian Government (2014) Glutaraldehyde: Sources of emissions. http://www.npi.gov.au/resource/glutaraldehyde-sources-emissions
  7. 7.
    Azachi M, Henis Y, Shapira R, Oren A (1996) The role of the outer membrane in formaldehyde tolerance in Escherichia coli VU3695 and Halomonas sp. MAC. Microbiology (Reading, England) 142(Pt 5):1249–1254.  https://doi.org/10.1099/13500872-142-5-1249
  8. 8.
    Azeredo J, Henriques M, Sillankorva S, Oliveira R (2003) Extraction of exopolymers from biofilms: the protective effect of glutaraldehyde. Water Sci Technol 47(5):175–179CrossRefPubMedGoogle Scholar
  9. 9.
    Bar W, Marquez de Bar G, Naumann A, Rusch-Gerdes S (2001) Contamination of bronchoscopes with Mycobacterium tuberculosis and successful sterilization by low-temperature hydrogen peroxide plasma sterilization. Am J Infect Control 29(5):306–311CrossRefPubMedGoogle Scholar
  10. 10.
    Bardouniotis E, Huddleston W, Ceri H, Olson ME (2001) Characterization of biofilm growth and biocide susceptibility testing of Mycobacterium phlei using the MBEC assay system. FEMS Microbiol Lett 203(2):263–267PubMedGoogle Scholar
  11. 11.
    Barroso JM (2014) COMMISSION IMPLEMENTING DECISION of 24 April 2014 on the non-approval of certain biocidal active substances pursuant to Regulation (EU) No 528/2012 of the European Parliament and of the Council. Off J Eur Union 57(L 124):27–29Google Scholar
  12. 12.
    Best M, Kennedy ME, Coates F (1990) Efficacy of a variety of disinfectants against Listeria spp. Appl Environ Microbiol 56(2):377–380PubMedPubMedCentralGoogle Scholar
  13. 13.
    Best M, Sattar SA, Springthorpe VS, Kennedy ME (1988) Comparative mycobactericidal efficacy of chemical disinfectants in suspension and carrier tests. Appl Environ Microbiol 54:2856–2858PubMedPubMedCentralGoogle Scholar
  14. 14.
    Best M, Sattar SA, Springthorpe VS, Kennedy ME (1990) Efficacies of selected disinfectants against Mycobacterium tuberculosis. J Clin Microbiol 28(10):2234–2239PubMedPubMedCentralGoogle Scholar
  15. 15.
    Best M, Springthorpe VS, Sattar SA (1994) Feasibility of a combined carrier test for disinfectants: studies with a mixture of five types of microorganisms. Am J Infect Control 22(3):152–162CrossRefPubMedGoogle Scholar
  16. 16.
    Bordas JM, Marcos-Maeso MA, Perez MJ, Llach J, Gines A, Pique JM (2005) GI flexible endoscope disinfection: “in use” test comparative study. Hepatogastroenterology 52(63):800–807PubMedGoogle Scholar
  17. 17.
    Bradley CR, Fraise AP (1996) Heat and chemical resistance of enterococci. J Hosp Infect 34:191–196CrossRefPubMedGoogle Scholar
  18. 18.
    Buergers R, Rosentritt M, Schneider-Brachert W, Behr M, Handel G, Hahnel S (2008) Efficacy of denture disinfection methods in controlling Candida albicans colonization in vitro. Acta Odontol Scand 66(3):174–180.  https://doi.org/10.1080/00016350802165614CrossRefPubMedGoogle Scholar
  19. 19.
    Burgess W, Margolis A, Gibbs S, Duarte RS, Jackson M (2017) Disinfectant susceptibility profiling of glutaraldehyde-resistant Nontuberculous Mycobacteria. Infect Control Hosp Epidemiol 38(7):784–791.  https://doi.org/10.1017/ice.2017.75CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Campagnaro RL, Teichtahl H, Dwyer B (1994) A pseudoepidemic of Mycobacterium chelonae: contamination of a bronchoscope and autocleaner. Aust N Z J Med 24(6):693–695CrossRefPubMedGoogle Scholar
  21. 21.
    Chapman JS, Diehl MA, Fearnside KB (1998) Preservative tolerance and resistance. Int J Cosmet Sci 20(1):31–39.  https://doi.org/10.1046/j.1467-2494.1998.171733.xCrossRefPubMedGoogle Scholar
  22. 22.
    Chiu HC, Lin TL, Wang JT (2007) Identification and characterization of an organic solvent tolerance gene in Helicobacter pylori. Helicobacter 12(1):74–81.  https://doi.org/10.1111/j.1523-5378.2007.00473.xCrossRefPubMedGoogle Scholar
  23. 23.
    Chiu HC, Lin TL, Yang JC, Wang JT (2009) Synergistic effect of imp/ostA and msbA in hydrophobic drug resistance of Helicobacter pylori. BMC Microbiol 9:136.  https://doi.org/10.1186/1471-2180-9-136CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Collins FM, Montalbine V (1976) Mycobactericidal activity of glutaraldehyde solutions. J Clin Microbiol 4(5):408–412PubMedPubMedCentralGoogle Scholar
  25. 25.
    Couto N, Belas A, Tilley P, Couto I, Gama LT, Kadlec K, Schwarz S, Pomba C (2013) Biocide and antimicrobial susceptibility of methicillin-resistant staphylococcal isolates from horses. Vet Microbiol 166(1–2):299–303.  https://doi.org/10.1016/j.vetmic.2013.05.011CrossRefPubMedGoogle Scholar
  26. 26.
    Cronmiller JR, Nelson DK, Jackson DK, Kim CH (1999) Efficacy of conventional endoscopic disinfection and sterilization methods against Helicobacter pylori contamination. Helicobacter 4(3):198–203CrossRefPubMedGoogle Scholar
  27. 27.
    Cronmiller JR, Nelson DK, Salman G, Jackson DK, Dean RS, Hsu JJ, Kim CH (1999) Antimicrobial efficacy of endoscopic disinfection procedures: a controlled, multifactorial investigation. Gastrointest Endosc 50(2):152–158CrossRefPubMedGoogle Scholar
  28. 28.
    da Costa Luciano C, Olson N, Tipple AF, Alfa M (2016) Evaluation of the ability of different detergents and disinfectants to remove and kill organisms in traditional biofilm. Am J Infect Control 44(11):e243–e249.  https://doi.org/10.1016/j.ajic.2016.03.040CrossRefGoogle Scholar
  29. 29.
    Dauendorffer JN, Laurain C, Weber M, Dailloux M (2000) Evaluation of the bactericidal efficiency of a 2% alkaline glutaraldehyde solution on Mycobacterium xenopi. J Hosp Infect 46(1):73–76.  https://doi.org/10.1053/jhin.2000.0793CrossRefPubMedGoogle Scholar
  30. 30.
    Davis D, Bonekat HW, Andrews D, Shigeoka JW (1984) Disinfection of the flexible fibreoptic bronchoscope against Mycobacterium tuberculosis and M gordonae. Thorax 39(10):785–788CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    De Groote MA, Gibbs S, de Moura VC, Burgess W, Richardson K, Kasperbauer S, Madinger N, Jackson M (2014) Analysis of a panel of rapidly growing mycobacteria for resistance to aldehyde-based disinfectants. Am J Infect Control 42(8):932–934.  https://doi.org/10.1016/j.ajic.2014.05.014CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Deva AK, Vickery K, Zou J, West RH, Selby W, Benn RA, Harris JP, Cossart YE (1998) Detection of persistent vegetative bacteria and amplified viral nucleic acid from in-use testing of gastrointestinal endoscopes. J Hosp Infect 39(2):149–157CrossRefPubMedGoogle Scholar
  33. 33.
    Duarte RS, Lourenco MC, Fonseca Lde S, Leao SC, Amorim Ede L, Rocha IL, Coelho FS, Viana-Niero C, Gomes KM, da Silva MG, Lorena NS, Pitombo MB, Ferreira RM, Garcia MH, de Oliveira GP, Lupi O, Vilaca BR, Serradas LR, Chebabo A, Marques EA, Teixeira LM, Dalcolmo M, Senna SG, Sampaio JL (2009) Epidemic of postsurgical infections caused by Mycobacterium massiliense. J Clin Microbiol 47(7):2149–2155.  https://doi.org/10.1128/jcm.00027-09CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    eCA Finland (2014) Assessment report. Glutaraldehyde Product-type 2, 3, 4, 6, 11, 12.Google Scholar
  35. 35.
    El-Azizi M, Farag N, Khardori N (2016) Efficacy of selected biocides in the decontamination of common nosocomial bacterial pathogens in biofilm and planktonic forms. Comp Immunol Microbiol Infect Dis 47:60–71.  https://doi.org/10.1016/j.cimid.2016.06.002CrossRefPubMedGoogle Scholar
  36. 36.
    Espigares E, Bueno A, Espigares M, Galvez R (2006) Isolation of Salmonella serotypes in wastewater and effluent: Effect of treatment and potential risk. Int J Hyg Environ Health 209(1):103–107.  https://doi.org/10.1016/j.ijheh.2005.08.006CrossRefPubMedGoogle Scholar
  37. 37.
    Espigares E, Bueno A, Fernandez-Crehuet M, Espigares M (2003) Efficacy of some neutralizers in suspension tests determining the activity of disinfectants. J Hosp Infect 55(2):137–140CrossRefPubMedGoogle Scholar
  38. 38.
    Espigares E, Moreno Roldan E, Espigares M, Abreu R, Castro B, Dib AL, Arias A (2017) Phenotypic Resistance to Disinfectants and Antibiotics in Methicillin-Resistant Staphylococcus aureus Strains Isolated from Pigs. Zoonoses Public Health 64(4):272–280.  https://doi.org/10.1111/zph.12308CrossRefPubMedGoogle Scholar
  39. 39.
    European Chemicals Agency (ECHA) Glutaral. Substance information. https://echa.europa.eu/substance-information/-/substanceinfo/100.003.506. Accessed 16 Nov 2017
  40. 40.
    Fisher CW, Fiorello A, Shaffer D, Jackson M, McDonnell GE (2012) Aldehyde-resistant mycobacteria bacteria associated with the use of endoscope reprocessing systems. Am J Infect Control 40(9):880–882.  https://doi.org/10.1016/j.ajic.2011.11.004CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Foliente RL, Kovacs BJ, Aprecio RM, Bains HJ, Kettering JD, Chen YK (2001) Efficacy of high-level disinfectants for reprocessing GI endoscopes in simulated-use testing. Gastrointest Endosc 53(4):456–462.  https://doi.org/10.1067/mge.2001.113380CrossRefPubMedGoogle Scholar
  42. 42.
    Fraser VJ, Jones M, Murray PR, Medoff G, Zhang Y, Wallace RJ Jr (1992) Contamination of flexible fiberoptic bronchoscopes with Mycobacterium chelonae linked to an automated bronchoscope disinfection machine. Am Rev Respir Dis 145(4 Pt 1):853–855.  https://doi.org/10.1164/ajrccm/145.4_Pt_1.853CrossRefPubMedGoogle Scholar
  43. 43.
    Fraud S, Hann AC, Maillard JY, Russell AD (2003) Effects of ortho-phthalaldehyde, glutaraldehyde and chlorhexidine diacetate on Mycobacterium chelonae and Mycobacterium abscessus strains with modified permeability. J Antimicrob Chemother 51(3):575–584CrossRefPubMedGoogle Scholar
  44. 44.
    Fraud S, Maillard JY, Russell AD (2001) Comparison of the mycobactericidal activity of ortho- phthalaldehyde, glutaraldehyde and other dialdehydes by a quantitative suspension test. J Hosp Infect 48(3):214–221.  https://doi.org/10.1053/jhin.2001.1009CrossRefPubMedGoogle Scholar
  45. 45.
    Gomes IB, Malheiro J, Mergulhao F, Maillard JY, Simoes M (2016) Comparison of the efficacy of natural-based and synthetic biocides to disinfect silicone and stainless steel surfaces. Pathog Dis 74(4):ftw014.  https://doi.org/10.1093/femspd/ftw014
  46. 46.
    Gradel KO, Randall L, Sayers AR, Davies RH (2005) Possible associations between Salmonella persistence in poultry houses and resistance to commonly used disinfectants and a putative role of mar. Vet Microbiol 107 (1–2):127–138. https://doi.org/10.1016/j.vetmic.2005.01.013
  47. 47.
    Grasteau A, Guiraud T, Daniel P, Calvez S, Chesneau V, Le Hénaff M (2015) Evaluation of Glutaraldehyde, Chloramine-T, Bronopol, Incimaxx Aquatic® and Hydrogen Peroxide as Biocides against Flavobacterium psychrophilum for Sanitization of Rainbow Trout Eyed Eggs. J Aquac Res Development 6(12):382CrossRefGoogle Scholar
  48. 48.
    Griffiths PA, Babb JR, Bradley CR, Fraise AP (1997) Glutaraldehyde-resistant Mycobacterium chelonae from endoscope washer disinfectors. J Appl Microbiol 82(4):519–526CrossRefPubMedGoogle Scholar
  49. 49.
    Griffiths PA, Babb JR, Fraise AP (1999) Mycobactericidal activity of selected disinfectants using a quantitative suspension test. J Hosp Infect 41(2):111–121CrossRefPubMedGoogle Scholar
  50. 50.
    Grobe KJ, Zahller J, Stewart PS (2002) Role of dose concentration in biocide efficacy against Pseudomonas aeruginosa biofilms. J Ind Microbiol Biotechnol 29(1):10–15.  https://doi.org/10.1038/sj.jim.7000256CrossRefPubMedGoogle Scholar
  51. 51.
    Guimarães T, Chimara E, do Prado GVB, Ferrazoli L, Carvalho NGF, Simeão FCdS, de Souza AR, Costa CAR, Viana Niero C, Brianesi UA, di Gioia TR, Gomes LMB, Spadão FdS, Silva MdG, de Moura EGH, Levin AS (2016) Pseudooutbreak of rapidly growing mycobacteria due to Mycobacterium abscessus subsp bolletii in a digestive and respiratory endoscopy unit caused by the same clone as that of a countrywide outbreak. Am J Infect Control 44(11):e221-e226. http://dx.doi.org/10.1016/j.ajic.2016.06.019
  52. 52.
    Guo W, Shan K, Xu B, Li J (2015) Determining the resistance of carbapenem-resistant Klebsiella pneumoniae to common disinfectants and elucidating the underlying resistance mechanisms. Pathog Glob Health 109(4):184–192. https://doi.org/10.1179/2047773215y.0000000022
  53. 53.
    Hanson PJ, Chadwick MV, Gaya H, Collins JV (1992) A study of glutaraldehyde disinfection of fibreoptic bronchoscopes experimentally contaminated with Mycobacterium tuberculosis. J Hosp Infect 22(2):137–142CrossRefPubMedGoogle Scholar
  54. 54.
    Hashimoto T, Blumenthal HJ (1978) Survival and resistance of Trichophyton mentagrophytes arthrospores. Appl Environ Microbiol 35(2):274–277PubMedPubMedCentralGoogle Scholar
  55. 55.
    Henoun Loukili N, Becker H, Harno J, Bientz M, Meunier O (2004) Effect of peracetic acid and aldehyde disinfectants on biofilm. J Hosp Infect 58(2):151–154CrossRefPubMedGoogle Scholar
  56. 56.
    Hernández A, Martró E, Matas L, Ausina V (2003) In-vitro evaluation of Perasafe compared with 2% alkaline glutaraldehyde against Mycobacterium spp. J Hosp Infect 54(1):52–56CrossRefPubMedGoogle Scholar
  57. 57.
    Hernández A, Martró E, Puzo C, Matas L, Burgués C, Vázquez N, Castella J, Ausina V (2003) In-use evaluation of Perasafe compared with Cidex in fibreoptic bronchoscope disinfection. J Hosp Infect 54(1):46–51Google Scholar
  58. 58.
    Holton J, Nye P, McDonald V (1994) Efficacy of selected disinfectants against mycobacteria and cryptosporidia. J Hosp Infect 27(2):105–115CrossRefPubMedGoogle Scholar
  59. 59.
    Holton J, Shetty N, McDonald V (1995) Efficacy of ‘Nu-Cidex’ (0.35% peracetic acid) against mycobacteria and cryptosporidia. J Hosp Infect 31(3):235–237CrossRefPubMedGoogle Scholar
  60. 60.
    Howie R, Alfa MJ, Coombs K (2008) Survival of enveloped and non-enveloped viruses on surfaces compared with other micro-organisms and impact of suboptimal disinfectant exposure. J Hosp Infect 69(4):368–376.  https://doi.org/10.1016/j.jhin.2008.04.024CrossRefPubMedGoogle Scholar
  61. 61.
    Isenberg HD (1985) Clinical laboratory studies of disinfection with Sporicidin. J Clin Microbiol 22(5):735–739PubMedPubMedCentralGoogle Scholar
  62. 62.
    Isenberg HD, Giugliano ER, France K, Alperstein P (1988) Evaluation of three disinfectants after in-use stress. J Hosp Infect 11(3):278–285CrossRefPubMedGoogle Scholar
  63. 63.
    Iwasawa A, Niwano Y, Kohno M, Ayaki M (2011) Bactericidal effects and cytotoxicity of new aromatic dialdehyde disinfectants (ortho-phthalaldehyde). Biocontrol Sci 16(4):165–170CrossRefPubMedGoogle Scholar
  64. 64.
    Jackson J, Leggett JE, Wilson DA, Gilbert DN (1996) Mycobacterium gordonae in fiberoptic bronchoscopes. Am J Infect Control 24(1):19–23CrossRefPubMedGoogle Scholar
  65. 65.
    Jomha MY, Yusef H, Holail H (2014) Antimicrobial and biocide resistance of bacteria in a Lebanese tertiary care hospital. J Glob Antimicrob Res 2(4):299–305.  https://doi.org/10.1016/j.jgar.2014.09.001CrossRefGoogle Scholar
  66. 66.
    Juncker JC (2015) COMMISSION IMPLEMENTING REGULATION (EU) 2015/1759 of 28 September 2015 approving glutaraldehyde as an existing active substance for use in biocidal products for product- types 2, 3, 4, 6, 11 and 12. Off J Eur Union 58(L 257):19–26Google Scholar
  67. 67.
    Kadry AA, Serry FM, El-Ganiny AM, El-Baz AM (2017) Integron occurrence is linked to reduced biocide susceptibility in multidrug resistant Pseudomonas aeruginosa. Br J Biomed Sci 74(2):78–84.  https://doi.org/10.1080/09674845.2017.1278884CrossRefPubMedGoogle Scholar
  68. 68.
    Kampf G, Ostermeyer C, Tschudin-Sutter S, Widmer AF (2013) Resistance or adaptation? How susceptible is a ‘glutaraldehyde-resistant’ Pseudomonas aeruginosa isolate in the absence of selection pressure? J Hosp Infect 84(4):316–318. https://doi.org/10.1016/j.jhin.2013.05.010
  69. 69.
    Khalilzadegan S, Sade M, Godarzi H, Eslami G, Hallajzade M, Fallah F, Yadegarnia D (2016) Beta-Lactamase Encoded Genes blaTEM and blaCTX Among Acinetobacter baumannii Species Isolated From Medical Devices of Intensive Care Units in Tehran Hospitals. Jundishapur J Microbiol 9(5):e14990.  https://doi.org/10.5812/jjm.14990CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Konrat K, Schwebke I, Laue M, Dittmann C, Levin K, Andrich R, Arvand M, Schaudinn C (2016) The bead assay for biofilms: a quick, easy and robust method for testing disinfectants. PLoS ONE 11(6):e0157663.  https://doi.org/10.1371/journal.pone.0157663CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Kressel AB, Kidd F (2001) Pseudo-outbreak of Mycobacterium chelonae and Methylobacterium mesophilicum caused by contamination of an automated endoscopy washer. Infect Control Hosp Epidemiol 22(7):414–418.  https://doi.org/10.1086/501926CrossRefPubMedGoogle Scholar
  72. 72.
    La Scola B, Rolain J-M, Maurin M, Raoult D (2003) Can Whipple’s disease be transmitted by gastroscopes? Infect Control Hosp Epidemiol 24(3):191–194CrossRefPubMedGoogle Scholar
  73. 73.
    Laopaiboon L, Phukoetphim N, Laopaiboon P (2006) Effect of glutaraldehyde biocide on laboratory-scale rotating biological contactors and biocide efficacy. Electron J Biotechnol 9(4):10CrossRefGoogle Scholar
  74. 74.
    Leung HW (2001) Aerobic and anaerobic metabolism of glutaraldehyde in a river water-sediment system. Arch Environ Contam Toxicol 41(3):267–273.  https://doi.org/10.1007/s002440010248CrossRefPubMedGoogle Scholar
  75. 75.
    Leung HW (2001) Ecotoxicology of glutaraldehyde: review of environmental fate and effects studies. Ecotoxicol Environ Saf 49(1):26–39.  https://doi.org/10.1006/eesa.2000.2031CrossRefPubMedGoogle Scholar
  76. 76.
    Liu Q, Liu M, Wu Q, Li C, Zhou T, Ni Y (2009) Sensitivities to biocides and distribution of biocide resistance genes in quaternary ammonium compound tolerant Staphylococcus aureus isolated in a teaching hospital. Scand J Infect Dis 41(6–7):403–409.  https://doi.org/10.1080/00365540902856545CrossRefPubMedGoogle Scholar
  77. 77.
    Lorena NS, Pitombo MB, Cortes PB, Maya MC, Silva MG, Carvalho AC, Coelho FS, Miyazaki NH, Marques EA, Chebabo A, Freitas AD, Lupi O, Duarte RS (2010) Mycobacterium massiliense BRA100 strain recovered from postsurgical infections: resistance to high concentrations of glutaraldehyde and alternative solutions for high level disinfection. Acta cirurgica brasileira 25(5):455–459CrossRefPubMedGoogle Scholar
  78. 78.
    Lynam PA, Babb JR, Fraise AP (1995) Comparison of the mycobactericidal activity of 2% alkaline glutaraldehyde and ‘Nu-Cidex’ (0.35% peracetic acid). J Hosp Infect 30(3):237–240CrossRefPubMedGoogle Scholar
  79. 79.
    Manzoor SE, Lambert PA, Griffiths PA, Gill MJ, Fraise AP (1999) Reduced glutaraldehyde susceptibility in Mycobacterium chelonae associated with altered cell wall polysaccharides. J Antimicrob Chemother 43(6):759–765CrossRefPubMedGoogle Scholar
  80. 80.
    Marin C, Hernandiz A, Lainez M (2009) Biofilm development capacity of Salmonella strains isolated in poultry risk factors and their resistance against disinfectants. Poult Sci 88(2):424–431.  https://doi.org/10.3382/ps.2008-00241CrossRefPubMedGoogle Scholar
  81. 81.
    Middleton AM, Chadwick MV, Sanderson JL, Gaya H (2000) Comparison of a solution of super-oxidized water (Sterilox) with glutaraldehyde for the disinfection of bronchoscopes, contaminated. J Hosp Infect 45(4):278–282.  https://doi.org/10.1053/jhin.2000.0772CrossRefPubMedGoogle Scholar
  82. 82.
    Namba Y, Suzuki A, Takeshima N, Kato N (1985) Comparative study of bactericidal activities of six different disinfectants. Nagoya J Med Sci 47(3–4):101–112PubMedGoogle Scholar
  83. 83.
    Narui K, Takano M, Noguchi N, Sasatsu M (2007) Susceptibilities of methicillin-resistant Staphylococcus aureus isolates to seven biocides. Biol Pharm Bull 30(3):585–587CrossRefPubMedGoogle Scholar
  84. 84.
    Neves MS, da Silva MG, Ventura GM, Cortes PB, Duarte RS, de Souza HS (2016) Effectiveness of current disinfection procedures against biofilm on contaminated GI endoscopes. Gastrointest Endosc 83(5):944–953.  https://doi.org/10.1016/j.gie.2015.09.016CrossRefPubMedGoogle Scholar
  85. 85.
    Nicholson G, Hudson RA, Chadwick MV, Gaya H (1995) The efficacy of the disinfection of bronchoscopes contaminated in vitro with Mycobacterium tuberculosis and Mycobacterium avium-intracellulare in sputum: a comparison of Sactimed-I-Sinald and glutaraldehyde. J Hosp Infect 29(4):257–264CrossRefPubMedGoogle Scholar
  86. 86.
    Nomura K, Ogawa M, Miyamoto H, Muratani T, Taniguchi H (2004) Antibiotic susceptibility of glutaraldehyde-tolerant Mycobacterium chelonae from bronchoscope washing machines. Am J Infect Control 32(4):185–188.  https://doi.org/10.1016/j.ajic.2003.07.007CrossRefPubMedGoogle Scholar
  87. 87.
    Nunoshiba T, Hashimoto M, Nishioka H (1991) Cross-adaptive response in Escherichia coli caused by pretreatment with H2O2 against formaldehyde and other aldehyde compounds. Mutat Res 255(3):265–271CrossRefPubMedGoogle Scholar
  88. 88.
    Orsi GB, Tomao P, Visca P (1995) In vitro activity of commercially manufactured disinfectants against Pseudomonas aeruginosa. Eur J Epidemiol 11(4):453–457CrossRefPubMedGoogle Scholar
  89. 89.
    Penna TC, Mazzola PG, Silva Martins AM (2001) The efficacy of chemical agents in cleaning and disinfection programs. BMC Infect Dis 1:16CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Pineau L, Desbuquois C, Marchetti B, Luu Duc D (2008) Comparison of the fixative properties of five disinfectant solutions. J Hosp Infect 68(2):171–177.  https://doi.org/10.1016/j.jhin.2007.10.021CrossRefPubMedGoogle Scholar
  91. 91.
    Rikimaru T, Kondo M, Kajimura K, Hashimoto K, Oyamada K, Sagawa K, Tanoue S, Oizumi K (2002) Bactericidal activities of commonly used antiseptics against multidrug-resistant Mycobacterium tuberculosis. Dermatology (Basel, Switzerland) 204 Suppl 1:15–20. https://doi.org/10.1159/000057719
  92. 92.
    Rikimaru T, Kondo M, Kondo S, Oizumi K (2000) Efficacy of common antiseptics against mycobacteria. Int J Tuberc Lung Dis: Off J Int Union Against Tuberc Lung Dis 4(6):570–576Google Scholar
  93. 93.
    Rutala WA, Cole EC, Wannamaker NS, Weber DJ (1991) Inactivation of Mycobacterium tuberculosis and Mycobacterium bovis by 14 hospital disinfectants. Am J Med 91(3b):267s–271sCrossRefPubMedGoogle Scholar
  94. 94.
    Sagripanti J-L, Eklund CA, Trost PA, Jinneman KC, Abeyta C, Kaysner CA, Hill WE (1997) Comparative sensitivity of 13 species of pathogenic bacteria to seven chemical germicides. Am J Infect Control 25(4):335–339CrossRefPubMedGoogle Scholar
  95. 95.
    Sasatsu M, Shibata Y, Noguchi N, Kono M (1992) High-level resistance to ethidium bromide and antiseptics in Staphylococcus aureus. FEMS Microbiol Lett 72(2):109–113CrossRefPubMedGoogle Scholar
  96. 96.
    Sehmi SK, Allan E, MacRobert AJ, Parkin I (2016) The bactericidal activity of glutaraldehyde-impregnated polyurethane. MicrobiologyOpen 5(5):891–897.  https://doi.org/10.1002/mbo3.378CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Serry FM, Kadry AA, Abdelrahman AA (2003) Potential biological indicators for glutaraldehyde and formaldehyde sterilization processes. J Ind Microbiol Biotechnol 30(3):135–140.  https://doi.org/10.1007/s10295-002-0007-zCrossRefPubMedGoogle Scholar
  98. 98.
    Shakeri S, Kermanshahi RK, Moghaddam MM, Emtiazi G (2007) Assessment of biofilm cell removal and killing and biocide efficacy using the microtiter plate test. Biofouling 23(1–2):79–86.  https://doi.org/10.1080/08927010701190011CrossRefPubMedGoogle Scholar
  99. 99.
    Shetty N, Srinivasan S, Holton J, Ridgway GL (1999) Evaluation of microbicidal activity of a new disinfectant: Sterilox 2500 against Clostridium difficile spores, Helicobacter pylori, vancomycin resistant Enterococcus species, Candida albicans and several Mycobacterium species. J Hosp Infect 41:101–105CrossRefPubMedGoogle Scholar
  100. 100.
    Simoes LC, Lemos M, Araujo P, Pereira AM, Simoes M (2011) The effects of glutaraldehyde on the control of single and dual biofilms of Bacillus cereus and Pseudomonas fluorescens. Biofouling 27(3):337–346.  https://doi.org/10.1080/08927014.2011.575935CrossRefPubMedGoogle Scholar
  101. 101.
    Simoes M, Pereira MO, Machado I, Simoes LC, Vieira MJ (2006) Comparative antibacterial potential of selected aldehyde-based biocides and surfactants against planktonic Pseudomonas fluorescens. J Ind Microbiol Biotechnol 33(9):741–749.  https://doi.org/10.1007/s10295-006-0120-5CrossRefPubMedGoogle Scholar
  102. 102.
    Simoes M, Pereira MO, Vieira MJ (2003) Monitoring the effects of biocide treatment of Pseudomonas fluorescens biofilms formed under different flow regimes. Water Sci Technol 47(5):217–223CrossRefPubMedGoogle Scholar
  103. 103.
    Simoes M, Pereira MO, Vieira MJ (2005) Effect of mechanical stress on biofilms challenged by different chemicals. Water Res 39(20):5142–5152.  https://doi.org/10.1016/j.watres.2005.09.028CrossRefPubMedGoogle Scholar
  104. 104.
    Stanley PM (1999) Efficacy of peroxygen compounds against glutaraldehyde-resistant mycobacteria. Am J Infect Control 27(4):339–343CrossRefPubMedGoogle Scholar
  105. 105.
    Stewart PS, Grab L, Diemer JA (1998) Analysis of biocide transport limitation in an artificial biofilm system. J Appl Microbiol 85(3):495–500CrossRefPubMedGoogle Scholar
  106. 106.
    Stickler DJ (1974) Chlorhexidine resistance in Proteus mirabilis. J Clin Pathol 27(4):284–287CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Stickler DJ, Thomas B, Chawla JC (1981) Antiseptic and antibiotic resistance in gram-negative bacteria causing urinary tract infection in spinal cord injured patients. Paraplegia 19:50–58PubMedGoogle Scholar
  108. 108.
    Takeo Y, Oie S, Kamiya A, Konishi H, Nakazawa T (1994) Efficacy of disinfectants against biofilm cells of Pseudomonas aeruginosa. Microbios 79(318):19–26PubMedGoogle Scholar
  109. 109.
    Takigawa K, Fujita J, Negayama K, Terada S, Yamaji S, Kawanishi K, Takahara J (1995) Eradication of contaminating Mycobacterium chelonae from bronchofibrescopes and an automated bronchoscope disinfection machine. Respir Med 89(6):423–427CrossRefPubMedGoogle Scholar
  110. 110.
    Tortorano AM, Viviani MA, Biraghi E, Rigoni AL, Prigitano A, Grillot R (2005) In vitro testing of fungicidal activity of biocides against Aspergillus fumigatus. J Med Microbiol 54(Pt 10):955–957.  https://doi.org/10.1099/jmm.0.45997-0CrossRefPubMedGoogle Scholar
  111. 111.
    Tschudin-Sutter S, Frei R, Kampf G, Tamm M, Pflimlin E, Battegay M, Widmer AF (2011) Emergence of glutaraldehyde-resistant Pseudomonas aeruginosa. Infect Control Hosp Epidemiol 32(12):1173–1178CrossRefPubMedGoogle Scholar
  112. 112.
    United States Environmental Protection Agency (2007) Reregistration eligibility decision for glutaraldehyde https://www3.epa.gov/pesticides/chem_search/reg_actions/reregistration/red_PC-043901_28-Sep-07.pdf
  113. 113.
    Urayama S, Kozarek RA, Sumida S, Raltz S, Merriam L, Pethigal P (1996) Mycobacteria and glutaraldehyde: is high-level disinfection of endoscopes possible? Gastrointest Endosc 43(5):451–456CrossRefPubMedGoogle Scholar
  114. 114.
    van Klingeren B, Pullen W (1993) Glutaraldehyde resistant mycobacteria from endoscope washers. J Hosp Infect 25(2):147–149CrossRefPubMedGoogle Scholar
  115. 115.
    Vesley D, Melson J, Stanley P (1999) Microbial bioburden in endoscope reprocessing and an in-use evaluation of the high-level disinfection capabilities of Cidex PA. Gastroenterol Nurs: Off J Soc Gastroenterol Nurs Associates 22(2):63–68CrossRefGoogle Scholar
  116. 116.
    Vieira CD, Farias Lde M, Diniz CG, Alvarez-Leite ME, Camargo ER, Carvalho MA (2005) New methods in the evaluation of chemical disinfectants used in health care services. Am J Infect Control 33(3):162–169.  https://doi.org/10.1016/j.ajic.2004.10.007CrossRefPubMedGoogle Scholar
  117. 117.
    Vikram A, Bomberger JM, Bibby KJ (2015) Efflux as a glutaraldehyde resistance mechanism in Pseudomonas fluorescens and Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 59(6):3433–3440.  https://doi.org/10.1128/aac.05152-14CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Vikram A, Lipus D, Bibby K (2014) Produced water exposure alters bacterial response to biocides. Environ Sci Technol 48(21):13001–13009.  https://doi.org/10.1021/es5036915CrossRefPubMedGoogle Scholar
  119. 119.
    Vizcaino-Alcaide MJ, Herruzo-Cabrera R, Fernandez-Acenero MJ (2003) Comparison of the disinfectant efficacy of Perasafe and 2% glutaraldehyde in in vitro tests. J Hosp Infect 53:124–128CrossRefPubMedGoogle Scholar
  120. 120.
    Walsh SE, Maillard JY, Russell AD (1999) Ortho-phthalaldehyde: a possible alternative to glutaraldehyde for high level disinfection. J Appl Microbiol 86(6):1039–1046CrossRefPubMedGoogle Scholar
  121. 121.
    Wang GQ, Zhang CW, Liu HC, Chen ZB (2005) Comparison of susceptibilities of M. tuberculosis H37Ra and M. chelonei subsp. abscessus to disinfectants. Biomed Environ Sci: BES 18(2):124–127Google Scholar
  122. 122.
    Wang HC, Liaw YS, Yang PC, Kuo SH, Luh KT (1995) A pseudoepidemic of Mycobacterium chelonae infection caused by contamination of a fibreoptic bronchoscope suction channel. Eur Res J 8(8):1259–1262CrossRefGoogle Scholar
  123. 123.
    Wang Z, Bie P, Cheng J, Wu Q, Lu L (2015) In vitro evaluation of six chemical agents on smooth Brucella melitensis strain. Ann Clin Microbiol Antimicrob 14:16.  https://doi.org/10.1186/s12941-015-0077-1CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Wheeler PW, Lancaster D, Kaiser AB (1989) Bronchopulmonary cross-colonization and infection related to mycobacterial contamination of suction valves of bronchoscopes. J Infect Dis 159(5):954–958CrossRefPubMedGoogle Scholar
  125. 125.
  126. 126.
    Witney AA, Gould KA, Pope CF, Bolt F, Stoker NG, Cubbon MD, Bradley CR, Fraise A, Breathnach AS, Butcher PD, Planche TD, Hinds J (2014) Genome sequencing and characterization of an extensively drug-resistant sequence type 111 serotype O12 hospital outbreak strain of Pseudomonas aeruginosa. Clin Microbiol Infect 20(10):O609–O618.  https://doi.org/10.1111/1469-0691.12528CrossRefPubMedGoogle Scholar
  127. 127.
    Zhang X, Kong J, Tang P, Wang S, Hyder Q, Sun G, Zhang R, Yang Y (2011) Current status of cleaning and disinfection for gastrointestinal endoscopy in China: a survey of 122 endoscopy units. Dig Liver Dis: Off J Ital Soc Gastroenterol Ital Assoc Study Liver 43(4):305–308.  https://doi.org/10.1016/j.dld.2010.12.010CrossRefGoogle Scholar
  128. 128.
    Zühlsdorf B, Kampf G (2006) Evaluation of the effectiveness of an enzymatic cleaner and a glutaraldehyde-based disinfectant for chemothermal processing of flexible endoscopes in washer-disinfectors in accordance with prEN ISO 15883. Endoscopy 38(6):586–591CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of Hygiene and Environmental MedicineUniversity of GreifswaldGreifswaldGermany

Personalised recommendations