Advertisement

Ethanol

  • Günter Kampf
Chapter

Abstract

Ethanol has comprehensive bactericidal and yeasticidal activity at 78–85% within 30 s, whereas some food-associated fungi require at least 10 min. Ethanol has also mycobactericidal activity at ≥70% within 30 s to 5 min depending on the species and ethanol concentration. High MIC values indicating resistance to ethanol have so far not been reported. An epidemiological cut-off value to determine acquired resistance has not been proposed yet. No specific resistance mechanisms are currently known for ethanol, and no cross-tolerance to antibiotics has been reported. Low-level ethanol exposure (1–6%) can increase biofilm formation in S. aureus and S. epidermidis, and 2.5% ethanol can increase surface attachment in L. monocytogenes. Ethanol at 5–8% can reduce the susceptibility to lethal ethanol concentrations in L. monocytogenes, Pseudomonas spp. and S. cerevisiae. In B. subtilis, ethanol at 4% can cause a 5-fold increase of mobile genetic element transfer (resistance genes). Ethanol can increase biofilm formation in S. aureus and S. epidermidis. It can also reduce biofilm formation in MRSA, T. asahii and mixed biofilms. Biofilm removal by ethanol is often <50% (B. cenocepacia, P. aeruginosa, S. liquefaciens, S. putrefaciens, S. aureus or triple species biofilms).

References

  1. 1.
    Aarnisalo K, Lundén J, Korkeala H, Wirtanen G (2007) Susceptibility of Listeria monocytogenes strains to disinfectants and chlorinated alkaline cleaners at cold temperatures. LWT Food Sci Technol 40(6):1041–1048CrossRefGoogle Scholar
  2. 2.
    Akamatsu T, Tabata K, Hironga M, Kawakami H, Uyeda M (1996) Transmission of Helicobacter pylori infection via flexible fiberoptic endoscopy. Am J Infect Control 24(5):396–401CrossRefPubMedGoogle Scholar
  3. 3.
    Ankarloo J, Wikman S, Nicholls IA (2010) Escherichia coli mar and acrAB mutants display no tolerance to simple alcohols. Int J Mol Sci 11(4):1403–1412.  https://doi.org/10.3390/ijms11041403CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Antoce A, Takahashi K, Namolosanu I (1996) Characterization of ethanol tolerance of yeasts using a calorimetric technique. Vitis 35(2):105–106Google Scholar
  5. 5.
    Aparecida Guimaraes M, Rocchetto Coelho L, Rodrigues Souza R, Ferreira-Carvalho BT, Marie Sa Figueiredo A (2012) Impact of biocides on biofilm formation by methicillin-resistant Staphylococcus aureus (ST239-SCCmecIII) isolates. Microbiol Immunol 56(3):203–207.  https://doi.org/10.1111/j.1348-0421.2011.00423.xCrossRefPubMedGoogle Scholar
  6. 6.
    Arroyo-Lopez FN, Salvado Z, Tronchoni J, Guillamon JM, Barrio E, Querol A (2010) Susceptibility and resistance to ethanol in Saccharomyces strains isolated from wild and fermentative environments. Yeast (Chichester, England) 27(12):1005–1015.  https://doi.org/10.1002/yea.1809
  7. 7.
    Babb JR, Bradley CR, Deverill CE, Ayliffe GA, Melikian V (1981) Recent advances in the cleaning and disinfection of fibrescopes. J Hosp Infect 2(4):329–340CrossRefPubMedGoogle Scholar
  8. 8.
    Bae YM, Baek SY, Lee SY (2012) Resistance of pathogenic bacteria on the surface of stainless steel depending on attachment form and efficacy of chemical sanitizers. Int J Food Microbiol 153(3):465–473.  https://doi.org/10.1016/j.ijfoodmicro.2011.12.017CrossRefPubMedGoogle Scholar
  9. 9.
    Bandara A, Fraser S, Chambers PJ, Stanley GA (2009) Trehalose promotes the survival of Saccharomyces cerevisiae during lethal ethanol stress, but does not influence growth under sublethal ethanol stress. FEMS Yeast Res 9(8):1208–1216.  https://doi.org/10.1111/j.1567-1364.2009.00569.xCrossRefPubMedGoogle Scholar
  10. 10.
    Beekes M, Lemmer K, Thomzig A, Joncic M, Tintelnot K, Mielke M (2010) Fast, broad-range disinfection of bacteria, fungi, viruses and prions. J Gener Virol 91(Pt 2):580–589.  https://doi.org/10.1099/vir.0.016337-0CrossRefGoogle Scholar
  11. 11.
    Best M, Kennedy ME, Coates F (1990) Efficacy of a variety of disinfectants against Listeria spp. Appl Environ Microbiol 56(2):377–380PubMedPubMedCentralGoogle Scholar
  12. 12.
    Best M, Sattar SA, Springthorpe VS, Kennedy ME (1988) Comparative mycobactericidal efficacy of chemical disinfectants in suspension and carrier tests. Appl Environ Microbiol 54:2856–2858PubMedPubMedCentralGoogle Scholar
  13. 13.
    Best M, Sattar SA, Springthorpe VS, Kennedy ME (1990) Efficacies of selected disinfectants against Mycobacterium tuberculosis. J Clin Microbiol 28(10):2234–2239PubMedPubMedCentralGoogle Scholar
  14. 14.
    Best M, Springthorpe VS, Sattar SA (1994) Feasibility of a combined carrier test for disinfectants: studies with a mixture of five types of microorganisms. Am J Infect Control 22(3):152–162CrossRefPubMedGoogle Scholar
  15. 15.
    Bhatia M, Mishra B, Thakur A, Dogra V, Loomba PS (2017) Evaluation of Susceptibility of glycopeptide-resistant and glycopeptide-sensitive enterococci to commonly used biocides in a super-speciality hospital: a pilot study. J Nat Sci Biol Med 8(2):199–202.  https://doi.org/10.4103/0976-9668.210010CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Bradley CR, Fraise AP (1996) Heat and chemical resistance of enterococci. J Hosp Infect 34:191–196CrossRefPubMedGoogle Scholar
  17. 17.
    Buckley T, Dudley SM, Donowitz LG (1994) Defining unnecessary disinfection procedures for single-dose and multiple-dose vials. Am J Critical Care: An Official Publication, Am Assoc Critical-Care Nurses 3(6):448–451Google Scholar
  18. 18.
    Bundgaard-Nielsen K, Nielsen PV (1996) Fungicidal effect of 15 disinfectants against 25 fungal contaminants commonly found in bread and cheese manufacturing. J Food Prot 59(3):268–275CrossRefPubMedGoogle Scholar
  19. 19.
    Campos GB, Souza SG, Lob OT, Da Silva DC, Sousa DS, Oliveira PS, Santos VM, Amorim AT, Farias SV, Cruz MP, Yatsuda R, Marques LM (2012) Isolation, molecular characteristics and disinfection of methicillin-resistant Staphylococcus aureus from ICU units in Brazil. New Microbiol 35(2):183–190PubMedGoogle Scholar
  20. 20.
    Cavagnolo RZ (1985) Inactivation of herpesvirus on CPR manikins utilizing a currently recommended disinfecting procedure. Infection Control: IC 6(11):456–458CrossRefPubMedGoogle Scholar
  21. 21.
    Chaieb K, Zmantar T, Souiden Y, Mahdouani K, Bakhrouf A (2011) XTT assay for evaluating the effect of alcohols, hydrogen peroxide and benzalkonium chloride on biofilm formation of Staphylococcus epidermidis. Microb Pathog 50(1):1–5.  https://doi.org/10.1016/j.micpath.2010.11.004CrossRefPubMedGoogle Scholar
  22. 22.
    Chand S, Saha K, Singh PK, Sri S, Malik N (2016) Determination of minimum inhibitory concentration (MIC) of routinely used disinfectants against microflora Isolated from clean rooms. Int J Curr Microbiol Appl Sci 5(1):334–341CrossRefGoogle Scholar
  23. 23.
    Chiang SR, Jung F, Tang HJ, Chen CH, Chen CC, Chou HY, Chuang YC (2017) Desiccation and ethanol resistances of multidrug resistant Acinetobacter baumannii embedded in biofilm: the favorable antiseptic efficacy of combination chlorhexidine gluconate and ethanol. J Microbiol Immunol Infection = Wei mian yu gan ran za zhi.  https://doi.org/10.1016/j.jmii.2017.02.003
  24. 24.
    Cincarova L, Polansky O, Babak V, Kulich P, Kralik P (2016) Changes in the expression of biofilm-associated surface proteins in Staphylococcus aureus food-environmental isolates subjected to sublethal concentrations of disinfectants. Biomed Res Int 2016:4034517.  https://doi.org/10.1155/2016/4034517CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Corbin A, Pitts B, Parker A, Stewart PS (2011) Antimicrobial penetration and efficacy in an in vitro oral biofilm model. Antimicrob Agents Chemother 55(7):3338–3344.  https://doi.org/10.1128/aac.00206-11CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Costa V, Reis E, Quintanilha A, Moradas-Ferreira P (1993) Acquisition of ethanol tolerance in Saccharomyces cerevisiae: the key role of the mitochondrial superoxide dismutase. Arch Biochem Biophys 300(2):608–614CrossRefPubMedGoogle Scholar
  27. 27.
    Department of Health and Human Services; Food and Drug Administration (1994) Tentative final monograph for health care antiseptic products; proposed rule. Fed Reg 59(116):31401–31452Google Scholar
  28. 28.
    Department of Health and Human Services; Food and Drug Administration (2015) Safety and effectiveness of healthcare antiseptics. Topical antimicrobial drug products for over-the-counter human use; proposed amendment of the tentative final monograph; reopening of administrative record; proposed rule. Fed Reg 80(84):25166–25205Google Scholar
  29. 29.
    Embil JM, Zhanel GG, Plourde PJ, Hoban D (2002) Scissors: a potential source of nosocomial infection. Infect Control Hosp Epidemiol 23(3):147–151.  https://doi.org/10.1086/502026CrossRefPubMedGoogle Scholar
  30. 30.
    Epstein AK, Pokroy B, Seminara A, Aizenberg J (2011) Bacterial biofilm shows persistent resistance to liquid wetting and gas penetration. Proc Natl Acad Sci USA 108(3):995–1000.  https://doi.org/10.1073/pnas.1011033108CrossRefPubMedGoogle Scholar
  31. 31.
    Epstein F (1896) Zur Frage der Alkoholdesinfektion. Z Hyg 24:1–21Google Scholar
  32. 32.
    Eterpi M, McDonnell G, Thomas V (2011) Decontamination efficacy against mycoplasma. Lett Appl Microbiol 52(2):150–155.  https://doi.org/10.1111/j.1472-765X.2010.02979.xCrossRefPubMedGoogle Scholar
  33. 33.
    European Chemicals Agency (ECHA) Ethanol. Substance information. https://echa.europa.eu/substance-information/-/substanceinfo/100.000.526. Accessed 30 Aug 2017
  34. 34.
  35. 35.
    Fletcher M (1983) The effects of methanol, ethanol, propanol and butanol on bacterial attachment to surfaces. J Gen Microbiol 129(3):633–641Google Scholar
  36. 36.
    Frobisher M Jr, Sommermeyer L, Blackwell MJ (1953) Studies on disinfection of clinical thermometers I. Oral thermometers. Appl Microbiol 1(4):187–194PubMedPubMedCentralGoogle Scholar
  37. 37.
    Garcia de Cabo A, Martinez Larriba PL, Checa Pinilla J, Guerra Sanz F (1978) A new method of disinfection of the flexible fibrebronchoscope. Thorax 33(2):270–272CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Gavalda L, Olmo AR, Hernandez R, Dominguez MA, Salamonsen MR, Ayats J, Alcaide F, Soriano A, Rosell A (2015) Microbiological monitoring of flexible bronchoscopes after high-level disinfection and flushing channels with alcohol: results and costs. Respir Med 109(8):1079–1085.  https://doi.org/10.1016/j.rmed.2015.04.015CrossRefPubMedGoogle Scholar
  39. 39.
    Gershenfeld L (1938) The sterility of alcohol. Am J Med Sci 195(3):358–360CrossRefGoogle Scholar
  40. 40.
    Goroncy-Bermes P, Koburger T, Meyer B (2010) Impact of the amount of hand rub applied in hygienic hand disinfection on the reduction of microbial counts on hands. J Hosp Infect 74(3):212–218CrossRefPubMedGoogle Scholar
  41. 41.
    Gravesen A, Lekkas C, Knochel S (2005) Surface attachment of Listeria monocytogenes is induced by sublethal concentrations of alcohol at low temperatures. Appl Environ Microbiol 71(9):5601–5603.  https://doi.org/10.1128/aem.71.9.5601-5603.2005CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Guilhermetti M, Marques Wiirzler LA, Castanheira Facio B, da Silva Furlan M, Campo Meschial W, Bronharo Tognim MC, Botelho Garcia L, Luiz Cardoso C (2010) Antimicrobial efficacy of alcohol-based hand gels. J Hosp Infect 74(3):219–224.  https://doi.org/10.1016/S0195-6701(09)00424-1,  https://doi.org/10.1016/j.jhin.2009.09.019
  43. 43.
    Guo W, Shan K, Xu B, Li J (2015) Determining the resistance of carbapenem-resistant Klebsiella pneumoniae to common disinfectants and elucidating the underlying resistance mechanisms. Pathogens Global Health 109(4):184–192.  https://doi.org/10.1179/2047773215y.0000000022CrossRefPubMedGoogle Scholar
  44. 44.
    Gutierrez-Martin CB, Yubero S, Martinez S, Frandoloso R, Rodriguez-Ferri EF (2011) Evaluation of efficacy of several disinfectants against Campylobacter jejuni strains by a suspension test. Res Vet Sci 91(3):e44–47.  https://doi.org/10.1016/j.rvsc.2011.01.020CrossRefPubMedGoogle Scholar
  45. 45.
    Hall TJ, Wren MW, Jeanes A, Gant VA (2009) A comparison of the antibacterial efficacy and cytotoxicity to cultured human skin cells of 7 commercial hand rubs and Xgel, a new copper-based biocidal hand rub. Am J Infect Control 37(4):322–326CrossRefPubMedGoogle Scholar
  46. 46.
    Hare R, Raik E, Gash S (1963) Efficiency of antiseptics when acting on dried organisms. BMJ 1(5329):496–500CrossRefPubMedGoogle Scholar
  47. 47.
    Harrington C, Walker H (1903) The germicidal action of alcohol. Boston Med Surg J 148(21):548–552CrossRefGoogle Scholar
  48. 48.
    Heipieper HJ, de Bont JA (1994) Adaptation of Pseudomonas putida S12 to ethanol and toluene at the level of fatty acid composition of membranes. Appl Environ Microbiol 60(12):4440–4444PubMedPubMedCentralGoogle Scholar
  49. 49.
    Jabbar U, Leischner J, Kasper D, Gerber R, Sambol SP, Parada JP, Johnson S, Gerding DN (2010) Effectiveness of alcohol-based hand rubs for removal of Clostridium difficile spores from hands. Infect Control Hosp Epidemiol 31(6):565–570.  https://doi.org/10.1086/652772CrossRefPubMedGoogle Scholar
  50. 50.
    Kampf G (2017) Ethanol. In: Kampf G (ed) Kompendium Händehygiene. mhp-Verlag, Wiesbaden, pp 325–351Google Scholar
  51. 51.
    Kampf G, Hollingsworth A (2008) Comprehensive bactericidal activity of an ethanol-based hand gel in 15 seconds. Ann Clin Microbiol Antimicrob 7:2CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Kampf G, Marschall S, Eggerstedt S, Ostermeyer C (2010) Efficacy of ethanol-based hand foams using clinically relevant amounts: a cross-over controlled study among healthy volunteers. BMC Infect Dis 10:78CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Kampf G, Meyer B, Goroncy-Bermes P (2003) Comparison of two test methods for the determination of sufficient antimicrobial efficacy of three different alcohol-based hand rubs for hygienic hand disinfection. J Hosp Infect 55(3):220–225CrossRefPubMedGoogle Scholar
  54. 54.
    Kampf G, Rudolf M, Labadie J-C, Barrett SP (2002) Spectrum of antimicrobial activity and user acceptability of the hand disinfectant agent Sterillium Gel. J Hosp Infect 52(2):141–147CrossRefPubMedGoogle Scholar
  55. 55.
    Knobloch JK, Horstkotte MA, Rohde H, Kaulfers PM, Mack D (2002) Alcoholic ingredients in skin disinfectants increase biofilm expression of Staphylococcus epidermidis. J Antimicrob Chemother 49(4):683–687CrossRefPubMedGoogle Scholar
  56. 56.
    Kobayashi Y, Takano T, Hirayama N, Sato N, Shimoide H (1995) Isolation of nontuberculous mycobacteria during colonoscopy. Kekkaku: [Tuberculosis] 70(11):629–634Google Scholar
  57. 57.
    Kubota H, Senda S, Tokuda H, Uchiyama H, Nomura N (2009) Stress resistance of biofilm and planktonic Lactobacillus plantarum subsp. plantarum JCM 1149. Food Microbiol 26(6):592–597.  https://doi.org/10.1016/j.fm.2009.04.001CrossRefPubMedGoogle Scholar
  58. 58.
    Lanjri S, Uwingabiye J, Frikh M, Abdellatifi L, Kasouati J, Maleb A, Bait A, Lemnouer A, Elouennass M (2017) In vitro evaluation of the susceptibility of Acinetobacter baumannii isolates to antiseptics and disinfectants: comparison between clinical and environmental isolates. Antimicrob Resist Infect Control 6:36.  https://doi.org/10.1186/s13756-017-0195-yCrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Leung CY, Chan YC, Samaranayake LP, Seneviratne CJ (2012) Biocide resistance of Candida and Escherichia coli biofilms is associated with higher antioxidative capacities. J Hosp Infect 81(2):79–86.  https://doi.org/10.1016/j.jhin.2011.09.014CrossRefPubMedGoogle Scholar
  60. 60.
    Liao Y, Zhao H, Lu X, Yang S, Zhou J, Yang R (2015) Efficacy of ethanol against Trichosporon asahii biofilm in vitro. Med Mycol 53(4):396–404.  https://doi.org/10.1093/mmy/myv006CrossRefPubMedGoogle Scholar
  61. 61.
    Lin F, Xu Y, Chang Y, Liu C, Jia X, Ling B (2017) Molecular characterization of reduced susceptibility to biocides in clinical isolates of Acinetobacter baumannii. Front Microbiol 8:1836.  https://doi.org/10.3389/fmicb.2017.01836CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Liu J, Yu S, Han B, Chen J (2017) Effects of benzalkonium chloride and ethanol on dual-species biofilms of Serratia liquefaciens S1 and Shewanella putrefaciens S4. Food Control 78(Supplement C):196–202.  https://doi.org/10.1016/j.foodcont.2017.02.063
  63. 63.
    Liu Q, Liu M, Wu Q, Li C, Zhou T, Ni Y (2009) Sensitivities to biocides and distribution of biocide resistance genes in quaternary ammonium compound tolerant Staphylococcus aureus isolated in a teaching hospital. Scand J Infect Dis 41(6–7):403–409.  https://doi.org/10.1080/00365540902856545CrossRefPubMedGoogle Scholar
  64. 64.
    Lou Y, Yousef AE (1997) Adaptation to sublethal environmental stresses protects Listeria monocytogenes against lethal preservation factors. Appl Environ Microbiol 63(4):1252–1255PubMedPubMedCentralGoogle Scholar
  65. 65.
    Luther MK, Bilida S, Mermel LA, LaPlante KL (2015) Ethanol and isopropyl alcohol exposure increases biofilm formation in Staphylococcus aureus and Staphylococcus epidermidis. Infect Dis Ther 4(2):219–226.  https://doi.org/10.1007/s40121-015-0065-yCrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Macinga DR, Shumaker DJ, Werner HP, Edmonds SL, Leslie RA, Parker AE, Arbogast JW (2014) The relative influences of product volume, delivery format and alcohol concentration on dry-time and efficacy of alcohol-based hand rubs. BMC Infect Dis 14:511.  https://doi.org/10.1186/1471-2334-14-511CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Mainous ME, Smith SA (2005) Efficacy of common disinfectants against mycobacterium marinum. J Aquat Anim Health 17(3):284–288.  https://doi.org/10.1577/H04-051.1CrossRefGoogle Scholar
  68. 68.
    Maisch T, Shimizu T, Isbary G, Heinlin J, Karrer S, Klampfl TG, Li YF, Morfill G, Zimmermann JL (2012) Contact-free inactivation of Candida albicans biofilms by cold atmospheric air plasma. Appl Environ Microbiol 78(12):4242–4247.  https://doi.org/10.1128/aem.07235-11CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Mariscal A, Carnero-Varo M, Gutierrez-Bedmar M, Garcia-Rodriguez A, Fernandez-Crehuet J (2007) A fluorescent method for assessing the antimicrobial efficacy of disinfectant against Escherichia coli ATCC 35218 biofilm. Appl Microbiol Biotechnol 77(1):233–240.  https://doi.org/10.1007/s00253-007-1137-zCrossRefPubMedGoogle Scholar
  70. 70.
    Mariscal A, Lopez-Gigosos RM, Carnero-Varo M, Fernandez-Crehuet J (2009) Fluorescent assay based on resazurin for detection of activity of disinfectants against bacterial biofilm. Appl Microbiol Biotechnol 82(4):773–783.  https://doi.org/10.1007/s00253-009-1879-xCrossRefPubMedGoogle Scholar
  71. 71.
    Mattner F, Gastmeier P (2004) Bacterial contamination of multiple-dose vials: a prevalence study. Am J Infect Control 32(1):12–16.  https://doi.org/10.1016/j.ajic.2003.06.004CrossRefPubMedGoogle Scholar
  72. 72.
    Miyano N, Oie S, Kamiya A (2003) Efficacy of disinfectants and hot water against biofilm cells of Burkholderia cepacia. Biol Pharm Bull 26(5):671–674CrossRefPubMedGoogle Scholar
  73. 73.
    Moretro T, Vestby LK, Nesse LL, Storheim SE, Kotlarz K, Langsrud S (2009) Evaluation of efficacy of disinfectants against Salmonella from the feed industry. J Appl Microbiol 106(3):1005–1012.  https://doi.org/10.1111/j.1365-2672.2008.04067.xCrossRefPubMedGoogle Scholar
  74. 74.
    Narayanan A, Nair MS, Karumathil DP, Baskaran SA, Venkitanarayanan K, Amalaradjou MA (2016) Inactivation of Acinetobacter baumannii biofilms on polystyrene, stainless steel, and urinary catheters by octenidine dihydrochloride. Front Microbiol 7:847.  https://doi.org/10.3389/fmicb.2016.00847CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Narui K, Takano M, Noguchi N, Sasatsu M (2007) Susceptibilities of methicillin-resistant Staphylococcus aureus isolates to seven biocides. Biol & Pharm Bull 30(3):585–587CrossRefGoogle Scholar
  76. 76.
    National Center for Biotechnology Information Ethanol. PubChem Compound Database; CID = 702. https://pubchem.ncbi.nlm.nih.gov/compound/702. Accessed 30 Aug 2017
  77. 77.
    Nett JE, Guite KM, Ringeisen A, Holoyda KA, Andes DR (2008) Reduced biocide susceptibility in Candida albicans biofilms. Antimicrob Agents Chemother 52(9):3411–3413.  https://doi.org/10.1128/aac.01656-07CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Neufeld F, Schiemann O (1939) Über die Wirkung des Alkohols bei der Händedesinfektion. Z Hyg 121:312–333CrossRefGoogle Scholar
  79. 79.
    Ogawa M, Nomoto M, Fukuda K, Miyamoto H, Taniguchi H (2011) Nontuberculous mycobacteria in wet areas of a hospital and standard residences. J UOEH 33(4):319–329CrossRefPubMedGoogle Scholar
  80. 80.
    Oh DH, Marshall DL (1993) Antimicrobial activity of ethanol, glycerol monolaurate or lactic acid against Listeria monocytogenes. Int J Food Microbiol 20(4):239–246CrossRefPubMedGoogle Scholar
  81. 81.
    Ohara T, Itoh Y, Itoh K (1998) Ultrasound instruments as possible vectors of staphylococcal infection. J Hosp Infect 40(1):73–77CrossRefPubMedGoogle Scholar
  82. 82.
    Oliveira PS, Souza SG, Campos GB, da Silva DC, Sousa DS, Araujo SP, Ferreira LP, Santos VM, Amorim AT, Santos AM, Timenetsky J, Cruz MP, Yatsuda R, Marques LM (2014) Isolation, pathogenicity and disinfection of Staphylococcus aureus carried by insects in two public hospitals of Vitoria da Conquista, Bahia, Brazil. Brazilian J Infect Dis: An Off Public Brazilian Soc Infect Dis 18(2):129–136.  https://doi.org/10.1016/j.bjid.2013.06.008CrossRefGoogle Scholar
  83. 83.
    Omidbakhsh N (2010) Theoretical and experimental aspects of microbicidal activities of hard surface disinfectants: are their label claims based on testing under field conditions? J AOAC Int 93(6):1944–1951PubMedGoogle Scholar
  84. 84.
    Park HS, Ham Y, Shin K, Kim YS, Kim TJ (2015) Sanitizing effect of ethanol against biofilms formed by three gram-negative pathogenic bacteria. Curr Microbiol 71(1):70–75.  https://doi.org/10.1007/s00284-015-0828-4CrossRefPubMedGoogle Scholar
  85. 85.
    Park SH, Oh KH, Kim CK (2001) Adaptive and cross-protective responses of pseudomonas sp. DJ-12 to several aromatics and other stress shocks. Curr Microbiol 43(3):176–181.  https://doi.org/10.1007/s002840010283CrossRefPubMedGoogle Scholar
  86. 86.
    Passerini de Rossi B, Feldman L, Pineda MS, Vay C, Franco M (2012) Comparative in vitro efficacies of ethanol-, EDTA- and levofloxacin-based catheter lock solutions on eradication of Stenotrophomonas maltophilia biofilms. J Med Microbiol 61(Pt 9):1248–1253.  https://doi.org/10.1099/jmm.0.039743-0CrossRefPubMedGoogle Scholar
  87. 87.
    Peeters E, Nelis HJ, Coenye T (2008) Evaluation of the efficacy of disinfection procedures against Burkholderia cenocepacia biofilms. J Hosp Infect 70(4):361–368.  https://doi.org/10.1016/j.jhin.2008.08.015CrossRefPubMedGoogle Scholar
  88. 88.
    Penna TC, Mazzola PG, Silva Martins AM (2001) The efficacy of chemical agents in cleaning and disinfection programs. BMC Infect Dis 1:16CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Peters BM, Ward RM, Rane HS, Lee SA, Noverr MC (2013) Efficacy of ethanol against Candida albicans and Staphylococcus aureus polymicrobial biofilms. Antimicrob Agents Chemother 57(1):74–82.  https://doi.org/10.1128/aac.01599-12CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Redelman CV, Maduakolam C, Anderson GG (2012) Alcohol treatment enhances Staphylococcus aureus biofilm development. FEMS Immunol Med Microbiol 66(3):411–418.  https://doi.org/10.1111/1574-695x.12005CrossRefPubMedGoogle Scholar
  91. 91.
    Reinicke EA (1894) Bakteriologische Untersuchungen über die Desinfektion der Hände. Zentralbl Gynäkol 47:1189–1199Google Scholar
  92. 92.
    Rodriguez Ferri EF, Martinez S, Frandoloso R, Yubero S, Gutierrez Martin CB (2010) Comparative efficacy of several disinfectants in suspension and carrier tests against Haemophilus parasuis serovars 1 and 5. Res Vet Sci 88(3):385–389.  https://doi.org/10.1016/j.rvsc.2009.12.001CrossRefPubMedGoogle Scholar
  93. 93.
    Rutala WA, Cole EC, Wannamaker NS, Weber DJ (1991) Inactivation of Mycobacterium tuberculosis and mycobacterium bovis by 14 hospital disinfectants. Am J Med 91(3b):267s–271sCrossRefPubMedGoogle Scholar
  94. 94.
    Salo S, Wirtanen G (2005) Disinfectant efficacy on foodborne spoilage yeast strains. Food Bioprod Process 83(4):288–296CrossRefGoogle Scholar
  95. 95.
    Santos GOD, Milanesi FC, Greggianin BF, Fernandes MI, Oppermann RV, Weidlich P (2017) Chlorhexidine with or without alcohol against biofilm formation: efficacy, adverse events and taste preference. Brazilian Oral Res 31:e32.  https://doi.org/10.1590/1807-3107BOR-2017.vol31.0032CrossRefGoogle Scholar
  96. 96.
    Schiavone M, Formosa-Dague C, Elsztein C, Teste MA, Martin-Yken H, De Morais MA, Jr., Dague E, Francois JM (2016) Evidence for a role for the plasma membrane in the nanomechanical properties of the cell wall as revealed by an atomic force microscopy study of the response of Saccharomyces cerevisiae to ethanol stress. Appl Environ Microbiol 82(15):4789–4801.  https://doi.org/10.1128/aem.01213-16
  97. 97.
    Seier-Petersen MA, Jasni A, Aarestrup FM, Vigre H, Mullany P, Roberts AP, Agerso Y (2014) Effect of subinhibitory concentrations of four commonly used biocides on the conjugative transfer of Tn916 in Bacillus subtilis. J Antimicrob Chemother 69(2):343–348.  https://doi.org/10.1093/jac/dkt370CrossRefPubMedGoogle Scholar
  98. 98.
    Semchyshyn HM (2014) Hormetic concentrations of hydrogen peroxide but not ethanol induce cross-adaptation to different stresses in budding yeast. Int J Microbiol 2014:485792.  https://doi.org/10.1155/2014/485792CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Singh D, Kaur H, Gardner WG, Treen LB (2002) Bacterial contamination of hospital pagers. Infect Control Hosp Epidemiol 23(5):274–276.  https://doi.org/10.1086/502048CrossRefPubMedGoogle Scholar
  100. 100.
    Sommermeyer L, Frobisher M Jr (1953) Laboratory studies on disinfection of rectal thermometers. Nurs Res 2(2):85–89CrossRefPubMedGoogle Scholar
  101. 101.
    Takenaka S, Trivedi HM, Corbin A, Pitts B, Stewart PS (2008) Direct visualization of spatial and temporal patterns of antimicrobial action within model oral biofilms. Appl Environ Microbiol 74(6):1869–1875.  https://doi.org/10.1128/aem.02218-07CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Takla TA, Zelenitsky SA, Vercaigne LM (2008) Effectiveness of a 30% ethanol/4% trisodium citrate locking solution in preventing biofilm formation by organisms causing haemodialysis catheter-related infections. J Antimicrob Chemother 62(5):1024–1026.  https://doi.org/10.1093/jac/dkn291CrossRefPubMedGoogle Scholar
  103. 103.
    Theraud M, Bedouin Y, Guiguen C, Gangneux JP (2004) Efficacy of antiseptics and disinfectants on clinical and environmental yeast isolates in planktonic and biofilm conditions. J Med Microbiol 53(Pt 10):1013–1018.  https://doi.org/10.1099/jmm.0.05474-0CrossRefPubMedGoogle Scholar
  104. 104.
    Tote K, Horemans T, Vanden Berghe D, Maes L, Cos P (2010) Inhibitory effect of biocides on the viable masses and matrices of Staphylococcus aureus and Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 76(10):3135–3142.  https://doi.org/10.1128/aem.02095-09CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Traore O, Springthorpe VS, Sattar SA (2002) Testing chemical germicides against Candida species using quantitative carrier and fingerpad methods. J Hosp Infect 50(1):66–75.  https://doi.org/10.1053/jhin.2001.1133CrossRefPubMedGoogle Scholar
  106. 106.
    United States Environmental Protection Agency (1995) Reregistration Eligibility Decision (RED) aliphatic alcohols. https://www3.epa.gov/pesticides/chem_search/reg_actions/reregistration/red_G-4_1-Mar-95.pdf
  107. 107.
    van Klingeren B (1995) Disinfectant testing on surfaces. J Hosp Infect 30(Suppl):397–408CrossRefPubMedGoogle Scholar
  108. 108.
    van Klingeren B, Pullen W (1987) Comparative testing of disinfectants against mycobacterium tuberculosis and mycobacterium terrae in a quantitative suspension test. J Hosp Infect 10(3):292–298. http://dx.doi.org/10.1016/0195-6701(87)90012-0
  109. 109.
    Vieira CD, Farias Lde M, Diniz CG, Alvarez-Leite ME, Camargo ER, Carvalho MA (2005) New methods in the evaluation of chemical disinfectants used in health care services. Am J Infect Control 33(3):162–169.  https://doi.org/10.1016/j.ajic.2004.10.007CrossRefPubMedGoogle Scholar
  110. 110.
    Wang M, Zhao J, Yang Z, Du Z, Yang Z (2007) Electrochemical insights into the ethanol tolerance of Saccharomyces cerevisiae. Bioelectrochemistry (Amsterdam, Netherlands) 71(2):107–112.  https://doi.org/10.1016/j.bioelechem.2007.04.003
  111. 111.
    Wang Y, Leng V, Patel V, Phillips KS (2017) Injections through skin colonized with staphylococcus aureus biofilm introduce contamination despite standard antimicrobial preparation procedures. Sci Rep 7:45070.  https://doi.org/10.1038/srep45070CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Weber DJ, Wilson MB, Rutala WA, Thomann CA (1990) Manual ventilation bags as a source for bacterial colonization of intubated patients. Am Rev Respir Dis 142(4):892–894.  https://doi.org/10.1164/ajrccm/142.4.892CrossRefPubMedGoogle Scholar
  113. 113.
    WHO (2009) WHO guidelines on hand hygiene in health care. First Global Patient Safety Challenge Clean Care is Safer Care. WHO, GenevaGoogle Scholar
  114. 114.
    WHO (2015) WHO model list of essential medicines. WHO. http://www.who.int/medicines/publications/essentialmedicines/EML2015_8-May-15.pdf
  115. 115.
    WHO (2016) Global guidelines for the prevention of surgical site infections. WHO, GenevaGoogle Scholar
  116. 116.
    WHO (2017) WHO model list of essential medicines for children. WHO. Accessed 30 Aug 2017Google Scholar
  117. 117.
    Wong HS, Townsend KM, Fenwick SG, Trengove RD, O’Handley RM (2010) Comparative susceptibility of planktonic and 3-day-old Salmonella Typhimurium biofilms to disinfectants. J Appl Microbiol 108(6):2222–2228.  https://doi.org/10.1111/j.1365-2672.2009.04630.xCrossRefPubMedGoogle Scholar
  118. 118.
    Woo PC, Leung KW, Wong SS, Chong KT, Cheung EY, Yuen KY (2002) Relatively alcohol-resistant mycobacteria are emerging pathogens in patients receiving acupuncture treatment. J Clin Microbiol 40(4):1219–1224CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Zachary KC, Bayne PS, Morrison VJ, Ford DS, Silver LC, Hooper DC (2001) Contamination of gowns, gloves, and stethoscopes with vancomycin-resistant enterococci. Infect Control Hosp Epidemiol 22(9):560–564.  https://doi.org/10.1086/501952CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of Hygiene and Environmental MedicineUniversity of GreifswaldGreifswaldGermany

Personalised recommendations