Advertisement

Silver

  • Günter Kampf
Chapter

Abstract

Silver is a naturally occurring element and has some bactericidal activity against selected species (3.0 log) at 0.032 mg/l. The fungicidal or mycobactericidal activity is largely unknown. High MIC values indicating silver tolerance have been described with E. coli (≤ 512,000 mg/l), E. cloacae (≤512,000 mg/l), P. aeruginosa (≤128,000 mg/l), Klebsiella spp. (≤5,500 mg/l), Enterococcus spp. (≤300 mg/l), Citrobacter spp. (250 mg/l) and Proteus spp. (250 mg/l) based on the proposed cut-off value of 8 mg/l in Gram-negative bacteria. Cross-tolerance to copper is possible, mainly via efflux pumps. Cross-tolerance to various antibiotics has been described in selected isolates of Gram-negative species. Silver-resistant isolates often harbour sil genes, mostly in Enterobacter spp. or Klebsiella spp. Resistance may also be explained by plasmids, efflux pumps or cellular silver accumulation. Low-level exposure leads to no MIC change in 9 species, a weak MIC change in 3 species and a strong MIC change in 6 species with 4 of them being stable resulting in MIC values as high as 1,024 mg/l (E. coli) or 1,000 mg/l (E. cloacae). Silver nanoparticles may inhibit biofilm formation and may partially remove biofilm.

References

  1. 1.
    Abdel Rahim KA, Ali Mohamed AM (2015) Bactericidal and antibiotic synergistic effect of nanosilver against methicillin-resistant Staphylococcus aureus. Jundishapur J Microbiol 8(11):e25867.  https://doi.org/10.5812/jjm.25867CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Annear DI, Mee BJ, Bailey M (1976) Instability and linkage of silver resistance, lactose fermentation, and colony structure in Enterobacter cloacae from burn wounds. J Clin Pathol 29(5):441–443CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Aramwit P, Muangman P, Namviriyachote N, Srichana T (2010) In vitro evaluation of the antimicrobial effectiveness and moisture binding properties of wound dressings. Int J Mol Sci 11(8):2864–2874.  https://doi.org/10.3390/ijms11082864CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Asiani KR, Williams H, Bird L, Jenner M, Searle MS, Hobman JL, Scott DJ, Soultanas P (2016) SilE is an intrinsically disordered periplasmic “molecular sponge” involved in bacterial silver resistance. Mol Microbiol 101(5):731–742.  https://doi.org/10.1111/mmi.13399CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ayatollahi Mousavi SA, Salari S, Hadizadeh S (2015) Evaluation of antifungal effect of silver nanoparticles against microsporum canis, trichophyton mentagrophytes and microsporum gypseum. Iranian J Biotechnol 13(4):38–42.  https://doi.org/10.15171/ijb.1302CrossRefGoogle Scholar
  6. 6.
    Bardouniotis E, Huddleston W, Ceri H, Olson ME (2001) Characterization of biofilm growth and biocide susceptibility testing of Mycobacterium phlei using the MBEC assay system. FEMS Microbiol Lett 203(2):263–267PubMedGoogle Scholar
  7. 7.
    Barillo DJ, Marx DE (2014) Silver in medicine: a brief history BC 335 to present. Burns: J Int Soc Burn Injuries 40(Suppl 1):S3–8.  https://doi.org/10.1016/j.burns.2014.09.009CrossRefGoogle Scholar
  8. 8.
    Barroso JM (2014) COMMISSION IMPLEMENTING DECISION of 24 April 2014 on the non-approval of certain biocidal active substances pursuant to Regulation (EU) No 528/2012 of the European Parliament and of the Council. Off J Eur Union 57(L 124):27–29Google Scholar
  9. 9.
    Berger TJ, Spadaro JA, Bierman R, Chapin SE, Becker RO (1976) Antifungal properties of electrically generated metallic ions. Antimicrob Agents Chemother 10(5):856–860CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Berger TJ, Spadaro JA, Chapin SE, Becker RO (1976) Electrically generated silver ions: quantitative effects on bacterial and mammalian cells. Antimicrob Agents Chemother 9(2):357–358CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Berry JA, Biedlingmaier JF, Whelan PJ (2000) In vitro resistance to bacterial biofilm formation on coated fluoroplastic tympanostomy tubes. Otolaryngol–Head Neck Surgery: Official J Am Acad Otolaryngol-Head Neck Surgery 123(3):246–251.  https://doi.org/10.1067/mhn.2000.107458
  12. 12.
    Billman-Jacobe H, Liu Y, Haites R, Weaver T, Robinson L, Marenda M, Dyall-Smith M (2018) pSTM6-275, a conjugative IncHI2 plasmid of Salmonella that confers antibiotic and heavy metal resistance under changing physiological conditions. Antimicrob Agents Chemother.  https://doi.org/10.1128/aac.02357-17CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Bowler PG, Parsons D (2016) Combatting wound biofilm and recalcitrance with a novel anti-biofilm Hydrofiber® wound dressing. Wound Med 14:6–11.  https://doi.org/10.1016/j.wndm.2016.05.005CrossRefGoogle Scholar
  14. 14.
    Bowler PG, Welsby S, Hogarth A, Towers V (2013) Topical antimicrobial protection of postoperative surgical sites at risk of infection with Propionibacterium acnes: an in-vitro study. J Hosp Infect 83(3):232–237.  https://doi.org/10.1016/j.jhin.2012.11.018CrossRefPubMedGoogle Scholar
  15. 15.
    Bowler PG, Welsby S, Towers V (2013) In vitro antimicrobial efficacy of a silver-containing wound dressing against mycobacteria associated with atypical skin ulcers. Wounds: A Compend Clin Res Pract 25(8):225–230Google Scholar
  16. 16.
    Brady MJ, Lisay CM, Yurkovetskiy AV, Sawan SP (2003) Persistent silver disinfectant for the environmental control of pathogenic bacteria. Am J Infect Control 31(4):208–214CrossRefPubMedGoogle Scholar
  17. 17.
    Brett DW (2006) A discussion of silver as an antimicrobial agent: alleviating the confusion. Ostomy/wound Manag 52(1):34–41Google Scholar
  18. 18.
    Bridges K, Kidson A, Lowbury EJ, Wilkins MD (1979) Gentamicin- and silver-resistant pseudomonas in a burns unit. BMJ 1(6161):446–449CrossRefPubMedGoogle Scholar
  19. 19.
    Cao C, Huang J, Yan C, Liu J, Hu Q, Guan W (2018) Shifts of system performance and microbial community structure in a constructed wetland after exposing silver nanoparticles. Chemosphere 199:661–669.  https://doi.org/10.1016/j.chemosphere.2018.02.031CrossRefPubMedGoogle Scholar
  20. 20.
    Cason JS, Jackson DM, Lowbury EJ, Ricketts CR (1966) Antiseptic and aseptic prophylaxis for burns: use of silver nitrate and of isolators. BMJ 2(5525):1288–1294CrossRefPubMedGoogle Scholar
  21. 21.
    Castellano JJ, Shafii SM, Ko F, Donate G, Wright TE, Mannari RJ, Payne WG, Smith DJ, Robson MC (2007) Comparative evaluation of silver-containing antimicrobial dressings and drugs. Int Wound J 4(2):114–122.  https://doi.org/10.1111/j.1742-481X.2007.00316.xCrossRefPubMedGoogle Scholar
  22. 22.
    Cavanagh MH, Burrell RE, Nadworny PL (2010) Evaluating antimicrobial efficacy of new commercially available silver dressings. Int Wound J 7(5):394–405.  https://doi.org/10.1111/j.1742-481X.2010.00705.xCrossRefPubMedGoogle Scholar
  23. 23.
    Chappell JB, Greville GD (1954) Effect of silver ions on mitochondrial adenosine triphosphatase. Nature 174(4437):930–931CrossRefPubMedGoogle Scholar
  24. 24.
    Chen YT, Chang HY, Lai YC, Pan CC, Tsai SF, Peng HL (2004) Sequencing and analysis of the large virulence plasmid pLVPK of Klebsiella pneumoniae CG43. Gene 337:189–198.  https://doi.org/10.1016/j.gene.2004.05.008CrossRefPubMedGoogle Scholar
  25. 25.
    Chopra I (2007) The increasing use of silver-based products as antimicrobial agents: a useful development or a cause for concern? J Antimicrob Chemother 59(4):587–590.  https://doi.org/10.1093/jac/dkm006CrossRefPubMedGoogle Scholar
  26. 26.
    Choudhury P, Kumar R (1998) Multidrug- and metal-resistant strains of Klebsiella pneumoniae isolated from Penaeus monodon of the coastal waters of deltaic Sundarban. Can J Microbiol 44(2):186–189CrossRefPubMedGoogle Scholar
  27. 27.
    Coenye T, Spilker T, Reik R, Vandamme P, Lipuma JJ (2005) Use of PCR analyses to define the distribution of Ralstonia species recovered from patients with cystic fibrosis. J Clin Microbiol 43(7):3463–3466.  https://doi.org/10.1128/jcm.43.7.3463-3466.2005CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Das BC, Dash SK, Mandal D, Ghosh T, Chattopadhyay S, Tripathy S, Das S, Dey SK, Das D, Roy S (2017) Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage. Arab J Chem 10(6):862–876.  https://doi.org/10.1016/j.arabjc.2015.08.008CrossRefGoogle Scholar
  29. 29.
    Davis IJ, Richards H, Mullany P (2005) Isolation of silver- and antibiotic-resistant enterobacter cloacae from teeth. Oral Microbiol Immunol 20(3):191–194.  https://doi.org/10.1111/j.1399-302X.2005.00218.xCrossRefPubMedGoogle Scholar
  30. 30.
    Delmar JA, Su CC, Yu EW (2014) Bacterial multidrug efflux transporters. Ann Rev Biophys 43:93–117.  https://doi.org/10.1146/annurev-biophys-051013-022855CrossRefGoogle Scholar
  31. 31.
    Deshpande LM, Chopade BA (1994) Plasmid mediated silver resistance in Acinetobacter baumannii. Biometals: An Int J Role Metal Ions Biol Biochem Med 7(1):49–56CrossRefGoogle Scholar
  32. 32.
    Desroche N, Dropet C, Janod P, Guzzo J (2016) Antibacterial properties and reduction of MRSA biofilm with a dressing combining polyabsorbent fibres and a silver matrix. J Wound Care 25(10):577–584.  https://doi.org/10.12968/jowc.2016.25.10.577CrossRefPubMedGoogle Scholar
  33. 33.
    Deus D, Krischek C, Pfeifer Y, Sharifi AR, Fiegen U, Reich F, Klein G, Kehrenberg C (2017) Comparative analysis of the susceptibility to biocides and heavy metals of extended-spectrum beta-lactamase-producing Escherichia coli isolates of human and avian origin, Germany. Diagnostic Microbiol Infect Dis 88(1):88–92.  https://doi.org/10.1016/j.diagmicrobio.2017.01.023CrossRefGoogle Scholar
  34. 34.
    Dibrov P, Dzioba J, Gosink KK, Hase CC (2002) Chemiosmotic mechanism of antimicrobial activity of Ag(+) in Vibrio cholerae. Antimicrob Agents Chemother 46(8):2668–2670CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Dunne KA, Chaudhuri RR, Rossiter AE, Beriotto I, Browning DF, Squire D, Cunningham AF, Cole JA, Loman N, Henderson IR (2017) Sequencing a piece of history: complete genome sequence of the original Escherichia coli strain. Microbial Genom 3(3):mgen000106.  https://doi.org/10.1099/mgen.0.000106
  36. 36.
    Edwards-Jones V (2009) The benefits of silver in hygiene, personal care and healthcare. Lett Appl Microbiol 49(2):147–152.  https://doi.org/10.1111/j.1472-765X.2009.02648.xCrossRefPubMedGoogle Scholar
  37. 37.
    Elkrewi E, Randall CP, Ooi N, Cottell JL, O’Neill AJ (2017) Cryptic silver resistance is prevalent and readily activated in certain gram-negative pathogens. J Antimicrob Chemother 72(11):3043–3046.  https://doi.org/10.1093/jac/dkx258CrossRefPubMedGoogle Scholar
  38. 38.
    Environmental Protection Agency (2009) 2-(Decylthio)ethanamine hydrochloride; and silver and compounds registration review; antimicrobial pesticide dockets opened for review and comment. Fed Reg 74(120):30070–30073Google Scholar
  39. 39.
    Espigares E, Moreno Roldan E, Espigares M, Abreu R, Castro B, Dib AL, Arias A (2017) Phenotypic resistance to disinfectants and antibiotics in methicillin-resistant Staphylococcus aureus strains isolated from pigs. Zoonoses Public Health 64(4):272–280.  https://doi.org/10.1111/zph.12308CrossRefPubMedGoogle Scholar
  40. 40.
    European Chemicals Agency (ECHA) (2018) Silver. Substance information. https://echa.europa.eu/de/substance-information/-/substanceinfo/100.028.301. Accessed 27 March 2018
  41. 41.
    Fang L, Li X, Li L, Li S, Liao X, Sun J, Liu Y (2016) Co-spread of metal and antibiotic resistance within ST3-IncHI2 plasmids from E. coli isolates of food-producing animals. Scientific Reports 6:25312.  https://doi.org/10.1038/srep25312
  42. 42.
    Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52(4):662–668CrossRefPubMedGoogle Scholar
  43. 43.
    Finley PJ, Norton R, Austin C, Mitchell A, Zank S, Durham P (2015) Unprecedented silver resistance in clinically isolated enterobacteriaceae: major implications for burn and wound management. Antimicrob Agents Chemother 59(8):4734–4741.  https://doi.org/10.1128/aac.00026-15CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Finley PJ, Peterson A, Huckfeldt RE (2013) The prevalence of phenotypic silver resistance in clinical isolates. Wounds: A Compend Clin Res Pract 25(4):84–88Google Scholar
  45. 45.
    Flannery EL, Antczak SM, Mobley HL (2011) Self-transmissibility of the integrative and conjugative element ICEPm1 between clinical isolates requires a functional integrase, relaxase, and type IV secretion system. J Bacteriol 193(16):4104–4112.  https://doi.org/10.1128/jb.05119-11CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Flannery EL, Mody L, Mobley HL (2009) Identification of a modular pathogenicity island that is widespread among urease-producing uropathogens and shares features with a diverse group of mobile elements. Infect Immun 77(11):4887–4894.  https://doi.org/10.1128/iai.00705-09CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Gadd GM, Laurence OS, Briscoe PA, Trevors JT (1989) Silver accumulation in Pseudomonas stutzeri AG259. Biol Metals 2(3):168–173CrossRefGoogle Scholar
  48. 48.
    Goddard PA, Bull AT (1989) The isolation and characterisation of bacteria capable of accumulating silver. Appl Microbiol Biotechnol 31(3):308–313Google Scholar
  49. 49.
    Goris J, De Vos P, Coenye T, Hoste B, Janssens D, Brim H, Diels L, Mergeay M, Kersters K, Vandamme P (2001) Classification of metal-resistant bacteria from industrial biotopes as Ralstonia campinensis sp. nov., Ralstonia metallidurans sp. nov. and Ralstonia basilensis Steinle et al. 1998 emend. Int J Syst Evol Microbiol 51(Pt 5):1773–1782.  https://doi.org/10.1099/00207713-51-5-1773
  50. 50.
    Graves JL Jr, Tajkarimi M, Cunningham Q, Campbell A, Nonga H, Harrison SH, Barrick JE (2015) Rapid evolution of silver nanoparticle resistance in Escherichia coli. Front Genet 6:42.  https://doi.org/10.3389/fgene.2015.00042CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Gu D, Dong N, Zheng Z, Lin D, Huang M, Wang L, Chan EW, Shu L, Yu J, Zhang R, Chen S (2018) A fatal outbreak of ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae in a Chinese hospital: a molecular epidemiological study. Lancet Infect Dis 18(1):37–46.  https://doi.org/10.1016/s1473-3099(17)30489-9CrossRefPubMedGoogle Scholar
  52. 52.
    Gudipaty SA, Larsen AS, Rensing C, McEvoy MM (2012) Regulation of Cu(I)/Ag(I) efflux genes in escherichia coli by the sensor kinase CusS. FEMS Microbiol Lett 330(1):30–37.  https://doi.org/10.1111/j.1574-6968.2012.02529.xCrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Gullberg E, Albrecht LM, Karlsson C, Sandegren L, Andersson DI (2014) Selection of a multidrug resistance plasmid by sublethal levels of antibiotics and heavy metals. mBio 5(5):e01918–01914.  https://doi.org/10.1128/mbio.01918-14
  54. 54.
    Guo Q, Zhao Y, Dai X, Zhang T, Yu Y, Zhang X, Li C (2017) Functional silver nanocomposites as broad-spectrum antimicrobial and biofilm-disrupting agents. ACS Appl Mater Interf 9(20):16834–16847.  https://doi.org/10.1021/acsami.7b02775CrossRefGoogle Scholar
  55. 55.
    Gupta A, Matsui K, Lo JF, Silver S (1999) Molecular basis for resistance to silver cations in salmonella. Nat Med 5(2):183–188.  https://doi.org/10.1038/5545CrossRefPubMedGoogle Scholar
  56. 56.
    Gupta A, Maynes M, Silver S (1998) Effects of halides on plasmid-mediated silver resistance in escherichia coli. Appl Environ Microbiol 64(12):5042–5045PubMedPubMedCentralGoogle Scholar
  57. 57.
    Gupta A, Phung LT, Taylor DE, Silver S (2001) Diversity of silver resistance genes in IncH incompatibility group plasmids. Microbiology (Reading, England) 147(Pt 12):3393–3402.  https://doi.org/10.1099/00221287-147-12-3393
  58. 58.
    Gupta LK, Jindal R, Beri HK, Chhibber S (1992) Virulence of silver-resistant mutant of Klebsiella pneumoniae in burn wound model. Folia Microbiol 37(4):245–248CrossRefGoogle Scholar
  59. 59.
    Gwin CA, Gunsch CK (2018) Examining relationships between total silver concentration and Sil silver resistance genes in domestic wastewater treatment plants. J Appl Microbiol.  https://doi.org/10.1111/jam.13731CrossRefPubMedGoogle Scholar
  60. 60.
    Haefeli C, Franklin C, Hardy K (1984) Plasmid-determined silver resistance in pseudomonas stutzeri isolated from a silver mine. J Bacteriol 158(1):389–392PubMedPubMedCentralGoogle Scholar
  61. 61.
    Halstead FD, Rauf M, Bamford A, Wearn CM, Bishop JRB, Burt R, Fraise AP, Moiemen NS, Oppenheim BA, Webber MA (2015) Antimicrobial dressings: comparison of the ability of a panel of dressings to prevent biofilm formation by key burn wound pathogens. Burns: J Int Soc Burn Injuries 41(8):1683–1694.  https://doi.org/10.1016/j.burns.2015.06.005CrossRefGoogle Scholar
  62. 62.
    Hamid S, Zainab S, Faryal R, Ali N (2017) Deterrence in metabolic and biofilms forming activity of Candida species by mycogenic silver nanoparticles. J Appl Biomed 15(4):249–255.  https://doi.org/10.1016/j.jab.2017.02.003CrossRefGoogle Scholar
  63. 63.
    Hendry AT, Stewart IO (1979) Silver-resistant Enterobacteriaceae from hospital patients. Canadian J Microbiol 25(8):915–921CrossRefGoogle Scholar
  64. 64.
    Hoekstra MJ, Westgate SJ, Mueller S (2017) Povidone-iodine ointment demonstrates in vitro efficacy against biofilm formation. Int Wound J 14(1):172–179.  https://doi.org/10.1111/iwj.12578CrossRefPubMedGoogle Scholar
  65. 65.
    Holland SL, Dyer PS, Bond CJ, James SA, Roberts IN, Avery SV (2011) Candida argentea sp. nov., a copper and silver resistant yeast species. Fungal Biol 115(9):909–918.  https://doi.org/10.1016/j.funbio.2011.07.004CrossRefPubMedGoogle Scholar
  66. 66.
    Hwang MG, Katayama H, Ohgaki S (2007) Inactivation of Legionella pneumophila and pseudomonas aeruginosa: evaluation of the bactericidal ability of silver cations. Water Res 41(18):4097–4104.  https://doi.org/10.1016/j.watres.2007.05.052CrossRefPubMedGoogle Scholar
  67. 67.
    Ip M, Lui SL, Poon VK, Lung I, Burd A (2006) Antimicrobial activities of silver dressings: an in vitro comparison. J Med Microbiol 55(Pt 1):59–63.  https://doi.org/10.1099/jmm.0.46124-0CrossRefPubMedGoogle Scholar
  68. 68.
    Islam MS, Larimer C, Ojha A, Nettleship I (2013) Antimycobacterial efficacy of silver nanoparticles as deposited on porous membrane filters. Mater Sci Eng C, Mater Biol Appl 33(8):4575–4581.  https://doi.org/10.1016/j.msec.2013.07.013CrossRefGoogle Scholar
  69. 69.
    Jadhav K, Dhamecha D, Bhattacharya D, Patil M (2016) Green and ecofriendly synthesis of silver nanoparticles: characterization, biocompatibility studies and gel formulation for treatment of infections in burns. J Photochem Photobiol b, Biology 155:109–115.  https://doi.org/10.1016/j.jphotobiol.2016.01.002CrossRefPubMedGoogle Scholar
  70. 70.
    Jakobsen L, Andersen AS, Friis-Moller A, Jorgensen B, Krogfelt KA, Frimodt-Moller N (2011) Silver resistance: an alarming public health concern? Int J Antimicrob Agents 38(5):454–455.  https://doi.org/10.1016/j.ijantimicag.2011.07.005CrossRefPubMedGoogle Scholar
  71. 71.
    Janssen PJ, Van Houdt R, Moors H, Monsieurs P, Morin N, Michaux A, Benotmane MA, Leys N, Vallaeys T, Lapidus A, Monchy S, Medigue C, Taghavi S, McCorkle S, Dunn J, van der Lelie D, Mergeay M (2010) The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments. PLoS One 5(5):e10433.  https://doi.org/10.1371/journal.pone.0010433CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74(7):2171–2178.  https://doi.org/10.1128/aem.02001-07CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Kaegi R, Voegelin A, Ort C, Sinnet B, Thalmann B, Krismer J, Hagendorfer H, Elumelu M, Mueller E (2013) Fate and transformation of silver nanoparticles in urban wastewater systems. Water Res 47(12):3866–3877.  https://doi.org/10.1016/j.watres.2012.11.060CrossRefPubMedGoogle Scholar
  74. 74.
    Kalan LR, Pepin DM, Ul-Haq I, Miller SB, Hay ME, Precht RJ (2017) Targeting biofilms of multidrug-resistant bacteria with silver oxynitrate. Int J Antimicrob Agents 49(6):719–726.  https://doi.org/10.1016/j.ijantimicag.2017.01.019CrossRefPubMedGoogle Scholar
  75. 75.
    Khor SY, Jegathesan M (1983) Heavy metal and disinfectant resistance in clinical isolates of gram-negative rods. Southeast Asian J Trop Med Public Health 14(2):199–203PubMedGoogle Scholar
  76. 76.
    Kim H, Makin I, Skiba J, Ho A, Housler G, Stojadinovic A, Izadjoo M (2014) Antibacterial efficacy testing of a bioelectric wound dressing against clinical wound pathogens. Open Microbiol J 8:15–21.  https://doi.org/10.2174/1874285801408010015CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci USA 96(24):13611–13614CrossRefPubMedGoogle Scholar
  78. 78.
    Koc S, Kabatas B, Icgen B (2013) Multidrug and heavy metal-resistant Raoultella planticola isolated from surface water. Bull Environ Contamin Toxicol 91(2):177–183.  https://doi.org/10.1007/s00128-013-1031-6CrossRefGoogle Scholar
  79. 79.
    Kremer AN, Hoffmann H (2012) Subtractive hybridization yields a silver resistance determinant unique to nosocomial pathogens in the Enterobacter cloacae complex. J Clin Microbiol 50(10):3249–3257.  https://doi.org/10.1128/jcm.00885-12CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Kuehl R, Brunetto PS, Woischnig AK, Varisco M, Rajacic Z, Vosbeck J, Terracciano L, Fromm KM, Khanna N (2016) Preventing implant-associated infections by silver coating. Antimicrob Agents Chemother 60(4):2467–2475.  https://doi.org/10.1128/aac.02934-15CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    La Duc MT, Nicholson W, Kern R, Venkateswaran K (2003) Microbial characterization of the Mars Odyssey spacecraft and its encapsulation facility. Environ Microbiol 5(10):977–985CrossRefPubMedGoogle Scholar
  82. 82.
    Langevin S, Vincelette J, Bekal S, Gaudreau C (2011) First case of invasive human infection caused by Cupriavidus metallidurans. J Clin Microbiol 49(2):744–745.  https://doi.org/10.1128/jcm.01947-10CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Larimer C, Islam MS, Ojha A, Nettleship I (2014) Mutation of environmental mycobacteria to resist silver nanoparticles also confers resistance to a common antibiotic. Biometals: An Int J Role Metal Ions Biol Biochem Med 27(4):695–702.  https://doi.org/10.1007/s10534-014-9761-4CrossRefGoogle Scholar
  84. 84.
    Li XZ, Nikaido H, Williams KE (1997) Silver-resistant mutants of escherichia coli display active efflux of Ag+ and are deficient in porins. J Bacteriol 179(19):6127–6132CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Loh JV, Percival SL, Woods EJ, Williams NJ, Cochrane CA (2009) Silver resistance in MRSA isolated from wound and nasal sources in humans and animals. Int Wound J 6(1):32–38.  https://doi.org/10.1111/j.1742-481X.2008.00563.xCrossRefPubMedGoogle Scholar
  86. 86.
    Losasso C, Belluco S, Cibin V, Zavagnin P, Micetic I, Gallocchio F, Zanella M, Bregoli L, Biancotto G, Ricci A (2014) Antibacterial activity of silver nanoparticles: sensitivity of different Salmonella serovars. Front Microbiol 5:227.  https://doi.org/10.3389/fmicb.2014.00227CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Lysakowska ME, Ciebiada-Adamiec A, Klimek L, Sienkiewicz M (2015) The activity of silver nanoparticles (Axonnite) on clinical and environmental strains of acinetobacter spp. Burns: J Int Soc Burn Injuries 41(2):364–371.  https://doi.org/10.1016/j.burns.2014.07.014CrossRefGoogle Scholar
  88. 88.
    Malaikozhundan B, Vijayakumar S, Vaseeharan B, Jenifer AA, Chitra P, Prabhu NM, Kannapiran E (2017) Two potential uses for silver nanoparticles coated with Solanum nigrum unripe fruit extract: biofilm inhibition and photodegradation of dye effluent. Microb pathogenesis 111:316–324.  https://doi.org/10.1016/j.micpath.2017.08.039CrossRefGoogle Scholar
  89. 89.
    Mallevre F, Fernandes TF, Aspray TJ (2016) Pseudomonas putida biofilm dynamics following a single pulse of silver nanoparticles. Chemosphere 153:356–364.  https://doi.org/10.1016/j.chemosphere.2016.03.060CrossRefPubMedGoogle Scholar
  90. 90.
    Martinez-Andrade JM, Avalos-Borja M, Vilchis-Nestor AR, Sanchez-Vargas LO, Castro-Longoria E (2018) Dual function of EDTA with silver nanoparticles for root canal treatment-A novel modification. PLoS One 13(1):e0190866.  https://doi.org/10.1371/journal.pone.0190866CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    McHugh GL, Moellering RC, Hopkins CC, Swartz MN (1975) Salmonella typhimurium resistant to silver nitrate, chloramphenicol, and ampicillin. Lancet 1(7901):235–240CrossRefPubMedGoogle Scholar
  92. 92.
    Mekkawy AI, El-Mokhtar MA, Nafady NA, Yousef N, Hamad MA, El-Shanawany SM, Ibrahim EH, Elsabahy M (2017) In vitro and in vivo evaluation of biologically synthesized silver nanoparticles for topical applications: effect of surface coating and loading into hydrogels. Int J Nanomed 12:759–777.  https://doi.org/10.2147/ijn.s124294CrossRefGoogle Scholar
  93. 93.
    Mijnendonckx K, Leys N, Mahillon J, Silver S, Van Houdt R (2013) Antimicrobial silver: uses, toxicity and potential for resistance. Biometals: An Int J Role Metal Ions Biol Biochem Med 26(4):609–621.  https://doi.org/10.1007/s10534-013-9645-zCrossRefGoogle Scholar
  94. 94.
    Mijnendonckx K, Provoost A, Ott CM, Venkateswaran K, Mahillon J, Leys N, Van Houdt R (2013) Characterization of the survival ability of Cupriavidus metallidurans and Ralstonia pickettii from space-related environments. Microbial Ecol 65(2):347–360.  https://doi.org/10.1007/s00248-012-0139-2CrossRefGoogle Scholar
  95. 95.
    Modak SM, Fox CL Jr (1973) Binding of silver sulfadiazine to the cellular components of Pseudomonas aeruginosa. Biochem Pharmacol 22(19):2391–2404CrossRefPubMedGoogle Scholar
  96. 96.
    Mohan S, Oluwafemi OS, George SC, Jayachandran VP, Lewu FB, Songca SP, Kalarikkal N, Thomas S (2014) Completely green synthesis of dextrose reduced silver nanoparticles, its antimicrobial and sensing properties. Carbohydr Polym 106:469–474.  https://doi.org/10.1016/j.carbpol.2014.01.008CrossRefPubMedGoogle Scholar
  97. 97.
    Monchy S, Benotmane MA, Janssen P, Vallaeys T, Taghavi S, van der Lelie D, Mergeay M (2007) Plasmids pMOL28 and pMOL30 of Cupriavidus metallidurans are specialized in the maximal viable response to heavy metals. J Bacteriol 189(20):7417–7425.  https://doi.org/10.1128/jb.00375-07CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Monsieurs P, Moors H, Van Houdt R, Janssen PJ, Janssen A, Coninx I, Mergeay M, Leys N (2011) Heavy metal resistance in Cupriavidus metallidurans CH34 is governed by an intricate transcriptional network. Biometals: An Int J Role Metal Ions Biol Biochem Med 24(6):1133–1151.  https://doi.org/10.1007/s10534-011-9473-yCrossRefGoogle Scholar
  99. 99.
    Monteiro DR, Takamiya AS, Feresin LP, Gorup LF, de Camargo ER, Delbem AC, Henriques M, Barbosa DB (2015) Susceptibility of Candida albicans and Candida glabrata biofilms to silver nanoparticles in intermediate and mature development phases. J Prosthodontic Res 59(1):42–48.  https://doi.org/10.1016/j.jpor.2014.07.004CrossRefGoogle Scholar
  100. 100.
    Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnol 16(10):2346CrossRefGoogle Scholar
  101. 101.
    Mourao J, Novais C, Machado J, Peixe L, Antunes P (2015) Metal tolerance in emerging clinically relevant multidrug-resistant Salmonella enterica serotype 4,[5],12:i:- clones circulating in Europe. Int J Antimicrob Agents 45(6):610–616.  https://doi.org/10.1016/j.ijantimicag.2015.01.013CrossRefPubMedGoogle Scholar
  102. 102.
    Muller G, Kramer A (2008) Biocompatibility index of antiseptic agents by parallel assessment of antimicrobial activity and cellular cytotoxicity. J Antimicrob Chemother 61(6):1281–1287.  https://doi.org/10.1093/jac/dkn125CrossRefPubMedGoogle Scholar
  103. 103.
    Muller M, Merrett ND (2014) Pyocyanin production by Pseudomonas aeruginosa confers resistance to ionic silver. Antimicrob Agents Chemother 58(9):5492–5499.  https://doi.org/10.1128/aac.03069-14CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    National Center for Biotechnology Information Silver. PubChem Compound Database; CID = 23954. https://pubchem.ncbi.nlm.nih.gov/compound/23954. Accessed 27 March 2018
  105. 105.
    National Center for Biotechnology Information Silver nitrate. PubChem Compound Database; CID = 24470. https://pubchem.ncbi.nlm.nih.gov/compound/24470. Accessed 27 March 2018
  106. 106.
    Neethu S, Midhun SJ, Radhakrishnan EK, Jyothis M (2018) Green synthesized silver nanoparticles by marine endophytic fungus Penicillium polonicum and its antibacterial efficacy against biofilm forming, multidrug-resistant Acinetobacter baumanii. Microb Pathogen 116:263–272.  https://doi.org/10.1016/j.micpath.2018.01.033CrossRefGoogle Scholar
  107. 107.
    Nicolas MF, Ramos PIP, Marques de Carvalho F, Camargo DRA, de Fatima Morais Alves C, Loss de Morais G, Almeida LGP, Souza RC, Ciapina LP, Vicente ACP, Coimbra RS, Ribeiro de Vasconcelos AT (2018) Comparative genomic analysis of a clinical isolate of klebsiella quasipneumoniae subsp. similipneumoniae, a KPC-2 and OKP-B-6 beta-lactamases producer harboring two drug-resistance plasmids from southeast Brazil. Front Microbiol 9:220.  https://doi.org/10.3389/fmicb.2018.00220
  108. 108.
    Nieto JJ, Ventosa A, Montero CG, Ruiz-Berraquero F (1989) Toxicity of heavy metals to archaebacterial halococci. Syst Appl Microbiol 11(2):116–120.  https://doi.org/10.1016/S0723-2020(89)80049-9CrossRefGoogle Scholar
  109. 109.
    Norman G, Christie J, Liu Z, Westby MJ, Jefferies JM, Hudson T, Edwards J, Mohapatra DP, Hassan IA, Dumville JC (2017) Antiseptics for burns. The cochrane database of systematic reviews 7:Cd011821.  https://doi.org/10.1002/14651858.cd011821.pub2
  110. 110.
    Olasupo NA, Scott-Emuakpor MB, Ogunshola RA (1993) Resistance to heavy metals by some Nigerian yeast strains. Folia Microbiol 38(4):285–287CrossRefGoogle Scholar
  111. 111.
    Ostman M, Lindberg RH, Fick J, Bjorn E, Tysklind M (2017) Screening of biocides, metals and antibiotics in Swedish sewage sludge and wastewater. Water Res 115:318–328.  https://doi.org/10.1016/j.watres.2017.03.011CrossRefPubMedGoogle Scholar
  112. 112.
    Ott CM, Bruce RJ, Pierson DL (2004) Microbial characterization of free floating condensate aboard the Mir space station. Microb Ecol 47(2):133–136.  https://doi.org/10.1007/s00248-003-1038-3CrossRefPubMedGoogle Scholar
  113. 113.
    Pal C, Asiani K, Arya S, Rensing C, Stekel DJ, Larsson DGJ, Hobman JL (2017) Metal resistance and its association with antibiotic resistance. Adv Microb Physiol 70:261–313.  https://doi.org/10.1016/bs.ampbs.2017.02.001CrossRefPubMedGoogle Scholar
  114. 114.
    Parikh RY, Singh S, Prasad BL, Patole MS, Sastry M, Shouche YS (2008) Extracellular synthesis of crystalline silver nanoparticles and molecular evidence of silver resistance from Morganella sp.: towards understanding biochemical synthesis mechanism. Chembiochem: A Eur J Chem Biol 9(9):1415–1422.  https://doi.org/10.1002/cbic.200700592
  115. 115.
    Parsons D, Meredith K, Rowlands VJ, Short D, Metcalf DG, Bowler PG (2016) Enhanced performance and mode of action of a novel antibiofilm hydrofiber(R) wound dressing. BioMed Res Int 2016:7616471.  https://doi.org/10.1155/2016/7616471CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Percival SL, Woods E, Nutekpor M, Bowler P, Radford A, Cochrane C (2008) Prevalence of silver resistance in bacteria isolated from diabetic foot ulcers and efficacy of silver-containing wound dressings. Ostomy/Wound Manag 54(3):30–40Google Scholar
  117. 117.
    Perez-Diaz M, Alvarado-Gomez E, Magana-Aquino M, Sanchez-Sanchez R, Velasquillo C, Gonzalez C, Ganem-Rondero A, Martinez-Castanon G, Zavala-Alonso N, Martinez-Gutierrez F (2016) Anti-biofilm activity of chitosan gels formulated with silver nanoparticles and their cytotoxic effect on human fibroblasts. Materials Sci Eng C, Mater Biol Appl 60:317–323.  https://doi.org/10.1016/j.msec.2015.11.036CrossRefGoogle Scholar
  118. 118.
    Perez-Diaz MA, Boegli L, James G, Velasquillo C, Sanchez-Sanchez R, Martinez-Martinez RE, Martinez-Castanon GA, Martinez-Gutierrez F (2015) Silver nanoparticles with antimicrobial activities against streptococcus mutans and their cytotoxic effect. Mater Sci Eng C, Mater Biol Appl 55:360–366.  https://doi.org/10.1016/j.msec.2015.05.036CrossRefGoogle Scholar
  119. 119.
    Pletzer D, Weingart H (2014) Characterization and regulation of the resistance-nodulation-cell division-type multidrug efflux pumps MdtABC and MdtUVW from the fire blight pathogen Erwinia amylovora. BMC Microbiol 14:185.  https://doi.org/10.1186/1471-2180-14-185CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Pokrowiecki R, Zareba T, Mielczarek A, Opalinska A, Wojnarowicz J, Majkowski M, Lojkowski W, Tyski S (2013) Evaluation of biocidal properties of silver nanoparticles against cariogenic bacteria. Medycyna doswiadczalna i mikrobiologia 65(3):197–206PubMedGoogle Scholar
  121. 121.
    Potter BA, Lob M, Mercaldo R, Hetzler A, Kaistha V, Khan H, Kingston N, Knoll M, Maloy-Franklin B, Melvin K, Ruiz-Pelet P, Ozsoy N, Schmitt E, Wheeler L, Potter M, Rutter MA, Yahn G, Parente DH (2015) A long-term study examining the antibacterial effectiveness of Agion silver zeolite technology on door handles within a college campus. Lett Appl Microbiol 60(2):120–127.  https://doi.org/10.1111/lam.12356CrossRefPubMedGoogle Scholar
  122. 122.
    Qin H, Cao H, Zhao Y, Zhu C, Cheng T, Wang Q, Peng X, Cheng M, Wang J, Jin G, Jiang Y, Zhang X, Liu X, Chu PK (2014) In vitro and in vivo anti-biofilm effects of silver nanoparticles immobilized on titanium. Biomaterials 35(33):9114–9125.  https://doi.org/10.1016/j.biomaterials.2014.07.040CrossRefPubMedGoogle Scholar
  123. 123.
    Randall CP, Gupta A, Jackson N, Busse D, O’Neill AJ (2015) Silver resistance in Gram-negative bacteria: a dissection of endogenous and exogenous mechanisms. J Antimicrob Chemother 70(4):1037–1046.  https://doi.org/10.1093/jac/dku523CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Randall CP, Oyama LB, Bostock JM, Chopra I, O’Neill AJ (2013) The silver cation (Ag+): antistaphylococcal activity, mode of action and resistance studies. J Antimicrob Chemother 68(1):131–138.  https://doi.org/10.1093/jac/dks372CrossRefPubMedGoogle Scholar
  125. 125.
    Ricco JB, Assadian A, Schneider F, Assadian O (2012) In vitro evaluation of the antimicrobial efficacy of a new silver-triclosan vs a silver collagen-coated polyester vascular graft against methicillin-resistant Staphylococcus aureus. J Vascular Surgery 55(3):823–829.  https://doi.org/10.1016/j.jvs.2011.08.015CrossRefGoogle Scholar
  126. 126.
    Riggle PJ, Kumamoto CA (2000) Role of a Candida albicans P1-type ATPase in resistance to copper and silver ion toxicity. J Bacteriol 182(17):4899–4905CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Rosenkranz HS, Rosenkranz S (1972) Silver sulfadiazine: interaction with isolated deoxyribonucleic acid. Antimicrob Agents Chemother 2(5):373–383CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta biomaterialia 4(3):707–716.  https://doi.org/10.1016/j.actbio.2007.11.006CrossRefPubMedGoogle Scholar
  129. 129.
    Rupp ME, Fitzgerald T, Marion N, Helget V, Puumala S, Anderson JR, Fey PD (2004) Effect of silver-coated urinary catheters: efficacy, cost-effectiveness, and antimicrobial resistance. Am J Infect Control 32(8):445–450.  https://doi.org/10.1016/s0196655304004742CrossRefPubMedGoogle Scholar
  130. 130.
    Sabatini L, Battistelli M, Giorgi L, Iacobucci M, Gobbi L, Andreozzi E, Pianetti A, Franchi R, Bruscolini F (2016) Tolerance to silver of an Aspergillus fumigatus strain able to grow on cyanide containing wastes. J Hazard Mater 306:115–123.  https://doi.org/10.1016/j.jhazmat.2015.12.014CrossRefPubMedGoogle Scholar
  131. 131.
    Said J, Walker M, Parsons D, Stapleton P, Beezer AE, Gaisford S (2014) An in vitro test of the efficacy of an anti-biofilm wound dressing. Int J Pharm 474(1–2):177–181.  https://doi.org/10.1016/j.ijpharm.2014.08.034CrossRefPubMedGoogle Scholar
  132. 132.
    Schreurs WJ, Rosenberg H (1982) Effect of silver ions on transport and retention of phosphate by Escherichia coli. J Bacteriol 152(1):7–13PubMedPubMedCentralGoogle Scholar
  133. 133.
    Sedlak RH, Hnilova M, Grosh C, Fong H, Baneyx F, Schwartz D, Sarikaya M, Tamerler C, Traxler B (2012) Engineered Escherichia coli silver-binding periplasmic protein that promotes silver tolerance. Appl Environ Microbiol 78(7):2289–2296.  https://doi.org/10.1128/aem.06823-11CrossRefPubMedGoogle Scholar
  134. 134.
    Semeykina AL, Skulachev VP (1990) Submicromolar Ag+ increases passive Na+ permeability and inhibits the respiration-supported formation of Na+ gradient in Bacillus FTU vesicles. FEBS letters 269(1):69–72CrossRefPubMedGoogle Scholar
  135. 135.
    Sheikholeslami S, Mousavi SE, Ahmadi Ashtiani HR, Hosseini Doust SR, Mahdi Rezayat S (2016) Antibacterial activity of silver nanoparticles and their combination with zataria multiflora essential oil and methanol extract. Jundishapur J Microbiol 9(10):e36070.  https://doi.org/10.5812/jjm.36070CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Sheng Z, Liu Y (2011) Effects of silver nanoparticles on wastewater biofilms. Water Res 45(18):6039–6050.  https://doi.org/10.1016/j.watres.2011.08.065CrossRefPubMedGoogle Scholar
  137. 137.
    Sheng Z, Van Nostrand JD, Zhou J, Liu Y (2015) The effects of silver nanoparticles on intact wastewater biofilms. Front Microbiol 6:680.  https://doi.org/10.3389/fmicb.2015.00680CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Shirdel M, Tajik H, Moradi M (2017) Combined activity of colloid nanosilver and zataria multi flora boiss essential oil-mechanism of action and biofilm removal activity. Adv Pharmac Bull 7(4):621–628.  https://doi.org/10.15171/apb.2017.074CrossRefGoogle Scholar
  139. 139.
    Silver S (2003) Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev 27(2–3):341–353CrossRefPubMedGoogle Scholar
  140. 140.
    Silver S, le Phung T, Silver G (2006) Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds. J Indus Microbiol Biotechnol 33(7):627–634.  https://doi.org/10.1007/s10295-006-0139-7CrossRefGoogle Scholar
  141. 141.
    Slawson RM, Lohmeier-Vogel EM, Lee H, Trevors JT (1994) Silver resistance in Pseudomonas stutzeri. Biometals: An Int J Role Metal Ions Biol Biochem Med 7(1):30–40CrossRefGoogle Scholar
  142. 142.
    Slawson RM, Van Dyke MI, Lee H, Trevors JT (1992) Germanium and silver resistance, accumulation, and toxicity in microorganisms. Plasmid 27(1):72–79CrossRefPubMedGoogle Scholar
  143. 143.
    Solioz M, Odermatt A (1995) Copper and silver transport by CopB-ATPase in membrane vesicles of Enterococcus hirae. J Biol Chem 270(16):9217–9221CrossRefPubMedGoogle Scholar
  144. 144.
    Starodub ME, Trevors JT (1989) Silver resistance in Escherichia coli R1. J Med Microbiol 29(2):101–110.  https://doi.org/10.1099/00222615-29-2-101CrossRefPubMedGoogle Scholar
  145. 145.
    Starodub ME, Trevors JT (1990) Mobilization of Escherichia coli R1 silver-resistance plasmid pJT1 by Tn5-Mob into Escherichia coli C600. Biol Metals 3(1):24–27CrossRefGoogle Scholar
  146. 146.
    Starodub ME, Trevors JT (1990) Silver accumulation and resistance in Escherichia coli R1. J Inorganic Biochem 39(4):317–325CrossRefGoogle Scholar
  147. 147.
    Su CC, Long F, Yu EW (2011) The Cus efflux system removes toxic ions via a methionine shuttle. Protein Sci: A Publication Protein Soc 20(1):6–18.  https://doi.org/10.1002/pro.532CrossRefGoogle Scholar
  148. 148.
    Suppi S, Kasemets K, Ivask A, Kunnis-Beres K, Sihtmae M, Kurvet I, Aruoja V, Kahru A (2015) A novel method for comparison of biocidal properties of nanomaterials to bacteria, yeasts and algae. J Hazard Mater 286:75–84.  https://doi.org/10.1016/j.jhazmat.2014.12.027CrossRefPubMedGoogle Scholar
  149. 149.
    Sutterlin S, Dahlo M, Tellgren-Roth C, Schaal W, Melhus A (2017) High frequency of silver resistance genes in invasive isolates of Enterobacter and Klebsiella species. J Hosp Infect 96(3):256–261.  https://doi.org/10.1016/j.jhin.2017.04.017CrossRefPubMedGoogle Scholar
  150. 150.
    Sutterlin S, Edquist P, Sandegren L, Adler M, Tangden T, Drobni M, Olsen B, Melhus A (2014) Silver resistance genes are overrepresented among Escherichia coli isolates with CTX-M production. Appl Environ Microbiol 80(22):6863–6869.  https://doi.org/10.1128/aem.01803-14CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Sutterlin S, Tano E, Bergsten A, Tallberg AB, Melhus A (2012) Effects of silver-based wound dressings on the bacterial flora in chronic leg ulcers and its susceptibility in vitro to silver. Acta dermato-venereologica 92(1):34–39.  https://doi.org/10.2340/00015555-1170CrossRefPubMedGoogle Scholar
  152. 152.
    Sutterlin S, Tellez-Castillo CJ, Anselem L, Yin H, Bray JE, Maiden MCJ (2018) Heavy metal susceptibility on Escherichia coli from urine samples from Sweden, Germany and Spain. Antimicrob Agents Chemother.  https://doi.org/10.1128/aac.00209-18
  153. 153.
    Tajkarimi M, Harrison SH, Hung AM, Graves JL Jr (2016) Mechanobiology of antimicrobial resistant Escherichia coli and Listeria innocua. PLoS One 11(2):e0149769.  https://doi.org/10.1371/journal.pone.0149769CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Tavaf Z, Tabatabaei M, Khalafi-Nezhad A, Panahi F (2017) Evaluation of antibacterial, antibofilm and antioxidant activities of synthesized silver nanoparticles (AgNPs) and casein peptide fragments against streptococcus mutans. Eur J Integr Med 12:163–171.  https://doi.org/10.1016/j.eujim.2017.05.011CrossRefGoogle Scholar
  155. 155.
    Thanganadar Appapalam S, Panchamoorthy R (2017) Aerva lanata mediated phytofabrication of silver nanoparticles and evaluation of their antibacterial activity against wound associated bacteria. J Taiwan Inst Chem Eng 78:539–551.  https://doi.org/10.1016/j.jtice.2017.06.035CrossRefGoogle Scholar
  156. 156.
    Thuptimdang P, Limpiyakorn T, Khan E (2017) Dependence of toxicity of silver nanoparticles on Pseudomonas putida biofilm structure. Chemosphere 188:199–207.  https://doi.org/10.1016/j.chemosphere.2017.08.147CrossRefPubMedGoogle Scholar
  157. 157.
    Thuptimdang P, Limpiyakorn T, McEvoy J, Pruss BM, Khan E (2015) Effect of silver nanoparticles on Pseudomonas putida biofilms at different stages of maturity. J Hazard Mater 290:127–133.  https://doi.org/10.1016/j.jhazmat.2015.02.073CrossRefPubMedGoogle Scholar
  158. 158.
    Torres-Urquidy O, Bright K (2012) Efficacy of multiple metals against copper-resistant bacterial strains. J Appl Microbiol 112(4):695–704.  https://doi.org/10.1111/j.1365-2672.2012.05245.xCrossRefPubMedGoogle Scholar
  159. 159.
    Ug A, Ceylan Ö (2003) Occurrence of resistance to antibiotics, metals, and plasmids in clinical strains of Staphylococcus spp. Arch Med Res 34(2):130–136.  https://doi.org/10.1016/S0188-4409(03)00006-7CrossRefPubMedGoogle Scholar
  160. 160.
    Unger C, Luck C (2012) Inhibitory effects of silver ions on Legionella pneumophila grown on agar, intracellular in Acanthamoeba castellanii and in artificial biofilms. J Appl Microbiol 112(6):1212–1219.  https://doi.org/10.1111/j.1365-2672.2012.05285.xCrossRefPubMedGoogle Scholar
  161. 161.
    United States Environmental Protection Agency (1993) EPA Reregistration Eligibility Document (RED) Silver. https://nepis.epa.gov/Exe/ZyPDF.cgi/9101UJL9103.PDF?Dockey=9101UJL9103.PDF
  162. 162.
    van der Laan H, van Halem D, Smeets PW, Soppe AI, Kroesbergen J, Wubbels G, Nederstigt J, Gensburger I, Heijman SG (2014) Bacteria and virus removal effectiveness of ceramic pot filters with different silver applications in a long term experiment. Water Res 51:47–54.  https://doi.org/10.1016/j.watres.2013.11.010CrossRefPubMedGoogle Scholar
  163. 163.
    van Hengel IAJ, Riool M, Fratila-Apachitei LE, Witte-Bouma J, Farrell E, Zadpoor AA, Zaat SAJ, Apachitei I (2017) Selective laser melting porous metallic implants with immobilized silver nanoparticles kill and prevent biofilm formation by methicillin-resistant Staphylococcus aureus. Biomaterials 140:1–15.  https://doi.org/10.1016/j.biomaterials.2017.02.030CrossRefPubMedGoogle Scholar
  164. 164.
    Vasishta R, Chhibber S, Saxena M (1989) Heavy metal resistance in clinical isolates of Pseudomonas aeruginosa. Folia Microbiol 34(5):448–452CrossRefGoogle Scholar
  165. 165.
    Weber DJ, Rutala WA (2013) Self-disinfecting surfaces: review of current methodologies and future prospects. Am J Infect Control 41(5 Suppl):S31–35.  https://doi.org/10.1016/j.ajic.2012.12.005CrossRefPubMedGoogle Scholar
  166. 166.
    Wiegand C, Abel M, Ruth P, Hipler UC (2012) Analysis of the adaptation capacity of Staphylococcus aureus to commonly used antiseptics by microplate laser nephelometry. Skin Pharmacol Physiol 25(6):288–297.  https://doi.org/10.1159/000341222CrossRefPubMedGoogle Scholar
  167. 167.
    Wirth SM, Bertuccio AJ, Cao F, Lowry GV, Tilton RD (2016) Inhibition of bacterial surface colonization by immobilized silver nanoparticles depends critically on the planktonic bacterial concentration. J Colloid Interf Sci 467:17–27.  https://doi.org/10.1016/j.jcis.2015.12.049CrossRefGoogle Scholar
  168. 168.
    Woods EJ, Cochrane CA, Percival SL (2009) Prevalence of silver resistance genes in bacteria isolated from human and horse wounds. Vet Microbiol 138(3–4):325–329.  https://doi.org/10.1016/j.vetmic.2009.03.023CrossRefPubMedGoogle Scholar
  169. 169.
    Wu MY, Suryanarayanan K, van Ooij WJ, Oerther DB (2007) Using microbial genomics to evaluate the effectiveness of silver to prevent biofilm formation. Water Sci Technol 55(8–9):413–419CrossRefPubMedGoogle Scholar
  170. 170.
    Wu XL, Qiu GZ, Gao J, Ding JN, Kang J, Liu XX (2007) Mutagenic breeding of silver-resistant Acidithiobacillus ferrooxidans and exploration of resistant mechanism. Trans Nonferrous Met Soc China 17(2):412–417CrossRefGoogle Scholar
  171. 171.
    Wu Y, Quan X, Si X, Wang X (2016) A small molecule norspermidine in combination with silver ion enhances dispersal and disinfection of multi-species wastewater biofilms. Appl Microbiol Biotechnol 100(12):5619–5629.  https://doi.org/10.1007/s00253-016-7394-yCrossRefPubMedGoogle Scholar
  172. 172.
    Xu Y, Gao C, Li X, He Y, Zhou L, Pang G, Sun S (2013) In vitro antifungal activity of silver nanoparticles against ocular pathogenic filamentous fungi. J Ocular Pharmacol Therapeutics: Official J Assoc Ocular Pharmacol Therap 29(2):270–274.  https://doi.org/10.1089/jop.2012.0155CrossRefGoogle Scholar
  173. 173.
    Zhang C, Liang Z, Hu Z (2014) Bacterial response to a continuous long-term exposure of silver nanoparticles at sub-ppm silver concentrations in a membrane bioreactor activated sludge system. Water Res 50:350–358.  https://doi.org/10.1016/j.watres.2013.10.047CrossRefPubMedGoogle Scholar
  174. 174.
    Zhang S, Ahearn DG, Mateus C, Crow SA Jr (2006) In vitro effects of Ag+ on planktonic and adhered cells of fluconazole-resistant and susceptible strains of Candida albicans, C. glabrata and C. krusei. Biomaterials 27(13):2755–2760.  https://doi.org/10.1016/j.biomaterials.2005.12.010CrossRefPubMedGoogle Scholar
  175. 175.
    Zhang S, Liu L, Pareek V, Becker T, Liang J, Liu S (2014) Effects of broth composition and light condition on antimicrobial susceptibility testing of ionic silver. J Microbiol Meth 105:42–46.  https://doi.org/10.1016/j.mimet.2014.07.009CrossRefGoogle Scholar
  176. 176.
    Zhao G, Stevens SE Jr (1998) Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. Biometals: An Int J Role Metal Ions Biol Biochem Med 11(1):27–32CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of Hygiene and Environmental MedicineUniversity of GreifswaldGreifswaldGermany

Personalised recommendations