Advertisement

Chlorhexidine Digluconate

  • Günter Kampf
Chapter

Abstract

Chlorhexidine digluconate (CHG) is bactericidal at 2–4% (5 min) except Enterococcus spp., S. epidermidis and MRSA, and yeasticidal at 2% (30 min). A general mycobactericidal activity cannot be expected. Epidemiological cut-off values to determine acquired resistance have been proposed for E. coli, E. faecalis and K. pneumoniae (64 mg/l); Salmonella spp. and E. faecium (32 mg/l); C. albicans and Enterobacter spp. (16 mg/l); and S. aureus (8 mg/l). Elevated MIC values suggestive of CHG resistance have been reported among numerous species including B. subtilis, E. faecalis, K. pneumoniae and Proteus spp. (≤10,000 mg/l); P. aeruginosa (≤5,000 mg/l); L. monocytogenes, E. faecium and S. aureus (≤2,500 mg/l). Specific resistance mechanisms are sometimes known, e.g. resistance genes, efflux pumps, membrane changes or plasmids. Cross-tolerance to triclosan, benzalkonium chloride, hydrogen peroxide and selected antibiotics can occur. Low-level exposure leads to no MIC change in 33 species, a weak MIC change in 25 species and a strong MIC change in 16 species (8 of them being stable) resulting in MIC values as high as 2,048 mg/l (S. marcescens) or 1,024 mg/l (P. aeruginosa). Bacterial biofilm formation is rather inhibited than enhanced by CHG. CHG removes biofilm only poorly.

References

  1. 1.
    Aarestrup FM, Hasman H (2004) Susceptibility of different bacterial species isolated from food animals to copper sulphate, zinc chloride and antimicrobial substances used for disinfection. Vet Microbiol 100(1–2):83–89.  https://doi.org/10.1016/j.vetmic.2004.01.013CrossRefPubMedGoogle Scholar
  2. 2.
    Abdolrasouli A, Armstrong-James D, Ryan L, Schelenz S (2017) In vitro efficacy of disinfectants utilised for skin decolonisation and environmental decontamination during a hospital outbreak with Candida auris. Mycoses 60(11):758–763.  https://doi.org/10.1111/myc.12699CrossRefPubMedGoogle Scholar
  3. 3.
    Abuzaid A, Hamouda A, Amyes SG (2012) Klebsiella pneumoniae susceptibility to biocides and its association with cepA, qacDeltaE and qacE efflux pump genes and antibiotic resistance. J Hosp Infect 81(2):87–91.  https://doi.org/10.1016/j.jhin.2012.03.003CrossRefPubMedGoogle Scholar
  4. 4.
    Adams D, Quayum M, Worthington T, Lambert P, Elliott T (2005) Evaluation of a 2% chlorhexidine gluconate in 70% isopropyl alcohol skin disinfectant. J Hosp Infect 61(4):287–290PubMedCrossRefGoogle Scholar
  5. 5.
    Adams D, Quayum MH, Worthington T, Lambert PA, Elliott TS (2006) Are biofilms relevant for skin disinfection? Response to Dr Kampf. J Hosp Infect 63(4):480–481.  https://doi.org/10.1016/j.jhin.2006.04.004CrossRefPubMedGoogle Scholar
  6. 6.
    Agnoli K, Frauenknecht C, Freitag R, Schwager S, Jenul C, Vergunst A, Carlier A, Eberl L (2014) The third replicon of members of the Burkholderia cepacia Complex, plasmid pC3, plays a role in stress tolerance. Appl Environ Microbiol 80(4):1340–1348.  https://doi.org/10.1128/aem.03330-13CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ahn Y, Kim JM, Lee YJ, LiPuma J, Hussong D, Marasa B, Cerniglia C (2017) Effects of extended storage of Chlorhexidine Gluconate and Benzalkonium chloride solutions on the viability of Burkholderia cenocepacia. J Microbiol Biotechnol 27(12):2211–2220.  https://doi.org/10.4014/jmb.1706.06034CrossRefPubMedGoogle Scholar
  8. 8.
    Akamatsu T, Tabata K, Hironga M, Kawakami H, Uyeda M (1996) Transmission of Helicobacter pylori infection via flexible fiberoptic endoscopy. Am J Infect Control 24(5):396–401PubMedCrossRefGoogle Scholar
  9. 9.
    Akca AE, Akca G, Topcu FT, Macit E, Pikdoken L, Ozgen IS (2016) The Comparative evaluation of the antimicrobial effect of Propolis with Chlorhexidine against oral pathogens: An in vitro study. Biomed Res Int 2016:3627463.  https://doi.org/10.1155/2016/3627463CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Akinkunmi EO, Lamikanra A (2012) Susceptibility of community associated methicillin resistant Staphylococcus aureus isolated from faeces to antiseptics. J Infect Develop Countries 6(4):317–323Google Scholar
  11. 11.
    Anand G, Ravinanthan M, Basaviah R, Shetty AV (2015) In vitro antimicrobial and cytotoxic effects of Anacardium occidentale and Mangifera indica in oral care. J Pharmacy Bioallied Sci 7(1):69–74.  https://doi.org/10.4103/0975-7406.148780CrossRefGoogle Scholar
  12. 12.
    Anderson MJ, Horn ME, Lin YC, Parks PJ, Peterson ML (2010) Efficacy of concurrent application of chlorhexidine gluconate and povidone iodine against six nosocomial pathogens. Am J Infect Control 38(10):826–831.  https://doi.org/10.1016/j.ajic.2010.06.022CrossRefPubMedGoogle Scholar
  13. 13.
    Anderson MJ, Scholz MT, Parks PJ, Peterson ML (2013) Ex vivo porcine vaginal mucosal model of infection for determining effectiveness and toxicity of antiseptics. J Appl Microbiol 115(3):679–688.  https://doi.org/10.1111/jam.12277CrossRefPubMedGoogle Scholar
  14. 14.
    Arias-Moliz MT, Ordinola-Zapata R, Baca P, Ruiz-Linares M, Garcia Garcia E, Hungaro Duarte MA, Monteiro Bramante C, Ferrer-Luque CM (2015) Antimicrobial activity of Chlorhexidine, Peracetic acid and Sodium hypochlorite/etidronate irrigant solutions against Enterococcus faecalis biofilms. Int Endod J 48(12):1188–1193.  https://doi.org/10.1111/iej.12424CrossRefPubMedGoogle Scholar
  15. 15.
    Arioli S, Elli M, Ricci G, Mora D (2013) Assessment of the susceptibility of lactic acid bacteria to biocides. Int J Food Microbiol 163(1):1–5.  https://doi.org/10.1016/j.ijfoodmicro.2013.02.002CrossRefPubMedGoogle Scholar
  16. 16.
    Arslan S, Ozbilge H, Kaya EG, Er O (2011) In vitro antimicrobial activity of propolis, BioPure MTAD, sodium hypochlorite, and chlorhexidine on Enterococcus faecalis and Candida albicans. Saudi Med J 32(5):479–483PubMedGoogle Scholar
  17. 17.
    Arzmi MH, Abdul Razak F, Yusoff Musa M, Wan Harun WH (2012) Effect of phenotypic switching on the biological properties and susceptibility to chlorhexidine in Candida krusei ATCC 14243. FEMS Yeast Res 12(3):351–358.  https://doi.org/10.1111/j.1567-1364.2011.00786.xCrossRefPubMedGoogle Scholar
  18. 18.
    Ashok R, Ganesh A, Deivanayagam K (2017) Bactericidal effect of different anti-microbial agents on Fusobacterium Nucleatum biofilm. Cureus 9(6):e1335.  https://doi.org/10.7759/cureus.1335CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Azzimonti B, Cochis A, Beyrouthy ME, Iriti M, Uberti F, Sorrentino R, Landini MM, Rimondini L, Varoni EM (2015) Essential oil from berries of Lebanese Juniperus excelsa M. Bieb displays Similar antibacterial activity to chlorhexidine but higher cytocompatibility with human oral primary cells. Molecules (Basel, Switzerland) 20(5):9344–9357.  https://doi.org/10.3390/molecules20059344
  20. 20.
    Babaei M, Sulong A, Hamat R, Nordin S, Neela V (2015) Extremely high prevalence of antiseptic resistant quaternary ammonium compound E gene among clinical isolates of multiple drug resistant Acinetobacter baumannii in Malaysia. Ann Clin Microbiol Antimicrob 14:11.  https://doi.org/10.1186/s12941-015-0071-7CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Baffone W, Sorgente G, Campana R, Patrone V, Sisti D, Falcioni T (2011) Comparative effect of chlorhexidine and some mouthrinses on bacterial biofilm formation on titanium surface. Curr Microbiol 62(2):445–451.  https://doi.org/10.1007/s00284-010-9727-xCrossRefPubMedGoogle Scholar
  22. 22.
    Barbadoro P, Martini E, Savini S, Marigliano A, Ponzio E, Prospero E, D’Errico MM (2014) In vivo comparative efficacy of three surgical hand preparation agents in reducing bacterial count. J Hosp Infect 86(1):64–67.  https://doi.org/10.1016/j.jhin.2013.09.013CrossRefPubMedGoogle Scholar
  23. 23.
    Barkvoll P, Attramadal A (1989) Effect of nystatin and chlorhexidine digluconate on Candida albicans. Oral Surg Oral Med Oral Pathol 67(3):279–281PubMedCrossRefGoogle Scholar
  24. 24.
    Barlow M (2009) What antimicrobial resistance has taught us about horizontal gene transfer. Meth Mol Biol (Clifton, NJ) 532:397–411.  https://doi.org/10.1007/978-1-60327-853-9_23
  25. 25.
    Bartzokas CA, Corkill JE, Makin T (1987) Evaluation of the skin disinfecting activity and cumulative effect of chlorhexidine and triclosan handwash preparations on hands artificially contaminated with Serratia marcescens. Infection Control: IC 8(4):163–167CrossRefGoogle Scholar
  26. 26.
    Bartzokas CA, Gibson MF, Graham R, Pinder DC (1983) A comparison of triclosan and chlorhexidine preparations with 60 per cent isopropyl alcohol for hygienic hand disinfection. J Hosp Infect 4:245–255PubMedCrossRefGoogle Scholar
  27. 27.
    Batra R, Cooper BS, Whiteley C, Patel AK, Wyncoll D, Edgeworth JD (2010) Efficacy and limitation of a chlorhexidine-based decolonization strategy in preventing transmission of methicillin-resistant Staphylococcus aureus in an intensive care unit. Clinical Infect Dis: An Off Publ Infect Dis Soc Am 50(2):210–217.  https://doi.org/10.1086/648717CrossRefGoogle Scholar
  28. 28.
    Beier RC, Anderson PN, Hume ME, Poole TL, Duke SE, Crippen TL, Sheffield CL, Caldwell DJ, Byrd JA, Anderson RC, Nisbet DJ (2011) Characterization of Salmonella enterica isolates from turkeys in commercial processing plants for resistance to antibiotics, disinfectants, and a growth promoter. Foodborne Pathog Dis 8(5):593–600.  https://doi.org/10.1089/fpd.2010.0702CrossRefPubMedGoogle Scholar
  29. 29.
    Beier RC, Foley SL, Davidson MK, White DG, McDermott PF, Bodeis-Jones S, Zhao S, Andrews K, Crippen TL, Sheffield CL, Poole TL, Anderson RC, Nisbet DJ (2015) Characterization of antibiotic and disinfectant susceptibility profiles among Pseudomonas aeruginosa veterinary isolates recovered during 1994-2003. J Appl Microbiol 118(2):326–342.  https://doi.org/10.1111/jam.12707CrossRefPubMedGoogle Scholar
  30. 30.
    Ben Saida N, Marzouk M, Ferjeni A, Boukadida J (2009) A three-year surveillance of nosocomial infections by methicillin-resistant Staphylococcus haemolyticus in newborns reveals the disinfectant as a possible reservoir. Pathologie-biologie 57(3):e29–35.  https://doi.org/10.1016/j.patbio.2008.02.019CrossRefPubMedGoogle Scholar
  31. 31.
    Bercy P, Lasserre J (2007) Susceptibility to various oral antiseptics of Porphyromonas gingivalis W83 within a biofilm. Adv Therap 24(6):1181–1191CrossRefGoogle Scholar
  32. 32.
    Best M, Kennedy ME, Coates F (1990) Efficacy of a variety of disinfectants against Listeria spp. Appl Environ Microbiol 56(2):377–380PubMedPubMedCentralGoogle Scholar
  33. 33.
    Best M, Sattar SA, Springthorpe VS, Kennedy ME (1988) Comparative mycobactericidal efficacy of chemical disinfectants in suspension and carrier tests. Appl Environ Microbiol 54:2856–2858PubMedPubMedCentralGoogle Scholar
  34. 34.
    Best M, Sattar SA, Springthorpe VS, Kennedy ME (1990) Efficacies of selected disinfectants against Mycobacterium tuberculosis. J Clin Microbiol 28(10):2234–2239PubMedPubMedCentralGoogle Scholar
  35. 35.
    Best M, Springthorpe VS, Sattar SA (1994) Feasibility of a combined carrier test for disinfectants: studies with a mixture of five types of microorganisms. Am J Infect Control 22(3):152–162PubMedCrossRefGoogle Scholar
  36. 36.
    Bhardwaj P, Hans A, Ruikar K, Guan Z, Palmer KL (2018) Reduced chlorhexidine and daptomycin susceptibility in vancomycin-resistant Enterococcus faecium after serial chlorhexidine exposure. Antimicrob Agents Chemother 62(1).  https://doi.org/10.1128/aac.01235-17
  37. 37.
    Bhardwaj P, Ziegler E, Palmer KL (2016) Chlorhexidine induces VanA-Type vancomycin resistance genes in Enterococci. Antimicrob Agents Chemother 60(4):2209–2221.  https://doi.org/10.1128/aac.02595-15CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Block C, Furman M (2002) Association between intensity of chlorhexidine use and microorganisms of reduced susceptibility in a hospital environment. J Hosp Infect 51:201–206PubMedCrossRefGoogle Scholar
  39. 39.
    Block C, Robenshtok E, Simhon A, Shapiro M (2000) Evaluation of chlorhexidine and povidone iodine activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecalis using a surface test. J Hosp Infect 46(2):147–152.  https://doi.org/10.1053/jhin.2000.0805CrossRefPubMedGoogle Scholar
  40. 40.
    Bobichon H, Bouchet P (1987) Action of chlorhexidine on budding Candida albicans: scanning and transmission electron microscopic study. Mycopathologia 100(1):27–35PubMedCrossRefGoogle Scholar
  41. 41.
    Bock LJ, Hind CK, Sutton JM, Wand ME (2018) Growth media and assay plate material can impact on the effectiveness of cationic biocides and antibiotics against different bacterial species. Lett Appl Microbiol 66(5):368–377.  https://doi.org/10.1111/lam.12863CrossRefPubMedGoogle Scholar
  42. 42.
    Bock LJ, Wand ME, Sutton JM (2016) Varying activity of chlorhexidine-based disinfectants against Klebsiella pneumoniae clinical isolates and adapted strains. J Hosp Infect 93(1):42–48.  https://doi.org/10.1016/j.jhin.2015.12.019CrossRefPubMedGoogle Scholar
  43. 43.
    Bonez PC, Dos Santos Alves CF, Dalmolin TV, Agertt VA, Mizdal CR, Flores Vda C, Marques JB, Santos RC, Anraku de Campos MM (2013) Chlorhexidine activity against bacterial biofilms. Am J Infect Control 41(12):e119–122.  https://doi.org/10.1016/j.ajic.2013.05.002CrossRefPubMedGoogle Scholar
  44. 44.
    Braga TM, Marujo PE, Pomba C, Lopes MF (2011) Involvement, and dissemination, of the enterococcal small multidrug resistance transporter QacZ in resistance to quaternary ammonium compounds. J Antimicrob Chemother 66(2):283–286.  https://doi.org/10.1093/jac/dkq460CrossRefPubMedGoogle Scholar
  45. 45.
    Braga TM, Pomba C, Lopes MF (2013) High-level vancomycin resistant Enterococcus faecium related to humans and pigs found in dust from pig breeding facilities. Vet Microbiol 161(3–4):344–349.  https://doi.org/10.1016/j.vetmic.2012.07.034CrossRefPubMedGoogle Scholar
  46. 46.
    Braoudaki M, Hilton AC (2004) Adaptive resistance to biocides in Salmonella enterica and Escherichia coli O157 and cross-resistance to antimicrobial agents. J Clin Microbiol 42(1):73–78PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Brill F, Goroncy-Bermes P, Sand W (2006) Influence of growth media on the sensitivity of Staphylococcus aureus and Pseudomonas aeruginosa to cationic biocides. Int J Hyg Environ Health 209(1):89–95PubMedCrossRefGoogle Scholar
  48. 48.
    Brindle ER, Miller DA, Stewart PS (2011) Hydrodynamic deformation and removal of Staphylococcus epidermidis biofilms treated with urea, chlorhexidine, iron chloride, or DispersinB. Biotechnol Bioeng 108(12):2968–2977.  https://doi.org/10.1002/bit.23245CrossRefPubMedGoogle Scholar
  49. 49.
    Brooks SE, Walczak MA, Hameed R, Coonan P (2002) Chlorhexidine resistance in antibiotic-resistant bacteria isolated from the surfaces of dispensers of soap containing chlorhexidine. Infect Control Hosp Epidemiol 23:692–695PubMedCrossRefGoogle Scholar
  50. 50.
    Brown AT, Shupe JA, Sims RE, Matheny JL, Lillich TT, Douglass JB, Henslee PJ, Raybould TP, Ferretti GA (1990) In vitro effect of chlorhexidine and amikacin on oral gram-negative bacilli from bone marrow transplant recipients. Oral Surg Oral Med Oral Pathol 70(6):715–719PubMedCrossRefGoogle Scholar
  51. 51.
    Bukhary S, Balto H (2017) Antibacterial efficacy of Octenisept, Alexidine, Chlorhexidine, and Sodium Hypochlorite against Enterococcus faecalis Biofilms. J Endod 43(4):643–647.  https://doi.org/10.1016/j.joen.2016.09.013CrossRefPubMedGoogle Scholar
  52. 52.
    Burgers R, Witecy C, Hahnel S, Gosau M (2012) The effect of various topical peri-implantitis antiseptics on Staphylococcus epidermidis, Candida albicans, and Streptococcus sanguinis. Arch Oral Biol 57(7):940–947.  https://doi.org/10.1016/j.archoralbio.2012.01.015CrossRefPubMedGoogle Scholar
  53. 53.
    Caballero Gómez N, Abriouel H, Grande MJ, Pérez Pulido R, Gálvez A (2012) Effect of enterocin AS-48 in combination with biocides on planktonic and sessile Listeria monocytogenes. Food Microbiol 30(1):51–58.  https://doi.org/10.1016/j.fm.2011.12.013CrossRefGoogle Scholar
  54. 54.
    Calixto GMF, Duque C, Aida KL, Dos Santos VR, Massunari L, Chorilli M (2018) Development and characterization of p1025-loaded bioadhesive liquid-crystalline system for the prevention of Streptococcus mutans biofilms. Int J Nanomed 13:31–41.  https://doi.org/10.2147/ijn.s147553CrossRefGoogle Scholar
  55. 55.
    Casado Munoz Mdel C, Benomar N, Lavilla Lerma L, Knapp CW, Galvez A, Abriouel H (2016) Biocide tolerance, phenotypic and molecular response of lactic acid bacteria isolated from naturally-fermented Alorena table to different physico-chemical stresses. Food Microbiol 60:1–12.  https://doi.org/10.1016/j.fm.2016.06.013CrossRefPubMedGoogle Scholar
  56. 56.
    Chawner JA, Gilbert P (1989) Adsorption of alexidine and chlorhexidine to Escherichia coli and membrane components. Int J Pharm 55(2):209–215.  https://doi.org/10.1016/0378-5173(89)90043-4CrossRefGoogle Scholar
  57. 57.
    Cherian B, Gehlot PM, Manjunath MK (2016) Comparison of the antimicrobial efficacy of octenidine dihydrochloride and chlorhexidine with and without passive ultrasonic irrigation—an invitro study. J Clin Diagn Res 10(6):Zc71–77.  https://doi.org/10.7860/jcdr/2016/17911.8021
  58. 58.
    Chiang WC, Pamp SJ, Nilsson M, Givskov M, Tolker-Nielsen T (2012) The metabolically active subpopulation in Pseudomonas aeruginosa biofilms survives exposure to membrane-targeting antimicrobials via distinct molecular mechanisms. FEMS Immunol Med Microbiol 65(2):245–256.  https://doi.org/10.1111/j.1574-695X.2012.00929.xCrossRefPubMedGoogle Scholar
  59. 59.
    Choi YS, Kim C, Moon JH, Lee JY (2018) Removal and killing of multispecies endodontic biofilms by N-acetylcysteine. Brazilian J Microbiol: [Publication of the Brazilian Society for Microbiology] 49(1):184–188.  https://doi.org/10.1016/j.bjm.2017.04.003CrossRefGoogle Scholar
  60. 60.
    Christensen KK, Christensen P, Dykes AK, Kahlmeter G, Kurl DN, Linden V (1983) Chlorhexidine for prevention of neonatal colonization with group B streptococci. I. In vitro effect of chlorhexidine on group B streptococci. Eur J Obstet Gynecol Reprod Biol 16(3):157–165PubMedCrossRefGoogle Scholar
  61. 61.
    Chuanchuen R, Pathanasophon P, Khemtong S, Wannaprasat W, Padungtod P (2008) Susceptibilities to antimicrobials and disinfectants in Salmonella isolates obtained from poultry and swine in Thailand. Jveterinary Med Sci 70(6):595–601Google Scholar
  62. 62.
    Chung YK, Kim JS, Lee SS, Lee JA, Kim HS, Shin KS, Park EY, Kang BS, Lee HJ, Kang HJ (2015) Effect of daily chlorhexidine bathing on acquisition of carbapenem-resistant Acinetobacter baumannii (CRAB) in the medical intensive care unit with CRAB endemicity. Am J Infect Control 43(11):1171–1177.  https://doi.org/10.1016/j.ajic.2015.07.001CrossRefPubMedGoogle Scholar
  63. 63.
    Clark SM, Loeffler A, Bond R (2015) Susceptibility in vitro of canine methicillin-resistant and -susceptible staphylococcal isolates to fusidic acid, chlorhexidine and miconazole: opportunities for topical therapy of canine superficial pyoderma. J Antimicrob Chemother 70(7):2048–2052.  https://doi.org/10.1093/jac/dkv056CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Coaguila-Llerena H, Stefanini da Silva V, Tanomaru-Filho M, Guerreiro Tanomaru JM, Faria G (2018) Cleaning capacity of octenidine as root canal irrigant: a scanning electron microscopy study. Microsc Res Tech.  https://doi.org/10.1002/jemt.23007CrossRefPubMedGoogle Scholar
  65. 65.
    Coelho JR, Carrico JA, Knight D, Martinez JL, Morrissey I, Oggioni MR, Freitas AT (2013) The use of machine learning methodologies to analyse antibiotic and biocide susceptibility in Staphylococcus aureus. PLoS ONE 8(2):e55582.  https://doi.org/10.1371/journal.pone.0055582CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Coenye T, Van Acker H, Peeters E, Sass A, Buroni S, Riccardi G, Mahenthiralingam E (2011) Molecular mechanisms of chlorhexidine tolerance in Burkholderia cenocepacia biofilms. Antimicrob Agents Chemother 55(5):1912–1919.  https://doi.org/10.1128/aac.01571-10CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Conceicao T, Coelho C, de Lencastre H, Aires-de-Sousa M (2015) High prevalence of biocide resistance determinants in Staphylococcus aureus isolates from three African countries. Antimicrob Agents Chemother.  https://doi.org/10.1128/aac.02140-15CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Condell O, Iversen C, Cooney S, Power KA, Walsh C, Burgess C, Fanning S (2012) Efficacy of biocides used in the modern food industry to control salmonella enterica, and links between biocide tolerance and resistance to clinically relevant antimicrobial compounds. Appl Environ Microbiol 78(9):3087–3097.  https://doi.org/10.1128/aem.07534-11CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Condell O, Power KA, Handler K, Finn S, Sheridan A, Sergeant K, Renaut J, Burgess CM, Hinton JC, Nally JE, Fanning S (2014) Comparative analysis of Salmonella susceptibility and tolerance to the biocide chlorhexidine identifies a complex cellular defense network. Front Microbiol 5:373.  https://doi.org/10.3389/fmicb.2014.00373CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Cook HA, Cimiotti JP, Della-Latta P, Saiman L, Larson EL (2007) Antimicrobial resistance patterns of colonizing flora on nurses’ hands in the neonatal intensive care unit. Am J Infect Control 35(4):231–236.  https://doi.org/10.1016/j.ajic.2006.05.291CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Cookson BD, Bolton MC, Platt JH (1991) Chlorhexidine resistance in methicillin-resistant Staphylococcus aureus or just an elevated MIC? An in vitro and in vivo assessment. Antimicrob Agents Chemother 35(10):1997–2002PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Corbin A, Pitts B, Parker A, Stewart PS (2011) Antimicrobial penetration and efficacy in an in vitro oral biofilm model. Antimicrob Agents Chemother 55(7):3338–3344.  https://doi.org/10.1128/aac.00206-11CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Cowley NL, Forbes S, Amezquita A, McClure P, Humphreys GJ, McBain AJ (2015) Effects of formulation on microbicide potency and mitigation of the development of bacterial insusceptibility. Appl Environ Microbiol 81(20):7330–7338.  https://doi.org/10.1128/aem.01985-15CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Curiao T, Marchi E, Viti C, Oggioni MR, Baquero F, Martinez JL, Coque TM (2015) Polymorphic variation in susceptibility and metabolism of triclosan-resistant mutants of Escherichia coli and Klebsiella pneumoniae clinical strains obtained after exposure to biocides and antibiotics. Antimicrob Agents Chemother 59(6):3413–3423.  https://doi.org/10.1128/aac.00187-15CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    da Silva PM, Acosta EJ, Pinto Lde R, Graeff M, Spolidorio DM, Almeida RS, Porto VC (2011) Microscopical analysis of Candida albicans biofilms on heat-polymerised acrylic resin after chlorhexidine gluconate and sodium hypochlorite treatments. Mycoses 54(6):e712–717.  https://doi.org/10.1111/j.1439-0507.2010.02005.xCrossRefPubMedGoogle Scholar
  76. 76.
    Dance DAB, Pearson AD, Seal DV, Lowes JA (1987) A hospital outbreak caused by a chlorhexidine and antibiotic-resistant Proteus mirabilis. J Hosp Infect 10(1):10–16PubMedCrossRefGoogle Scholar
  77. 77.
    Darouiche RO, Wall MJ, Itani KM, Otterson MF, Webb AL, Carrick MM, Miller HJ, Awad SS, Crosby CT, Mosier MC, Alsharif A, Berger DH (2010) Chlorhexidine-alcohol versus povidone-iodine for surgical-site antisepsis. N Engl J Med 362(1):18–26PubMedCrossRefGoogle Scholar
  78. 78.
    Das R, Ghosh S, Bhattacharjee C (2015) A green practice for pharmaceutical drug chlorhexidine digluconate treatment and ecotoxicity assessment. J Water Process Eng 7:266–272.  https://doi.org/10.1016/j.jwpe.2015.05.005CrossRefGoogle Scholar
  79. 79.
    Davies GE, Francis J, Martin AR, Rose FL, Swain G (1954) 1:6-Di-4’-chlorophenyldiguanidohexane (“Hibitane”*). Laboratory investigation of a new antibacterial agent of high potency. Br J Pharmacol 9:192–196Google Scholar
  80. 80.
    de Andrade IM, Cruz PC, Silva-Lovato CH, de Souza RF, Souza-Gugelmin MC, Paranhos Hde F (2012) Effect of chlorhexidine on denture biofilm accumulation. J Prosthodontists: Off J Am College Prosthodontists 21(1):2–6.  https://doi.org/10.1111/j.1532-849X.2011.00774.xCrossRefGoogle Scholar
  81. 81.
    de Frutos M, Lopez-Urrutia L, Dominguez-Gil M, Arias M, Munoz-Bellido JL, Eiros JM, Ramos C (2017) Serratia marcescens outbreak due to contaminated 2% aqueous chlorhexidine. Enferm Infecc Microbiol Clin 35(10):624–629.  https://doi.org/10.1016/j.eimc.2016.06.016CrossRefPubMedGoogle Scholar
  82. 82.
    de Lucena JM, Decker EM, Walter C, Boeira LS, Lost C, Weiger R (2013) Antimicrobial effectiveness of intracanal medicaments on Enterococcus faecalis: chlorhexidine versus octenidine. Int Endod J 46(1):53–61.  https://doi.org/10.1111/j.1365-2591.2012.02093.xCrossRefPubMedGoogle Scholar
  83. 83.
    Decker EM, Bartha V, Kopunic A, von Ohle C (2017) Antimicrobial efficiency of mouthrinses versus and in combination with different photodynamic therapies on periodontal pathogens in an experimental study. J Periodontal Res 52(2):162–175.  https://doi.org/10.1111/jre.12379CrossRefPubMedGoogle Scholar
  84. 84.
    DeMarco CE, Cushing LA, Frempong-Manso E, Seo SM, Jaravaza TA, Kaatz GW (2007) Efflux-related resistance to norfloxacin, dyes, and biocides in bloodstream isolates of Staphylococcus aureus. Antimicrob Agents Chemother 51(9):3235–3239.  https://doi.org/10.1128/aac.00430-07CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Department of Health and Human Services; Food and Drug Administration (1994) Tentative final monograph for health care antiseptic products; proposed rule. Fed Reg 59(116):31401–31452Google Scholar
  86. 86.
    Department of Health and Human Services; Food and Drug Administration (2015) Safety and effectiveness of healthcare antiseptics. topical antimicrobial drug products for over-the-counter human use; proposed amendment of the tentative final monograph; reopening of administrative record; proposed rule. Fed Reg 80(84):25166–25205Google Scholar
  87. 87.
    Deus D, Krischek C, Pfeifer Y, Sharifi AR, Fiegen U, Reich F, Klein G, Kehrenberg C (2017) Comparative analysis of the susceptibility to biocides and heavy metals of extended-spectrum beta-lactamase-producing Escherichia coli isolates of human and avian origin, Germany. Diagnostic Microbiol Infect Dis 88(1):88–92.  https://doi.org/10.1016/j.diagmicrobio.2017.01.023CrossRefGoogle Scholar
  88. 88.
    do Amorim CV, Aun CE, Mayer MP (2004) Susceptibility of some oral microorganisms to chlorhexidine and paramonochlorophenol. Brazilian Oral Res 18(3):242–246Google Scholar
  89. 89.
    Dogan AA, Adiloglu AK, Onal S, Cetin ES, Polat E, Uskun E, Koksal F (2008) Short-term relative antibacterial effect of octenidine dihydrochloride on the oral microflora in orthodontically treated patients. Int J Infect Dis: IJID: Off Publ Int Soc Infect Dis 12(6):e19–25.  https://doi.org/10.1016/j.ijid.2008.03.013CrossRefGoogle Scholar
  90. 90.
    Dominciano LCC, Oliveira CAF, Lee SH, Corassin CH (2016) Individual and combined antimicrobial activity of Oleuropein and chemical sanitizers. J Food Chem Nanotechnol 2(3):124–127Google Scholar
  91. 91.
    Dong L, Tong Z, Linghu D, Lin Y, Tao R, Liu J, Tian Y, Ni L (2012) Effects of sub-minimum inhibitory concentrations of antimicrobial agents on Streptococcus mutans biofilm formation. Int J Antimicrob Agents 39(5):390–395.  https://doi.org/10.1016/j.ijantimicag.2012.01.009CrossRefPubMedGoogle Scholar
  92. 92.
    Dostie S, Alkadi LT, Owen G, Bi J, Shen Y, Haapasalo M, Larjava HS (2017) Chemotherapeutic decontamination of dental implants colonized by mature multispecies oral biofilm. J Clin Periodontol 44(4):403–409.  https://doi.org/10.1111/jcpe.12699CrossRefPubMedGoogle Scholar
  93. 93.
    Duran N, Temiz M, Duran GG, Eryilmaz N, Jenedi K (2014) Relationship between the resistance genes to quaternary ammonium compounds and antibiotic resistance in Staphylococci isolated from surgical site infections. Medical Science Monitor: Int Med J Exp Clin Res 20:544–550.  https://doi.org/10.12659/msm.890177CrossRefGoogle Scholar
  94. 94.
    Dynes JJ, Lawrence JR, Korber DR, Swerhone GD, Leppard GG, Hitchcock AP (2006) Quantitative mapping of chlorhexidine in natural river biofilms. Sci Total Environ 369(1–3):369–383.  https://doi.org/10.1016/j.scitotenv.2006.04.033CrossRefPubMedGoogle Scholar
  95. 95.
    Ekizoglu M, Sagiroglu M, Kilic E, Hascelik AG (2016) An investigation of the bactericidal activity of chlorhexidine digluconate against multidrug-resistant hospital isolates. Turkish J Med Sci 46(3):903–909.  https://doi.org/10.3906/sag-1503-140CrossRefGoogle Scholar
  96. 96.
    Ekizoglu MT, Özalp M, Sultan N, Gür D (2003) An investigation of the bactericidal effect of certain antiseptics and disinfectants on some hospital isolates of gram-negative bacteria. Infect Control Hosp Epidemiol 24(3):225–227PubMedCrossRefGoogle Scholar
  97. 97.
    Eldeniz AU, Guneser MB, Akbulut MB (2015) Comparative antifungal efficacy of light-activated disinfection and octenidine hydrochloride with contemporary endodontic irrigants. Lasers Med Sci 30(2):669–675.  https://doi.org/10.1007/s10103-013-1387-1CrossRefPubMedGoogle Scholar
  98. 98.
    Elli M, Arioli S, Guglielmetti S, Mora D (2013) Biocide susceptibility in bifidobacteria of human origin. J Global Antimicrob Resis 1(2):97–101.  https://doi.org/10.1016/j.jgar.2013.03.007CrossRefGoogle Scholar
  99. 99.
    Espigares E, Moreno Roldan E, Espigares M, Abreu R, Castro B, Dib AL, Arias A (2017) Phenotypic resistance to disinfectants and antibiotics in methicillin-resistant Staphylococcus aureus strains isolated from pigs. Zoonoses Public Health 64(4):272–280.  https://doi.org/10.1111/zph.12308CrossRefPubMedGoogle Scholar
  100. 100.
    Espinosa de los Monteros LE, Silva-Sanchez J, Jimenez LV, Rojas T, Garza-Ramos U, Valverde V (2008) Outbreak of infection by extended-spectrum beta-lactamase SHV-5-producing Serratia marcescens in a Mexican hospital. J Chemotherap (Florence, Italy) 20(5):586–592.  https://doi.org/10.1179/joc.2008.20.5.586
  101. 101.
    European Chemicals Agency (ECHA) D-gluconic acid, compound with N,N″-bis(4-chlorophenyl)-3,12-diimino-2,4,11,13-tetraazatetradecanediamidine (2:1). Substance information. https://echa.europa.eu/de/substance-information/-/substanceinfo/100.038.489. Accessed 5 Feb 2018
  102. 102.
    Fang CT, Chen HC, Chuang YP, Chang SC, Wang JT (2002) Cloning of a cation efflux pump gene associated with chlorhexidine resistance in Klebsiella pneumoniae. Antimicrob Agents Chemother 46(6):2024–2028PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Fathilah AR, Himratul-Aznita WH, Fatheen AR, Suriani KR (2012) The antifungal properties of chlorhexidine digluconate and cetylpyrinidinium chloride on oral Candida. J Dent 40(7):609–615.  https://doi.org/10.1016/j.jdent.2012.04.003CrossRefPubMedGoogle Scholar
  104. 104.
    Ferguson JW, Hatton JF, Gillespie MJ (2002) Effectiveness of intracanal irrigants and medications against the yeast Candida albicans. J Endod 28(2):68–71.  https://doi.org/10.1097/00004770-200202000-00004CrossRefPubMedGoogle Scholar
  105. 105.
    Fernandez-Cuenca F, Tomas M, Caballero-Moyano FJ, Bou G, Martinez-Martinez L, Vila J, Pachon J, Cisneros JM, Rodriguez-Bano J, Pascual A (2015) Reduced susceptibility to biocides in Acinetobacter baumannii: association with resistance to antimicrobials, epidemiological behaviour, biological cost and effect on the expression of genes encoding porins and efflux pumps. J Antimicrob Chemother 70(12):3222–3229.  https://doi.org/10.1093/jac/dkv262CrossRefPubMedGoogle Scholar
  106. 106.
    Fernández-Fuentes MA, Ortega Morente E, Abriouel H, Pérez Pulido R, Gálvez A (2012) Isolation and identification of bacteria from organic foods: sensitivity to biocides and antibiotics. Food Control 26(1):73–78.  https://doi.org/10.1016/j.foodcont.2012.01.017CrossRefGoogle Scholar
  107. 107.
    Fleurette J, Bes M, Brun Y, Freney J, Forey F, Coulet M, Reverdy ME, Etienne J (1989) Clinical isolates of Staphylococcus lugdunensis and S. schleiferi: bacteriological characteristics and susceptibility to antimicrobial agents. Res Microbiol 140(2):107–118PubMedCrossRefGoogle Scholar
  108. 108.
    Forbes S, Dobson CB, Humphreys GJ, McBain AJ (2014) Transient and sustained bacterial adaptation following repeated sublethal exposure to microbicides and a novel human antimicrobial peptide. Antimicrob Agents Chemother 58(10):5809–5817.  https://doi.org/10.1128/aac.03364-14CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Forbes S, Knight CG, Cowley NL, Amezquita A, McClure P, Humphreys G, McBain AJ (2016) variable effects of exposure to formulated microbicides on antibiotic susceptibility in firmicutes and proteobacteria. Appl Environ Microbiol 82(12):3591–3598.  https://doi.org/10.1128/aem.00701-16CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Fraud S, Campigotto AJ, Chen Z, Poole K (2008) MexCD-OprJ multidrug efflux system of Pseudomonas aeruginosa: involvement in chlorhexidine resistance and induction by membrane-damaging agents dependent upon the AlgU stress response sigma factor. Antimicrob Agents Chemother 52(12):4478–4482.  https://doi.org/10.1128/aac.01072-08CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Fraud S, Hann AC, Maillard JY, Russell AD (2003) Effects of ortho-phthalaldehyde, glutaraldehyde and chlorhexidine diacetate on Mycobacterium chelonae and Mycobacterium abscessus strains with modified permeability. J Antimicrob Chemother 51(3):575–584PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Fu J, Wei P, Zhao C, He C, Yan Z, Hua H (2014) In vitro antifungal effect and inhibitory activity on biofilm formation of seven commercial mouthwashes. Oral Dis 20(8):815–820.  https://doi.org/10.1111/odi.12242CrossRefPubMedGoogle Scholar
  113. 113.
    Fuangthong M, Julotok M, Chintana W, Kuhn K, Rittiroongrad S, Vattanaviboon P, Mongkolsuk S (2011) Exposure of Acinetobacter baylyi ADP1 to the biocide chlorhexidine leads to acquired resistance to the biocide itself and to oxidants. J Antimicrob Chemother 66(2):319–322.  https://doi.org/10.1093/jac/dkq435CrossRefPubMedGoogle Scholar
  114. 114.
    Furi L, Ciusa ML, Knight D, Di Lorenzo V, Tocci N, Cirasola D, Aragones L, Coelho JR, Freitas AT, Marchi E, Moce L, Visa P, Northwood JB, Viti C, Borghi E, Orefici G, Morrissey I, Oggioni MR (2013) Evaluation of reduced susceptibility to quaternary ammonium compounds and bisbiguanides in clinical isolates and laboratory-generated mutants of Staphylococcus aureus. Antimicrob Agents Chemother 57(8):3488–3497.  https://doi.org/10.1128/aac.00498-13CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Fuursted K, Hjort A, Knudsen L (1997) Evaluation of bactericidal activity and lag of regrowth (postantibiotic effect) of five antiseptics on nine bacterial pathogens. J Antimicrob Chemother 40(2):221–226PubMedCrossRefGoogle Scholar
  116. 116.
    Gadea R, Glibota N, Pérez Pulido R, Gálvez A, Ortega E (2017) Effects of exposure to biocides on susceptibility to essential oils and chemical preservatives in bacteria from organic foods. Food Control 80(Supplement C):176–182.  https://doi.org/10.1016/j.foodcont.2017.05.002
  117. 117.
    Gajadhar T, Lara A, Sealy P, Adesiyun AA (2003) Microbial contamination of disinfectants and antiseptics in four major hospitals in Trinidad. Revista panamericana de salud publica. Pan American J Public Health 14(3):193–200CrossRefGoogle Scholar
  118. 118.
    Galice DM, Bonacorsi C, Soares VC, Raddi MS, Fonseca LM (2006) Effect of subinhibitory concentration of chlorhexidine on Streptococcus agalactiae virulence factor expression. Int J Antimicrob Agents 28(2):143–146.  https://doi.org/10.1016/j.ijantimicag.2006.03.024CrossRefPubMedGoogle Scholar
  119. 119.
    Gandhi PA, Sawant AD, Wilson LA, Ahearn DG (1993) Adaption and growth of Serratia marcescens in contact lens disinfectant solutions containing chlorhexidine gluconate. Appl Environ Microbiol 59(1):183–188PubMedPubMedCentralGoogle Scholar
  120. 120.
    Gaston MA, Hoffman PN, Pitt TL (1986) A comparison of strains of Serratia marcescens isolated from neonates with strains isolated from sporadic and epidemic infections in adults. J Hosp Infect 8(1):86–95PubMedCrossRefGoogle Scholar
  121. 121.
    Ghasemzadeh-Moghaddam H, van Belkum A, Hamat RA, van Wamel W, Neela V (2014) Methicillin-susceptible and -resistant Staphylococcus aureus with high-level antiseptic and low-level mupirocin resistance in Malaysia. Microbial drug resistance (Larchmont, NY) 20(5):472–477.  https://doi.org/10.1089/mdr.2013.0222
  122. 122.
    Ghivari SB, Bhattacharya H, Bhat KG, Pujar MA (2017) Antimicrobial activity of root canal irrigants against biofilm forming pathogens-an in vitro study. J Conserv Dentistry: JCD 20(3):147–151.  https://doi.org/10.4103/jcd.jcd_38_16CrossRefGoogle Scholar
  123. 123.
    Giuliana G, Pizzo G, Milici ME, Giangreco R (1999) In vitro activities of antimicrobial agents against Candida species. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 87(1):44–49.  https://doi.org/10.1016/S1079-2104(99)70293-3CrossRefPubMedGoogle Scholar
  124. 124.
    Goroncy-Bermes P, Brill FHH, Brill H (2013) Antimicrobial activity of wound antiseptics against extended-spectrum beta-lactamase-producing bacteria. Wound Med 1(1):41–43CrossRefGoogle Scholar
  125. 125.
    Gosau M, Hahnel S, Schwarz F, Gerlach T, Reichert TE, Burgers R (2010) Effect of six different peri-implantitis disinfection methods on in vivo human oral biofilm. Clin Oral Implant Res 21(8):866–872.  https://doi.org/10.1111/j.1600-0501.2009.01908.xCrossRefGoogle Scholar
  126. 126.
    Grande Burgos MJ, Lucas López R, López Aguayo M, Pérez Pulido R, Gálvez A (2013) Inhibition of planktonic and sessile Salmonella enterica cells by combinations of enterocin AS-48, polymyxin B and biocides. Food Control 30(1):214–221.  https://doi.org/10.1016/j.foodcont.2012.07.011CrossRefGoogle Scholar
  127. 127.
    Grare M, Dibama HM, Lafosse S, Ribon A, Mourer M, Regnouf-de-Vains JB, Finance C, Duval RE (2010) Cationic compounds with activity against multidrug-resistant bacteria: interest of a new compound compared with two older antiseptics, hexamidine and chlorhexidine. Clin Microbiol Infect 16(5):432–438.  https://doi.org/10.1111/j.1469-0691.2009.02837.xCrossRefPubMedGoogle Scholar
  128. 128.
    Guerin-Mechin L, Leveau JY, Dubois-Brissonnet F (2004) Resistance of spheroplasts and whole cells of Pseudomonas aeruginosa to bactericidal activity of various biocides: evidence of the membrane implication. Microbiol Res 159(1):51–57.  https://doi.org/10.1016/j.micres.2004.01.003CrossRefPubMedGoogle Scholar
  129. 129.
    Guiotti AM, Cunha BG, Paulini MB, Goiato MC, Dos Santos DM, Duque C, Caiaffa KS, Brandini DA, Narciso de Oliveira DT, Brizzotti NS, Gottardo de Almeida MT (2016) Antimicrobial activity of conventional and plant-extract disinfectant solutions on microbial biofilms on a maxillofacial polymer surface. J Prosthet Dent 116(1):136–143.  https://doi.org/10.1016/j.prosdent.2015.12.014CrossRefPubMedGoogle Scholar
  130. 130.
    Guneser MB, Akbulut MB, Eldeniz AU (2016) Antibacterial effect of chlorhexidine-cetrimide combination, Salvia officinalis plant extract and octenidine in comparison with conventional endodontic irrigants. Dent Mater J 35(5):736–741.  https://doi.org/10.4012/dmj.2015-159CrossRefPubMedGoogle Scholar
  131. 131.
    Gunther F, Blessing B, Tacconelli E, Mutters NT (2017) MRSA decolonization failure-are biofilms the missing link? Antimicrob Resist Infect Control 6:32.  https://doi.org/10.1186/s13756-017-0192-1CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Guo W, Shan K, Xu B, Li J (2015) Determining the resistance of carbapenem-resistant Klebsiella pneumoniae to common disinfectants and elucidating the underlying resistance mechanisms. Pathogens Global Health 109(4):184–192.  https://doi.org/10.1179/2047773215y.0000000022CrossRefPubMedGoogle Scholar
  133. 133.
    Gutierrez-Martin CB, Yubero S, Martinez S, Frandoloso R, Rodriguez-Ferri EF (2011) Evaluation of efficacy of several disinfectants against Campylobacter jejuni strains by a suspension test. Res Vet Sci 91(3):e44–47.  https://doi.org/10.1016/j.rvsc.2011.01.020CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Guzman Prieto AM, Wijngaarden J, Braat JC, Rogers MRC, Majoor E, Brouwer EC, Zhang X, Bayjanov JR, Bonten MJM, Willems RJL, van Schaik W (2017) The two-component system ChtRS contributes to chlorhexidine tolerance in Enterococcus faecium. Antimicrob Agents Chemother 61(5).  https://doi.org/10.1128/aac.02122-16
  135. 135.
    Hare R, Raik E, Gash S (1963) Efficiency of antiseptics when acting on dried organisms. BMJ 1(5329):496–500PubMedCrossRefGoogle Scholar
  136. 136.
    Hasanvand A, Ghafourian S, Taherikalani M, Jalilian FA, Sadeghifard N, Pakzad I (2015) Antiseptic resistance in methicillin sensitive and methicillin resistant Staphylococcus aureus isolates from some major hospitals, Iran. Recent Patents Anti-infective Drug Discov 10(2):105–112CrossRefGoogle Scholar
  137. 137.
    Hassan KA, Liu Q, Elbourne LDH, Ahmad I, Sharples D, Naidu V, Chan CL, Li L, Harborne SPD, Pokhrel A, Postis VLG, Goldman A, Henderson PJF, Paulsen IT (2018) Pacing across the membrane: the novel PACE family of efflux pumps is widespread in gram-negative pathogens. Res Microbiol.  https://doi.org/10.1016/j.resmic.2018.01.001CrossRefPubMedGoogle Scholar
  138. 138.
    Hassan KA, Liu Q, Henderson PJ, Paulsen IT (2015) Homologs of the Acinetobacter baumannii AceI transporter represent a new family of bacterial multidrug efflux systems. mBio 6(1).  https://doi.org/10.1128/mbio.01982-14
  139. 139.
    Hayashi M, Kawamura K, Matsui M, Suzuki M, Suzuki S, Shibayama K, Arakawa Y (2017) Reduction in chlorhexidine efficacy against multi-drug-resistant Acinetobacter baumannii international clone II. J Hosp Infect 95(3):318–323.  https://doi.org/10.1016/j.jhin.2016.12.004CrossRefPubMedGoogle Scholar
  140. 140.
    He XF, Zhang HJ, Cao JG, Liu F, Wang JK, Ma WJ, Yin W (2017) A novel method to detect bacterial resistance to disinfectants. Genes Dis 4(3):163–169.  https://doi.org/10.1016/j.gendis.2017.07.001CrossRefGoogle Scholar
  141. 141.
    Hedin G, Hambraeus A (1993) Daily scrub with chlorhexidine reduces skin colonization by antibiotic-resistant Staphylococcus epidermidis. J Hosp Infect 24(1):47–61PubMedCrossRefGoogle Scholar
  142. 142.
    Herruzo-Cabrera R, Garcia-Torres V, Rey-Calero J, Vizcaino-Alcaide MJ (1992) Evaluation of the penetration strength, bactericidal efficacy and spectrum of action of several antimicrobial creams against isolated microorganisms in a burn centre. Burns: J Int Soc Burn Injuries 18(1):39–44CrossRefGoogle Scholar
  143. 143.
    Herruzo-Cabrera R, Uriarte MC, Rey-Calero J (1999) Antimicrobial effectiveness of 2% glutaraldehyde versus other disinfectants for hospital equipment, in an in vitro test based on germ-carriers with a high microbial contamination. Rev Stomatol Chir Maxillofac 100(6):299–305PubMedGoogle Scholar
  144. 144.
    Higgins CS, Murtough SM, Williamson E, Hiom SJ, Payne DJ, Russell AD, Walsh TR (2001) Resistance to antibiotics and biocides among non-fermenting Gram-negative bacteria. Clin Microbiol Infect 7(6):308–315PubMedCrossRefGoogle Scholar
  145. 145.
    Hijazi K, Mukhopadhya I, Abbott F, Milne K, Al-Jabri ZJ, Oggioni MR, Gould IM (2016) Susceptibility to chlorhexidine amongst multidrug-resistant clinical isolates of Staphylococcus epidermidis from bloodstream infections. Int J Antimicrob Agents 48(1):86–90.  https://doi.org/10.1016/j.ijantimicag.2016.04.015CrossRefPubMedGoogle Scholar
  146. 146.
    Ho CM, Li CY, Ho MW, Lin CY, Liu SH, Lu JJ (2012) High rate of qacA- and qacB-positive methicillin-resistant Staphylococcus aureus isolates from chlorhexidine-impregnated catheter-related bloodstream infections. Antimicrob Agents Chemother 56(11):5693–5697. doi:AAC.00761-12 [pii]Google Scholar
  147. 147.
    Hobson DW, Woller W, Anderson L, Guthery E (1998) Development and evaluation of a new alcohol-based surgical hand scrub formulation with persistant antimicrobial characteristics and brushless application. Am J Infect Control 26(10):507–512PubMedCrossRefGoogle Scholar
  148. 148.
    Hoekstra MJ, Westgate SJ, Mueller S (2017) Povidone-iodine ointment demonstrates in vitro efficacy against biofilm formation. Int Wound J 14(1):172–179.  https://doi.org/10.1111/iwj.12578CrossRefPubMedGoogle Scholar
  149. 149.
    Hope CK, Wilson M (2004) Analysis of the effects of chlorhexidine on oral biofilm vitality and structure based on viability profiling and an indicator of membrane integrity. Antimicrob Agents Chemother 48(5):1461–1468PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Houari A, Di Martino P (2007) Effect of chlorhexidine and benzalkonium chloride on bacterial biofilm formation. Lett Appl Microbiol 45(6):652–656.  https://doi.org/10.1111/j.1472-765X.2007.02249.xCrossRefPubMedGoogle Scholar
  151. 151.
    Hubner NO, Matthes R, Koban I, Randler C, Muller G, Bender C, Kindel E, Kocher T, Kramer A (2010) Efficacy of chlorhexidine, polihexanide and tissue-tolerable plasma against Pseudomonas aeruginosa biofilms grown on polystyrene and silicone materials. Skin Pharmacol Physiol 23(Suppl):28–34.  https://doi.org/10.1159/000318265CrossRefPubMedGoogle Scholar
  152. 152.
    Hughes C, Ferguson J (2017) Phenotypic chlorhexidine and triclosan susceptibility in clinical Staphylococcus aureus isolates in Australia. Pathology 49(6):633–637.  https://doi.org/10.1016/j.pathol.2017.05.008CrossRefPubMedGoogle Scholar
  153. 153.
    Ignak S, Nakipoglu Y, Gurler B (2017) Frequency of antiseptic resistance genes in clinical staphycocci and enterococci isolates in Turkey. Antimicrob Resist Infect Control 6:88.  https://doi.org/10.1186/s13756-017-0244-6CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Imbert C, Lassy E, Daniault G, Jacquemin JL, Rodier MH (2003) Treatment of plastic and extracellular matrix components with chlorhexidine or benzalkonium chloride: effect on Candida albicans adherence capacity in vitro. J Antimicrob Chemother 51(2):281–287PubMedCrossRefGoogle Scholar
  155. 155.
    Irizarry L, Merlin T, Rupp J, Griffith J (1996) Reduced susceptibility of methicillin-resistant Staphylococcus aureus to cetylpyridinium chloride and chlorhexidine. Chemotherapy 42(4):248–252PubMedCrossRefGoogle Scholar
  156. 156.
    Ismaeel N, Furr JR, Russell AD (1986) Sensitivity and resistance of some strains of Providencia stuartii to antiseptics, disinfectants and preservatives. Microbios Letter 33:59–64CrossRefGoogle Scholar
  157. 157.
    Izano EA, Shah SM, Kaplan JB (2009) Intercellular adhesion and biocide resistance in nontypeable Haemophilus influenzae biofilms. Microb Pathog 46(4):207–213.  https://doi.org/10.1016/j.micpath.2009.01.004CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Järvinen H, Pienihäkkinen K, Huovinen P, Tenovuo J (1995) Susceptibility of Streptococcus mutans and Streptococcus sobrinus to antimicrobial agents after short-term oral chlorhexidine treatments. Eur J Oral Sci 103(1):32–35PubMedCrossRefGoogle Scholar
  159. 159.
    Jarvinen H, Tenovuo J, Huovinen P (1993) In vitro susceptibility of Streptococcus mutans to chlorhexidine and six other antimicrobial agents. Antimicrob Agents Chemother 37(5):1158–1159PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Johnson RC, Schlett CD, Crawford K, Lanier JB, Merrell DS, Ellis MW (2015) Recurrent methicillin-resistant Staphylococcus aureus cutaneous abscesses and selection of reduced chlorhexidine susceptibility during chlorhexidine use. J Clin Microbiol 53(11):3677–3682.  https://doi.org/10.1128/jcm.01771-15CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Joy Sinha D, K DSN, Jaiswal N, Vasudeva A, Prabha Tyagi S, Pratap Singh U (2017) Antibacterial effect of Azadirachta indica (Neem) or curcuma longa (Turmeric) against Enterococcus faecalis compared with that of 5% sodium hypochlorite or 2% chlorhexidine in vitro. Bull Tokyo Dental College 58(2):103–109.  https://doi.org/10.2209/tdcpublication.2015-0029
  162. 162.
    Jurczyk K, Nietzsche S, Ender C, Sculean A, Eick S (2016) In-vitro activity of sodium-hypochlorite gel on bacteria associated with periodontitis. Clin Oral Invest 20(8):2165–2173.  https://doi.org/10.1007/s00784-016-1711-9CrossRefGoogle Scholar
  163. 163.
    Jutkina J, Marathe NP, Flach CF, Larsson DGJ (2017) Antibiotics and common antibacterial biocides stimulate horizontal transfer of resistance at low concentrations. Sci Total Environ 616–617:172–178.  https://doi.org/10.1016/j.scitotenv.2017.10.312CrossRefPubMedGoogle Scholar
  164. 164.
    Kadry AA, Serry FM, El-Ganiny AM, El-Baz AM (2017) Integron occurrence is linked to reduced biocide susceptibility in multidrug resistant Pseudomonas aeruginosa. Br J Biomed Sci 74(2):78–84.  https://doi.org/10.1080/09674845.2017.1278884CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Kalkanci A, Elli M, Adil Fouad A, Yesilyurt E, Jabban Khalil I (2015) Assessment of susceptibility of mould isolates towards biocides. Journal de mycologie medicale 25(4):280–286.  https://doi.org/10.1016/j.mycmed.2015.08.001CrossRefPubMedGoogle Scholar
  166. 166.
    Kampf G (2006) Are biofilms relevant for skin disinfection? J Hosp Infect 63(1):106–108.  https://doi.org/10.1016/j.jhin.2005.11.007CrossRefPubMedGoogle Scholar
  167. 167.
    Kampf G (2008) How effective are hand antiseptics for the post-contamination treatment of hands when used as recommended? Am J Infect Control 36(5):356–360PubMedCrossRefGoogle Scholar
  168. 168.
    Kampf G (2008) What is left to justify the use of chlorhexidine in hand hygiene? J Hosp Infect 70(Suppl. 1):27–34PubMedCrossRefGoogle Scholar
  169. 169.
    Kampf G (2016) Acquired resistance to chlorhexidine—is it time to establish an “antiseptic stewardship” initiative? J Hosp Infect 94(3):213–227PubMedCrossRefGoogle Scholar
  170. 170.
    Kampf G, Höfer M, Wendt C (1999) Efficacy of hand disinfectants against vancomycin-resistant Enterococci in vitro. J Hosp Infect 42(2):143–150PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Kampf G, Jarosch R, Rüden H (1998) Limited effectiveness of chlorhexidine based hand disinfectants against methicillin-resistant Staphylococcus aureus (MRSA). J Hosp Infect 38(4):297–303PubMedCrossRefGoogle Scholar
  172. 172.
    Kampf G, Kramer A, Suchomel M (2017) Lack of sustained efficacy for alcohol-based surgical hand rubs containing “residual active ingredients” according to EN 12791. J Hosp Infect 95(2):163–168PubMedCrossRefGoogle Scholar
  173. 173.
    Kampf G, Ostermeyer C (2005) Efficacy of two distinct ethanol-based hand rubs for surgical hand disinfection—a controlled trial according to prEN 12791. BMC Infect Dis 5:17PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Kampf G, Ostermeyer C, Heeg P (2005) Surgical hand disinfection with a propanol-based hand rub: equivalence of shorter application times. J Hosp Infect 59(4):304–310PubMedCrossRefGoogle Scholar
  175. 175.
    Kampf G, Reichel M, Hollingsworth A, Bashir M (2013) Efficacy of surgical hand scrub products based on chlorhexidine is largely overestimated without neutralizing agents in the sampling fluid. Am J Infect Control 41(1):e1–5. doi:S0196-6553(12)01069-3 [pii]Google Scholar
  176. 176.
    Karpanen TJ, Worthington T, Hendry ER, Conway BR, Lambert PA (2008) Antimicrobial efficacy of chlorhexidine digluconate alone and in combination with eucalyptus oil, tea tree oil and thymol against planktonic and biofilm cultures of Staphylococcus epidermidis. J Antimicrob Chemother 62(5):1031–1036.  https://doi.org/10.1093/jac/dkn325CrossRefPubMedGoogle Scholar
  177. 177.
    Kawamura-Sato K, Wachino J, Kondo T, Ito H, Arakawa Y (2008) Reduction of disinfectant bactericidal activities in clinically isolated Acinetobacter species in the presence of organic material. J Antimicrob Chemother 61(3):568–576.  https://doi.org/10.1093/jac/dkm498CrossRefPubMedGoogle Scholar
  178. 178.
    Kawamura-Sato K, Wachino J, Kondo T, Ito H, Arakawa Y (2010) Correlation between reduced susceptibility to disinfectants and multidrug resistance among clinical isolates of Acinetobacter species. J Antimicrob Chemother 65(9):1975–1983.  https://doi.org/10.1093/jac/dkq227CrossRefPubMedGoogle Scholar
  179. 179.
    Kiesow A, Sarembe S, Pizzey RL, Axe AS, Bradshaw DJ (2016) Material compatibility and antimicrobial activity of consumer products commonly used to clean dentures. J Prosthet Dent 115(2):189–198.e188.  https://doi.org/10.1016/j.prosdent.2015.08.010
  180. 180.
    Kim JS, Chung YK, Lee SS, Lee JA, Kim HS, Park EY, Shin KS, Kang BS, Lee HJ, Kang HJ (2016) Effect of daily chlorhexidine bathing on the acquisition of methicillin-resistant Staphylococcus aureus in a medical intensive care unit with methicillin-resistant S aureus endemicity. Am J Infect Control 44(12):1520–1525.  https://doi.org/10.1016/j.ajic.2016.04.252CrossRefPubMedGoogle Scholar
  181. 181.
    Kitagawa H, Izutani N, Kitagawa R, Maezono H, Yamaguchi M, Imazato S (2016) Evolution of resistance to cationic biocides in Streptococcus mutans and Enterococcus faecalis. J Dent 47:18–22.  https://doi.org/10.1016/j.jdent.2016.02.008CrossRefPubMedGoogle Scholar
  182. 182.
    Knapp L, Amezquita A, McClure P, Stewart S, Maillard JY (2015) Development of a protocol for predicting bacterial resistance to microbicides. Appl Environ Microbiol 81(8):2652–2659.  https://doi.org/10.1128/aem.03843-14CrossRefPubMedPubMedCentralGoogle Scholar
  183. 183.
    Knapp L, Rushton L, Stapleton H, Sass A, Stewart S, Amezquita A, McClure P, Mahenthiralingam E, Maillard JY (2013) The effect of cationic microbicide exposure against Burkholderia cepacia complex (Bcc); the use of Burkholderia lata strain 383 as a model bacterium. J Appl Microbiol 115(5):1117–1126.  https://doi.org/10.1111/jam.12320CrossRefPubMedGoogle Scholar
  184. 184.
    Ko S, An HS, Bang JH, Park SW (2015) An outbreak of Burkholderia cepacia complex pseudobacteremia associated with intrinsically contaminated commercial 0.5% chlorhexidine solution. Am J Infect Control 43(3):266–268.  https://doi.org/10.1016/j.ajic.2014.11.010CrossRefPubMedGoogle Scholar
  185. 185.
    Koban I, Geisel MH, Holtfreter B, Jablonowski L, Hubner NO, Matthes R, Masur K, Weltmann KD, Kramer A, Kocher T (2013) Synergistic effects of nonthermal plasma and disinfecting agents against dental biofilms in vitro. ISRN Dentistry 2013:573262.  https://doi.org/10.1155/2013/573262CrossRefPubMedPubMedCentralGoogle Scholar
  186. 186.
    Koburger T, Hübner N-O, Braun M, Siebert J, Kramer A (2010) Standardized comparison of antiseptic efficacy of triclosan, PVP-iodine, octenidine dihydrochloride, polyhexanide and chlorhexidine digluconate. J Antimicrob Chemother 65(8):1712–1719PubMedCrossRefGoogle Scholar
  187. 187.
    Koljalg S, Naaber P, Mikelsaar M (2002) Antibiotic resistance as an indicator of bacterial chlorhexidine susceptibility. J Hosp Infect 51(2):106–113PubMedCrossRefGoogle Scholar
  188. 188.
    Koo H, Hayacibara MF, Schobel BD, Cury JA, Rosalen PL, Park YK, Vacca-Smith AM, Bowen WH (2003) Inhibition of Streptococcus mutans biofilm accumulation and polysaccharide production by apigenin and tt-farnesol. J Antimicrob Chemother 52(5):782–789.  https://doi.org/10.1093/jac/dkg449CrossRefPubMedGoogle Scholar
  189. 189.
    Kramer A, Assadian O, Koburger-Janssen T (2016) Antimicrobial efficacy of the combination of chlorhexidine digluconate and dexpanthenol. GMS Hyg Infect Control 11:Doc24.  https://doi.org/10.3205/dgkh000284
  190. 190.
    Kratzer C, Tobudic S, Schmoll M, Graninger W, Georgopoulos A (2006) In vitro activity and synergism of amphotericin B, azoles and cationic antimicrobials against the emerging pathogen Trichoderma spp. J Antimicrob Chemother 58(5):1058–1061.  https://doi.org/10.1093/jac/dkl384CrossRefPubMedGoogle Scholar
  191. 191.
    Krishnamoorthy S, Shah BP, Lee HH, Martinez LR (2015) Microbicides alter the expression and function of RND-Type efflux pump AdeABC in biofilm-associated cells of Acinetobacter baumannii clinical isolates. Antimicrob Agents Chemother 60(1):57–63.  https://doi.org/10.1128/aac.01045-15CrossRefPubMedPubMedCentralGoogle Scholar
  192. 192.
    Krishnan U, Saji S, Clarkson R, Lalloo R, Moule AJ (2017) Free active chlorine in sodium hypochlorite solutions admixed with Octenidine, SmearOFF, Chlorhexidine, and EDTA. J Endod 43(8):1354–1359.  https://doi.org/10.1016/j.joen.2017.03.034CrossRefPubMedGoogle Scholar
  193. 193.
    Kuhn DM, George T, Chandra J, Mukherjee PK, Ghannoum MA (2002) Antifungal susceptibility of Candida biofilms: unique efficacy of amphotericin B lipid formulations and echinocandins. Antimicrob Agents Chemother 46(6):1773–1780PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Kurihara T, Sugita M, Motai S, Kurashige S (1993) In vitro induction of chlorhexidine- and benzalkonium-resistance in clinically isolated Pseudomonas aeruginosa. Kansenshogaku zasshi J Jpn Assoc Infect Dis 67(3):202–206CrossRefGoogle Scholar
  195. 195.
    Kwong SM, Lim R, Lebard RJ, Skurray RA, Firth N (2008) Analysis of the pSK1 replicon, a prototype from the staphylococcal multiresistance plasmid family. Microbiology (Reading, England) 154(Pt 10):3084–3094.  https://doi.org/10.1099/mic.0.2008/017418-0
  196. 196.
    LaFleur MD, Kumamoto CA, Lewis K (2006) Candida albicans biofilms produce antifungal-tolerant persister cells. Antimicrob Agents Chemother 50(11):3839–3846.  https://doi.org/10.1128/aac.00684-06CrossRefPubMedPubMedCentralGoogle Scholar
  197. 197.
    LaFleur MD, Qi Q, Lewis K (2010) Patients with long-term oral carriage harbor high-persister mutants of Candida albicans. Antimicrob Agents Chemother 54(1):39–44.  https://doi.org/10.1128/aac.00860-09CrossRefPubMedGoogle Scholar
  198. 198.
    Lam OL, McGrath C, Li LS, Samaranayake LP (2012) Effectiveness of oral hygiene interventions against oral and oropharyngeal reservoirs of aerobic and facultatively anaerobic gram-negative bacilli. Am J Infect Control 40(2):175–182.  https://doi.org/10.1016/j.ajic.2011.03.004CrossRefPubMedGoogle Scholar
  199. 199.
    Lambert RJ (2004) Comparative analysis of antibiotic and antimicrobial biocide susceptibility data in clinical isolates of methicillin-sensitive Staphylococcus aureus, methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa between 1989 and 2000. J Appl Microbiol 97(4):699–711.  https://doi.org/10.1111/j.1365-2672.2004.02345.xCrossRefPubMedGoogle Scholar
  200. 200.
    Lambert RJ, Joynson J, Forbes B (2001) The relationships and susceptibilities of some industrial, laboratory and clinical isolates of Pseudomonas aeruginosa to some antibiotics and biocides. J Appl Microbiol 91(6):972–984PubMedCrossRefGoogle Scholar
  201. 201.
    Lamfon H, Porter SR, McCullough M, Pratten J (2004) Susceptibility of Candida albicans biofilms grown in a constant depth film fermentor to chlorhexidine, fluconazole and miconazole: a longitudinal study. J Antimicrob Chemother 53(2):383–385.  https://doi.org/10.1093/jac/dkh071CrossRefPubMedGoogle Scholar
  202. 202.
    Landelle C, von Dach E, Haustein T, Agostinho A, Renzi G, Renzoni A, Pittet D, Schrenzel J, Francois P, Harbarth S (2016) Randomized, placebo-controlled, double-blind clinical trial to evaluate the efficacy of polyhexanide for topical decolonization of MRSA carriers. J Antimicrob Chemother 71(2):531–538.  https://doi.org/10.1093/jac/dkv331CrossRefPubMedGoogle Scholar
  203. 203.
    Lanjri S, Uwingabiye J, Frikh M, Abdellatifi L, Kasouati J, Maleb A, Bait A, Lemnouer A, Elouennass M (2017) In vitro evaluation of the susceptibility of Acinetobacter baumannii isolates to antiseptics and disinfectants: comparison between clinical and environmental isolates. Antimicrob Resist Infect Control 6:36.  https://doi.org/10.1186/s13756-017-0195-yCrossRefPubMedPubMedCentralGoogle Scholar
  204. 204.
    Lannigan R, Bryan LE (1985) Decreased susceptibility of Serratia marcescens to chlorhexidine related to the inner membrane. J Antimicrob Chemother 15(5):559–565PubMedCrossRefGoogle Scholar
  205. 205.
    Larsen T, Fiehn NE (1996) Resistance of Streptococcus sanguis biofilms to antimicrobial agents. APMIS: acta pathologica, microbiologica, et immunologica Scandinavica 104(4):280–284PubMedCrossRefGoogle Scholar
  206. 206.
    Lasserre JF, Leprince JG, Toma S, Brecx MC (2015) Electrical enhancement of chlorhexidine efficacy against the periodontal pathogen Porphyromonas gingivalis within a biofilm. The New Microbiologica 38(4):511–519PubMedGoogle Scholar
  207. 207.
    Lavilla Lerma L, Benomar N, Casado Munoz Mdel C, Galvez A, Abriouel H (2015) Correlation between antibiotic and biocide resistance in mesophilic and psychrotrophic Pseudomonas spp. isolated from slaughterhouse surfaces throughout meat chain production. Food Microbiol 51:33–44.  https://doi.org/10.1016/j.fm.2015.04.010CrossRefPubMedGoogle Scholar
  208. 208.
    Lavilla Lerma L, Benomar N, Valenzuela AS, Casado Munoz Mdel C, Galvez A, Abriouel H (2014) Role of EfrAB efflux pump in biocide tolerance and antibiotic resistance of Enterococcus faecalis and Enterococcus faecium isolated from traditional fermented foods and the effect of EDTA as EfrAB inhibitor. Food Microbiol 44:249–257.  https://doi.org/10.1016/j.fm.2014.06.009CrossRefPubMedGoogle Scholar
  209. 209.
    Lear JC, Maillard JY, Dettmar PW, Goddard PA, Russell AD (2006) Chloroxylenol- and triclosan-tolerant bacteria from industrial sources—susceptibility to antibiotics and other biocides. Int Biodeter Biodegr 57(1):51–56.  https://doi.org/10.1016/j.ibiod.2005.11.002CrossRefGoogle Scholar
  210. 210.
    Lee AS, Macedo-Vinas M, Francois P, Renzi G, Schrenzel J, Vernaz N, Pittet D, Harbarth S (2011) Impact of combined low-level mupirocin and genotypic chlorhexidine resistance on persistent methicillin-resistant Staphylococcus aureus carriage after decolonization therapy: a case-control study. Clinical Infect Dis: An Off Publ Infect Dis Soc Am 52(12):1422–1430.  https://doi.org/10.1093/cid/cir233CrossRefGoogle Scholar
  211. 211.
    Leelaporn A, Paulsen IT, Tennent JM, Littlejohn TG, Skurray RA (1994) Multidrug resistance to antiseptics and disinfectants in coagulase-negative staphylococci. J Med Microbiol 40(3):214–220.  https://doi.org/10.1099/00222615-40-3-214CrossRefPubMedGoogle Scholar
  212. 212.
    Lefebvre E, Vighetto C, Di Martino P, Larreta Garde V, Seyer D (2016) Synergistic antibiofilm efficacy of various commercial antiseptics, enzymes and EDTA: a study of Pseudomonas aeruginosa and Staphylococcus aureus biofilms. Int J Antimicrob Agents 48(2):181–188.  https://doi.org/10.1016/j.ijantimicag.2016.05.008CrossRefPubMedGoogle Scholar
  213. 213.
    Lepainteur M, Royer G, Bourrel AS, Romain O, Duport C, Doucet-Populaire F, Decousser JW (2013) Prevalence of resistance to antiseptics and mupirocin among invasive coagulase-negative Staphylococci from very preterm neonates in NICU: the creeping threat? J Hosp Infect 83(4):333–336.  https://doi.org/10.1016/j.jhin.2012.11.025CrossRefPubMedGoogle Scholar
  214. 214.
    Li JY, Wang XJ, Wang LN, Ying XX, Ren X, Liu HY, Xu L, Ma GW (2015) High in vitro antibacterial activity of Pac-525 against Porphyromonas gingivalis biofilms cultured on titanium. Biomed Res Int 2015:909870.  https://doi.org/10.1155/2015/909870CrossRefPubMedPubMedCentralGoogle Scholar
  215. 215.
    Liaqat I, Sabri AN (2008) Effect of biocides on biofilm bacteria from dental unit water lines. Curr Microbiol 56(6):619–624.  https://doi.org/10.1007/s00284-008-9136-6CrossRefPubMedPubMedCentralGoogle Scholar
  216. 216.
    Liu Q, Hassan KA, Ashwood HE, Gamage H, Li L, Mabbutt BC, Paulsen IT (2018) Regulation of the aceI multidrug efflux pump gene in Acinetobacter baumannii. J Antimicrob Chemother.  https://doi.org/10.1093/jac/dky034CrossRefPubMedPubMedCentralGoogle Scholar
  217. 217.
    Liu Q, Zhao H, Han L, Shu W, Wu Q, Ni Y (2015) Frequency of biocide-resistant genes and susceptibility to chlorhexidine in high-level mupirocin-resistant, methicillin-resistant Staphylococcus aureus (MuH MRSA). Diagn Microbiol Infect Dis 82(4):278–283.  https://doi.org/10.1016/j.diagmicrobio.2015.03.023CrossRefPubMedGoogle Scholar
  218. 218.
    Liu WJ, Fu L, Huang M, Zhang JP, Wu Y, Zhou YS, Zeng J, Wang GX (2017) Frequency of antiseptic resistance genes and reduced susceptibility to biocides in carbapenem-resistant Acinetobacter baumannii. J Med Microbiol 66(1):13–17.  https://doi.org/10.1099/jmm.0.000403CrossRefPubMedGoogle Scholar
  219. 219.
    Long M, Lai H, Deng W, Zhou K, Li B, Liu S, Fan L, Wang H, Zou L (2016) Disinfectant susceptibility of different Salmonella serotypes isolated from chicken and egg production chains. J Appl Microbiol 121(3):672–681.  https://doi.org/10.1111/jam.13184CrossRefPubMedGoogle Scholar
  220. 220.
    Longtin J, Seah C, Siebert K, McGeer A, Simor A, Longtin Y, Low DE, Melano RG (2011) Distribution of antiseptic resistance genes qacA, qacB, and smr in methicillin-resistant Staphylococcus aureus isolated in Toronto, Canada, from 2005 to 2009. Antimicrob Agents Chemother 55(6):2999–3001.  https://doi.org/10.1128/aac.01707-10CrossRefPubMedPubMedCentralGoogle Scholar
  221. 221.
    Lorin D, Cristina RT, Teusdea V, Mitranescu E, Muselin F, Butnariu M, David G, Dumitrescu E (2017) Efficiency of four currently used decontamination conditionings in Romania against Aspergillus and Candida strains. Journal de mycologie medicale 27(3):357–363.  https://doi.org/10.1016/j.mycmed.2017.04.013CrossRefPubMedGoogle Scholar
  222. 222.
    Lourenco TG, Heller D, do Souto RM, Silva-Senem MX, Varela VM, Torres MC, Feres-Filho EJ, Colombo AP (2015) Long-term evaluation of the antimicrobial susceptibility and microbial profile of subgingival biofilms in individuals with aggressive periodontitis. Brazilian J Microbiol [Publication of the Brazilian Society for Microbiology] 46(2):493–500.  https://doi.org/10.1590/s1517-838246220131037
  223. 223.
    Lowe CF, Lloyd-Smith E, Sidhu B, Ritchie G, Sharma A, Jang W, Wong A, Bilawka J, Richards D, Kind T, Puddicombe D, Champagne S, Leung V, Romney MG (2017) Reduction in hospital-associated methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus with daily chlorhexidine gluconate bathing for medical inpatients. Am J Infect Control 45(3):255–259.  https://doi.org/10.1016/j.ajic.2016.09.019CrossRefPubMedGoogle Scholar
  224. 224.
    Ma J, Tong Z, Ling J, Liu H, Wei X (2015) The effects of sodium hypochlorite and chlorhexidine irrigants on the antibacterial activities of alkaline media against Enterococcus faecalis. Arch Oral Biol 60(7):1075–1081.  https://doi.org/10.1016/j.archoralbio.2015.04.008CrossRefPubMedGoogle Scholar
  225. 225.
    Macias JH, Arreguin V, Munoz JM, Alvarez JA, Mosqueda JL, Macias AE (2013) Chlorhexidine is a better antiseptic than povidone iodine and sodium hypochlorite because of its substantive effect. Am J Infect Control 41(7):634–637.  https://doi.org/10.1016/j.ajic.2012.10.002CrossRefPubMedGoogle Scholar
  226. 226.
    Macinga DR, Edmonds SL, Campbell E, McCormack RR (2014) Comparative efficacy of alcohol-based surgical scrubs: the importance of formulation. AORN J 100(6):641–650.  https://doi.org/10.1016/j.aorn.2014.03.013CrossRefPubMedGoogle Scholar
  227. 227.
    Maiwald M (2017) Skin preparation for prevention of surgical site infection after Cesarean delivery: a randomized controlled trial. Obstet Gynecol 129(4):750–751.  https://doi.org/10.1097/aog.0000000000001956CrossRefPubMedGoogle Scholar
  228. 228.
    Maiwald M, Chan ES (2012) The forgotten role of alcohol: a systematic review and meta-analysis of the clinical efficacy and perceived role of chlorhexidine in skin antisepsis. PLoS ONE 7(9):e44277.  https://doi.org/10.1371/journal.pone.0044277CrossRefPubMedPubMedCentralGoogle Scholar
  229. 229.
    Mal PB, Farooqi J, Irfan S, Hughes MA, Khan E (2016) Reduced susceptibility to chlorhexidine disinfectant among New Delhi metallo-beta-lactamase-1 positive Enterobacteriaceae and other multidrug-resistant organisms: Report from a tertiary care hospital in Karachi, Pakistan. Indian J Med Microbiol 34(3):346–349.  https://doi.org/10.4103/0255-0857.188338CrossRefPubMedGoogle Scholar
  230. 230.
    Marchetti MG, Kampf G, Finzi G, Salvatorelli G (2003) Evaluation of the bactericidal effect of five products for surgical hand disinfection according to prEN 12054 and prEN 12791. J Hosp Infect 54(1):63–67PubMedCrossRefGoogle Scholar
  231. 231.
    Marchi E, Furi L, Arioli S, Morrissey I, Di Lorenzo V, Mora D, Giovannetti L, Oggioni MR, Viti C (2015) Novel insight into antimicrobial resistance and sensitivity phenotypes associated to qac and norA genotypes in Staphylococcus aureus. Microbiol Res 170:184–194.  https://doi.org/10.1016/j.micres.2014.07.001CrossRefPubMedGoogle Scholar
  232. 232.
    Maris P (1991) Resistance of 700 gram-negative bacterial strains to antiseptics and antibiotics. Annales de recherches veterinaires Ann Vet Res 22(1):11–23Google Scholar
  233. 233.
    Mariscal A, Lopez-Gigosos RM, Carnero-Varo M, Fernandez-Crehuet J (2009) Fluorescent assay based on resazurin for detection of activity of disinfectants against bacterial biofilm. Appl Microbiol Biotechnol 82(4):773–783.  https://doi.org/10.1007/s00253-009-1879-xCrossRefPubMedGoogle Scholar
  234. 234.
    Marrie TJ, Costerton JW (1981) Proplonged survival of Serratia marcescens in chlorhexidine. Appl Environ Microbiol 42(6):1093–1102PubMedPubMedCentralGoogle Scholar
  235. 235.
    Martro E, Hernandez A, Ariza J, Dominguez MA, Matas L, Argerich MJ, Martin R, Ausina V (2003) Assessment of Acinetobacter baumannii susceptibility to antiseptics and disinfectants. J Hosp Infect 55(1):39–46PubMedCrossRefGoogle Scholar
  236. 236.
    Maseda H, Hashida Y, Konaka R, Shirai A, Kourai H (2009) Mutational upregulation of a resistance-nodulation-cell division-type multidrug efflux pump, SdeAB, upon exposure to a biocide, cetylpyridinium chloride, and antibiotic resistance in Serratia marcescens. Antimicrob Agents Chemother 53(12):5230–5235. doi:AAC.00631-09 [pii]Google Scholar
  237. 237.
    Mavri A, Mozina SS (2012) Involvement of efflux mechanisms in biocide resistance of Campylobacter jejuni and Campylobacter coli. J Med Microbiol 61(Pt 6):800–808.  https://doi.org/10.1099/jmm.0.041467-0CrossRefPubMedGoogle Scholar
  238. 238.
    Mavri A, Smole Mozina S (2013) Development of antimicrobial resistance in Campylobacter jejuni and Campylobacter coli adapted to biocides. Int J Food Microbiol 160(3):304–312.  https://doi.org/10.1016/j.ijfoodmicro.2012.11.006CrossRefPubMedGoogle Scholar
  239. 239.
    Mavri A, Smole Mozina S (2013) Effects of efflux-pump inducers and genetic variation of the multidrug transporter cmeB in biocide resistance of Campylobacter jejuni and Campylobacter coli. J Med Microbiol 62(Pt 3):400–411.  https://doi.org/10.1099/jmm.0.052316-0CrossRefPubMedGoogle Scholar
  240. 240.
    McAllister TA, Lucas CE, Mocan H, Liddell RHA, Gibson BES, Hann IM, Platt DJ (1989) Serratia marcescens outbreak in a paediatric oncology unit traced to contaminated chlorhexidine. Scott Med J 34:525–528PubMedCrossRefGoogle Scholar
  241. 241.
    McDanel JS, Murphy CR, Diekema DJ, Quan V, Kim DS, Peterson EM, Evans KD, Tan GL, Hayden MK, Huang SS (2013) Chlorhexidine and mupirocin susceptibilities of methicillin-resistant staphylococcus aureus from colonized nursing home residents. Antimicrob Agents Chemother 57(1):552–558.  https://doi.org/10.1128/aac.01623-12CrossRefPubMedPubMedCentralGoogle Scholar
  242. 242.
    McNeil JC, Hulten KG, Kaplan SL, Mason EO (2014) Decreased susceptibilities to Retapamulin, Mupirocin, and Chlorhexidine among Staphylococcus aureus isolates causing skin and soft tissue infections in otherwise healthy children. Antimicrob Agents Chemother 58(5):2878–2883.  https://doi.org/10.1128/aac.02707-13CrossRefPubMedPubMedCentralGoogle Scholar
  243. 243.
    McNeil JC, Kok EY, Vallejo JG, Campbell JR, Hulten KG, Mason EO, Kaplan SL (2016) Clinical and Molecular features of decreased chlorhexidine susceptibility among nosocomial Staphylococcus aureus isolates at texas children’s hospital. Antimicrob Agents Chemother 60(2):1121–1128.  https://doi.org/10.1128/aac.02011-15CrossRefPubMedPubMedCentralGoogle Scholar
  244. 244.
    Meiller TF, Kelley JI, Jabra-Rizk MA, DePaola LG, Baqui AAMA, Falkler WA (2001) In vitro studies of the efficacy of antimicrobials against fungi. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 91(6):663–670.  https://doi.org/10.1067/moe.2001.113550CrossRefPubMedGoogle Scholar
  245. 245.
    Melo RT, Mendonca EP, Monteiro GP, Siqueira MC, Pereira CB, Peres P, Fernandez H, Rossi DA (2017) Intrinsic and extrinsic aspects on Campylobacter jejuni biofilms. Front Microbiol 8:1332.  https://doi.org/10.3389/fmicb.2017.01332CrossRefPubMedPubMedCentralGoogle Scholar
  246. 246.
    Mendes ET, Ranzani OT, Marchi AP, Silva MT, Filho JU, Alves T, Guimaraes T, Levin AS, Costa SF (2016) Chlorhexidine bathing for the prevention of colonization and infection with multidrug-resistant microorganisms in a hematopoietic stem cell transplantation unit over a 9-year period: Impact on chlorhexidine susceptibility. Medicine 95(46):e5271.  https://doi.org/10.1097/md.0000000000005271CrossRefPubMedPubMedCentralGoogle Scholar
  247. 247.
    Mendoza-Olazaran S, Camacho-Ortiz A, Martinez-Resendez MF, Llaca-Diaz JM, Perez-Rodriguez E, Garza-Gonzalez E (2014) Influence of whole-body washing of critically ill patients with chlorhexidine on Acinetobacter baumannii isolates. Am J Infect Control 42(8):874–878.  https://doi.org/10.1016/j.ajic.2014.04.009CrossRefPubMedGoogle Scholar
  248. 248.
    Mengistu Y, Erge W, Bellete B (1999) In vitro susceptibility of gram-negative bacterial isolates to chlorhexidine gluconate. East Afr Med J 76(5):243–246PubMedGoogle Scholar
  249. 249.
    Messager S, Goddard PA, Dettmar PW, Maillard JY (2001) Determination of the antibacterial efficacy of several antiseptics tested on skin by an ‘ex-vivo’ test. J Med Microbiol 50(3):284–292.  https://doi.org/10.1099/0022-1317-50-3-284CrossRefPubMedGoogle Scholar
  250. 250.
    Meurman JH, Jousimies-Somer H, Suomala P, Alaluusua S, Torkko H, Asikainen S (1989) Activity of amine-stannous fluoride combination and chlorhexidine against some aerobic and anaerobic oral bacteria. Oral Microbiol Immunol 4(2):117–119PubMedCrossRefGoogle Scholar
  251. 251.
    Millhouse E, Jose A, Sherry L, Lappin DF, Patel N, Middleton AM, Pratten J, Culshaw S, Ramage G (2014) Development of an in vitro periodontal biofilm model for assessing antimicrobial and host modulatory effects of bioactive molecules. BMC oral health 14:80.  https://doi.org/10.1186/1472-6831-14-80CrossRefPubMedPubMedCentralGoogle Scholar
  252. 252.
    Millward TA, Wilson M (1989) The effect of chlorhexidine on Streptococcus sanguis biofilms. Microbios 58(236–237):155–164PubMedGoogle Scholar
  253. 253.
    Mimoz O, Lucet JC, Kerforne T, Pascal J, Souweine B, Goudet V, Mercat A, Bouadma L, Lasocki S, Alfandari S, Friggeri A, Wallet F, Allou N, Ruckly S, Balayn D, Lepape A, Timsit JF (2015) Skin antisepsis with chlorhexidine-alcohol versus povidone iodine-alcohol, with and without skin scrubbing, for prevention of intravascular-catheter-related infection (CLEAN): an open-label, multicentre, randomised, controlled, two-by-two factorial trial. Lancet 386(10008):2069–2077.  https://doi.org/10.1016/s0140-6736(15)00244-5CrossRefPubMedGoogle Scholar
  254. 254.
    Miyano N, Oie S, Kamiya A (2003) Efficacy of disinfectants and hot water against biofilm cells of Burkholderia cepacia. Biol Pharm Bull 26(5):671–674PubMedCrossRefGoogle Scholar
  255. 255.
    Molina-Cabrillana J, Santana-Reyes C, Gonzalez-Garcia A, Bordes-Benitez A, Horcajada I (2007) Outbreak of Achromobacter xylosoxidans pseudobacteremia in a neonatal care unit related to contaminated chlorhexidine solution. Eur J Clin Microbiol Infect Dis 26(6):435–437.  https://doi.org/10.1007/s10096-007-0311-7CrossRefPubMedGoogle Scholar
  256. 256.
    Moore G, Schelenz S, Borman AM, Johnson EM, Brown CS (2017) Yeasticidal activity of chemical disinfectants and antiseptics against Candida auris. J Hosp Infect 97(4):371–375.  https://doi.org/10.1016/j.jhin.2017.08.019CrossRefPubMedPubMedCentralGoogle Scholar
  257. 257.
    Moore LE, Ledder RG, Gilbert P, McBain AJ (2008) In vitro study of the effect of cationic biocides on bacterial population dynamics and susceptibility. Appl Environ Microbiol 74(15):4825–4834.  https://doi.org/10.1128/aem.00573-08CrossRefPubMedPubMedCentralGoogle Scholar
  258. 258.
    Morales-Fernandez L, Fernandez-Crehuet M, Espigares M, Moreno E, Espigares E (2014) Study of the hormetic effect of disinfectants chlorhexidine, povidone iodine and benzalkonium chloride. Eur J Clin Microbiol Infect Dis 33(1):103–109.  https://doi.org/10.1007/s10096-013-1934-5CrossRefPubMedGoogle Scholar
  259. 259.
    Morita Y, Murata T, Mima T, Shiota S, Kuroda T, Mizushima T, Gotoh N, Nishino T, Tsuchiya T (2003) Induction of mexCD-oprJ operon for a multidrug efflux pump by disinfectants in wild-type Pseudomonas aeruginosa PAO1. J Antimicrob Chemother 51(4):991–994.  https://doi.org/10.1093/jac/dkg173CrossRefPubMedGoogle Scholar
  260. 260.
    Morita Y, Tomida J, Kawamura Y (2014) Responses of Pseudomonas aeruginosa to antimicrobials. Front Microbiol 4:422.  https://doi.org/10.3389/fmicb.2013.00422CrossRefPubMedPubMedCentralGoogle Scholar
  261. 261.
    Morrissey I, Oggioni MR, Knight D, Curiao T, Coque T, Kalkanci A, Martinez JL (2014) Evaluation of epidemiological cut-off values indicates that biocide resistant subpopulations are uncommon in natural isolates of clinically-relevant microorganisms. PLoS ONE 9(1):e86669.  https://doi.org/10.1371/journal.pone.0086669CrossRefPubMedPubMedCentralGoogle Scholar
  262. 262.
    Muggeo A, Guillard T, Klein F, Reffuveille F, Francois C, Babosan A, Bajolet O, Bertrand X, de Champs C (2017) Spread of Klebsiella pneumoniae ST395 non-susceptible to carbapenems and resistant to fluoroquinolones in North-Eastern France. J Global Antimicrob Resis.  https://doi.org/10.1016/j.jgar.2017.10.023CrossRefGoogle Scholar
  263. 263.
    Mulberry G, Snyder AT, Heilman J, Pyrek J, Stahl J (2001) Evaluation of a waterless, scrubless chlorhexidine gluconate/ ethanol surgical scrub for antimicrobial efficacy. Am J Infect Control 29(12):377–382CrossRefGoogle Scholar
  264. 264.
    Muller G, Kramer A (2000) In vitro action of a combination of selected antimicrobial agents and chondroitin sulfate. Chem Biol Interact 124(2):77–85PubMedCrossRefGoogle Scholar
  265. 265.
    Muller G, Kramer A (2008) Biocompatibility index of antiseptic agents by parallel assessment of antimicrobial activity and cellular cytotoxicity. J Antimicrob Chemother 61(6):1281–1287.  https://doi.org/10.1093/jac/dkn125CrossRefPubMedGoogle Scholar
  266. 266.
    Muller G, Langer J, Siebert J, Kramer A (2014) Residual antimicrobial effect of chlorhexidine digluconate and octenidine dihydrochloride on reconstructed human epidermis. Skin Pharmacol Physiol 27(1):1–8.  https://doi.org/10.1159/000350172CrossRefPubMedGoogle Scholar
  267. 267.
    Munoz-Gallego I, Infiesta L, Viedma E, Perez-Montarelo D, Chaves F (2016) Chlorhexidine and mupirocin susceptibilities in methicillin-resistant Staphylococcus aureus isolates from bacteraemia and nasal colonisation. J Global Antimicrob Resis 4:65–69.  https://doi.org/10.1016/j.jgar.2015.11.005CrossRefGoogle Scholar
  268. 268.
    Murayama N, Nagata M, Terada Y, Okuaki M, Takemura N, Nakaminami H, Noguchi N (2013) In vitro antiseptic susceptibilities for Staphylococcus pseudintermedius isolated from canine superficial pyoderma in Japan. Veterinary dermatology 24(1):126–129.e129.  https://doi.org/10.1111/j.1365-3164.2012.01103.x
  269. 269.
    Nagai I, Ogase H (1990) Absence of role for plasmids in resistance to multiple disinfectants in three strains of bacteria. J Hosp Infect 15(2):149–155PubMedCrossRefGoogle Scholar
  270. 270.
    Nakahara H, Kozukoe H (1981) Chlorhexidine resistance in Escherichia coli isolated from clinical lesions. Zentralblatt für Bakteriologie und Hygiene, I Abt Orig B 251(2):177–184Google Scholar
  271. 271.
    Nakahara H, Kozukue H (1982) Isolation of chlorhexidine-resistant Pseudomonas aeruginosa from clinical lesions. J Clin Microbiol 15(1):166–168PubMedPubMedCentralGoogle Scholar
  272. 272.
    Nakaminami H, Noguchi N, Nishijima S, Kurokawa I, So H, Sasatsu M (2007) Transduction of the plasmid encoding antiseptic resistance gene qacB in Staphylococcus aureus. Biological & pharmaceutical bulletin 30(8):1412–1415CrossRefGoogle Scholar
  273. 273.
    Namba Y, Suzuki A, Takeshima N, Kato N (1985) Comparative study of bactericidal activities of six different disinfectants. Nagoya J Med Sci 47(3–4):101–112PubMedPubMedCentralGoogle Scholar
  274. 274.
    Naparstek L, Carmeli Y, Chmelnitsky I, Banin E, Navon-Venezia S (2012) Reduced susceptibility to chlorhexidine among extremely-drug-resistant strains of Klebsiella pneumoniae. J Hosp Infect 81(1):15–19.  https://doi.org/10.1016/j.jhin.2012.02.007CrossRefPubMedGoogle Scholar
  275. 275.
    Narui K, Takano M, Noguchi N, Sasatsu M (2007) Susceptibilities of methicillin-resistant Staphylococcus aureus isolates to seven biocides. Biol Pharm Bull 30(3):585–587PubMedCrossRefPubMedCentralGoogle Scholar
  276. 276.
    National Center for Biotechnology Information Chlorhexidine (digluconate). PubChem Compound Database; CID = 5360565. https://pubchem.ncbi.nlm.nih.gov/compound/5360565. Accessed 5 Feb 2018
  277. 277.
    Nicoletti G, Boghossian V, Borland R (1990) Hygienic hand disinfection: A comparative study with chlorhexidine detergents and soap. J Hosp Infect 15:323–337PubMedCrossRefGoogle Scholar
  278. 278.
    Nicoletti G, Boghossian V, Gurevitch F, Borland R, Morgenroth P (1993) The antimicrobial activity in vitro of chlorhexidine, a mixture of isothiazolinones (‘Kathon’ CG) and cetyl trimethyl ammonium bromide (CTAB). J Hosp Infect 23:87–111PubMedCrossRefGoogle Scholar
  279. 279.
    Norman G, Christie J, Liu Z, Westby MJ, Jefferies JM, Hudson T, Edwards J, Mohapatra DP, Hassan IA, Dumville JC (2017) Antiseptics for burns. Cochrane Database Syst Rev 7:Cd011821.  https://doi.org/10.1002/14651858.cd011821.pub2
  280. 280.
    Ntrouka V, Hoogenkamp M, Zaura E, van der Weijden F (2011) The effect of chemotherapeutic agents on titanium-adherent biofilms. Clin Oral Implant Res 22(11):1227–1234.  https://doi.org/10.1111/j.1600-0501.2010.02085.xCrossRefGoogle Scholar
  281. 281.
    Oggioni MR, Coelho JR, Furi L, Knight DR, Viti C, Orefici G, Martinez JL, Freitas AT, Coque TM, Morrissey I (2015) Significant differences characterise the correlation coefficients between biocide and antibiotic susceptibility profiles in Staphylococcus aureus. Curr Pharm Des 21(16):2054–2057PubMedPubMedCentralCrossRefGoogle Scholar
  282. 282.
    Ohta S (1990) Studies on resistant mechanisms in the resistant bacteria to chlorhexidine. II. Chemical components of the cell membrane and the electron microscopical observation of cell surface structure of chlorhexidine-resistant bacteria. Yakugaku Zasshi 110(6):414–425PubMedCrossRefGoogle Scholar
  283. 283.
    Ohta S, Makino M, Nagai K, Zenda H (1996) Comparative fungicidal activity of a new quaternary ammonium salt, N-alkyl-N-2-hydroxyethyl-N, N-dimethylammonium butyl phosphate and commonly used disinfectants. Biol Pharm Bull 19(2):308–310PubMedCrossRefGoogle Scholar
  284. 284.
    Okuda T, Endo N, Osada Y, Zen-Yoji H (1984) Outbreak of nosocomial urinary tract infections caused by Serratia marcescens. J Clin Microbiol 20(4):691–695PubMedPubMedCentralGoogle Scholar
  285. 285.
    Orsi GB, Tomao P, Visca P (1995) In vitro activity of commercially manufactured disinfectants against Pseudomonas aeruginosa. Eur J Epidemiol 11(4):453–457PubMedCrossRefGoogle Scholar
  286. 286.
    Parducz L, Eszik I, Wagner G, Burian K, Endresz V, Virok DP (2016) Impact of antiseptics on Chlamydia trachomatis growth. Lett Appl Microbiol 63(4):260–267.  https://doi.org/10.1111/lam.12625CrossRefPubMedGoogle Scholar
  287. 287.
    Pastrana-Carrasco J, Garza-Ramos JU, Barrios H, Morfin-Otero R, Rodriguez-Noriega E, Barajas JM, Suarez S, Diaz R, Miranda G, Solorzano F, Contreras J, Silva-Sanchez J (2012) [QacEdelta1 gene frequency and biocide resistance in extended-spectrum beta-lactamase producing enterobacteriaceae clinical isolates]. Revista de investigacion clinica; organo del Hospital de Enfermedades de la Nutricion 64(6 Pt 1):535–540Google Scholar
  288. 288.
    Pearce H, Messager S, Maillard JY (1999) Effect of biocides commonly used in the hospital environment on the transfer of antibiotic-resistance genes in Staphylococcus aureus. J Hosp Infect 43(2):101–107.  https://doi.org/10.1053/jhin.1999.0250CrossRefPubMedGoogle Scholar
  289. 289.
    Peeters E, Nelis HJ, Coenye T (2008) Evaluation of the efficacy of disinfection procedures against Burkholderia cenocepacia biofilms. J Hosp Infect 70(4):361–368.  https://doi.org/10.1016/j.jhin.2008.08.015CrossRefPubMedGoogle Scholar
  290. 290.
    Penna TC, Mazzola PG, Silva Martins AM (2001) The efficacy of chemical agents in cleaning and disinfection programs. BMC Infect Dis 1:16PubMedPubMedCentralCrossRefGoogle Scholar
  291. 291.
    Pereira CA, Costa AC, Liporoni PC, Rego MA, Jorge AO (2016) Antibacterial activity of Baccharis dracunculifolia in planktonic cultures and biofilms of Streptococcus mutans. J Infect Public Health 9(3):324–330.  https://doi.org/10.1016/j.jiph.2015.10.012CrossRefPubMedGoogle Scholar
  292. 292.
    Perrins N, Bond R (2003) Synergistic inhibition of the growth in vitro of Microsporum canis by miconazole and chlorhexidine. Vet Dermatol 14(2):99–102PubMedCrossRefGoogle Scholar
  293. 293.
    Pitt TL, Gaston MA, Hoffman PN (1983) In vitro susceptibility of hospital isolates of various bacterial genera to chlorhexidine. J Hosp Infect 4(2):173–176PubMedCrossRefGoogle Scholar
  294. 294.
    Pitten F-A, Werner H-P, Kramer A (2003) A standardized test to assess the impact of different organic challenges on the antimicrobial activity of antiseptics. J Hosp Infect 55(2):108–115PubMedCrossRefGoogle Scholar
  295. 295.
    Popowska M, Olszak M, Markiewicz Z (2006) Susceptibility of Listeria monocytogenes strains isolated from dairy products and frozen vegetables to antibiotics inhibiting murein synthesis and to disinfectants. Pol J Microbiol 55(4):279–288PubMedGoogle Scholar
  296. 296.
    Poty F, Denis C, Baufine-Ducrocq H (1987) [Nosocomial Pseudomonas pickettii infection. Danger of the use of ion-exchange resins]. Presse Medicale (Paris, France: 1983) 16(24):1185–1187Google Scholar
  297. 297.
    Prag G, Falk-Brynhildsen K, Jacobsson S, Hellmark B, Unemo M, Soderquist B (2014) Decreased susceptibility to chlorhexidine and prevalence of disinfectant resistance genes among clinical isolates of Staphylococcus epidermidis. APMIS: acta pathologica, microbiologica, et immunologica Scandinavica 122(10):961–967.  https://doi.org/10.1111/apm.12239CrossRefPubMedGoogle Scholar
  298. 298.
    Prince HN, Nonemaker WS, Norgard RC, Prince DL (1978) Drug resistance studies with topical antiseptics. J Pharm Sci 67(11):1629–1631PubMedCrossRefGoogle Scholar
  299. 299.
    Pumbwe L, Skilbeck CA, Wexler HM (2007) Induction of multiple antibiotic resistance in Bacteroides fragilis by benzene and benzene-derived active compounds of commonly used analgesics, antiseptics and cleaning agents. J Antimicrob Chemother 60(6):1288–1297.  https://doi.org/10.1093/jac/dkm363CrossRefPubMedGoogle Scholar
  300. 300.
    Reginato CF, Bandeira LA, Zanette RA, Santurio JM, Alves SH, Danesi CC (2017) Antifungal activity of synthetic antiseptics and natural compounds against Candida dubliniensis before and after in vitro fluconazole exposure. Rev Soc Bras Med Trop 50(1):75–79.  https://doi.org/10.1590/0037-8682-0461-2016CrossRefPubMedGoogle Scholar
  301. 301.
    Reich PJ, Boyle MG, Hogan PG, Johnson AJ, Wallace MA, Elward AM, Warner BB, Burnham CD, Fritz SA (2016) Emergence of community-associated methicillin-resistant Staphylococcus aureus strains in the neonatal intensive care unit: an infection prevention and patient safety challenge. Clin Microbiol Infect 22(7):645.e641–645.e648.  https://doi.org/10.1016/j.cmi.2016.04.013
  302. 302.
    Rema T, Lawrence JR, Dynes JJ, Hitchcock AP, Korber DR (2014) Microscopic and spectroscopic analyses of chlorhexidine tolerance in Delftia acidovorans biofilms. Antimicrob Agents Chemother 58(10):5673–5686.  https://doi.org/10.1128/aac.02984-14CrossRefPubMedPubMedCentralGoogle Scholar
  303. 303.
    Rema T, Medihala P, Lawrence JR, Vidovic S, Leppard GG, Reid M, Korber DR (2016) Proteomic analyses of chlorhexidine tolerance mechanisms in delftia acidovorans Biofilms. mSphere 1(1).  https://doi.org/10.1128/msphere.00017-15
  304. 304.
    Rensch U, Klein G, Schwarz S, Kaspar H, de Jong A, Kehrenberg C (2013) Comparative analysis of the susceptibility to triclosan and three other biocides of avian Salmonella enterica isolates collected 1979 through 1994 and 2004 through 2010. J Food Prot 76(4):653–656.  https://doi.org/10.4315/0362-028x.jfp-12-420CrossRefPubMedGoogle Scholar
  305. 305.
    Renzoni A, Von Dach E, Landelle C, Diene SM, Manzano C, Gonzales R, Abdelhady W, Randall CP, Bonetti EJ, Baud D, O’Neill AJ, Bayer A, Cherkaoui A, Schrenzel J, Harbarth S, Francois P (2017) Impact of exposure of methicillin-resistant Staphylococcus aureus to polyhexanide in vitro and in vivo. Antimicrob Agents Chemother 61(10).  https://doi.org/10.1128/aac.00272-17
  306. 306.
    Riazi S, Matthews KR (2011) Failure of foodborne pathogens to develop resistance to sanitizers following repeated exposure to common sanitizers. Int Biodeter Biodegr 65(2):374–378.  https://doi.org/10.1016/j.ibiod.2010.12.001CrossRefGoogle Scholar
  307. 307.
    Rikimaru T, Kondo M, Kondo S, Oizumi K (2000) Efficacy of common antiseptics against mycobacteria. Int J Tuberculosis Lung Dis Off J Int Union Tuberculosis Lung Dis 4(6):570–576Google Scholar
  308. 308.
    Rizzotti L, Rossi F, Torriani S (2016) Biocide and antibiotic resistance of Enterococcus faecalis and Enterococcus faecium isolated from the swine meat chain. Food Microbiol 60:160–164.  https://doi.org/10.1016/j.fm.2016.07.009CrossRefPubMedGoogle Scholar
  309. 309.
    Rocha GR, Florez Salamanca EJ, de Barros AL, Lobo CIV, Klein MI (2018) Effect of tt-farnesol and myricetin on in vitro biofilm formed by Streptococcus mutans and Candida albicans. BMC Complem Alternat Med 18(1):61.  https://doi.org/10.1186/s12906-018-2132-xCrossRefGoogle Scholar
  310. 310.
    Rodgers N, Murdaugh A (2016) Chlorhexidine-induced elastic and adhesive changes of Escherichia coli cells within a biofilm. Biointerphases 11(3):031011.  https://doi.org/10.1116/1.4962265CrossRefPubMedGoogle Scholar
  311. 311.
    Rodriguez Ferri EF, Martinez S, Frandoloso R, Yubero S, Gutierrez Martin CB (2010) Comparative efficacy of several disinfectants in suspension and carrier tests against Haemophilus parasuis serovars 1 and 5. Res Vet Sci 88(3):385–389.  https://doi.org/10.1016/j.rvsc.2009.12.001CrossRefPubMedGoogle Scholar
  312. 312.
    Rohrer N, Widmer AF, Waltimo T, Kulik EM, Weiger R, Filipuzzi-Jenny E, Walter C (2010) Antimicrobial efficacy of 3 oral antiseptics containing octenidine, polyhexamethylene biguanide, or Citroxx: can chlorhexidine be replaced? Infect Control Hosp Epidemiol 31(7):733–739.  https://doi.org/10.1086/653822CrossRefPubMedGoogle Scholar
  313. 313.
    Rosa OP, Torres SA, Ferreira CM, Ferreira FB (2002) In vitro effect of intracanal medicaments on strict anaerobes by means of the broth dilution method. Pesquisa odontologica brasileira =. Brazilian Oral Res 16(1):31–36Google Scholar
  314. 314.
    Rose H, Baldwin A, Dowson CG, Mahenthiralingam E (2009) Biocide susceptibility of the Burkholderia cepacia complex. J Antimicrob Chemother 63(3):502–510.  https://doi.org/10.1093/jac/dkn540CrossRefPubMedPubMedCentralGoogle Scholar
  315. 315.
    Rotter M, Koller W, Wewalka G (1980) Povidone-iodine and chlorhexidine gluconate detergents for disinfection of hands. J Hosp Infect 1:149–158PubMedCrossRefGoogle Scholar
  316. 316.
    Rotter M, Kundi M, Suchomel M, Harke HP, Kramer A, Ostermeyer C, Rudolph P, Sonntag HG, Werner HP (2006) Reproducibility and workability of the European test standard EN 12791 regarding the effectiveness of surgical hand antiseptics: a randomized, multicenter trial. Infect Control Hosp Epidemiol 27(9):935–939PubMedCrossRefGoogle Scholar
  317. 317.
    Rotter ML (1984) Hygienic hand disinfection. Infection Control: IC 5:18–22PubMedCrossRefGoogle Scholar
  318. 318.
    Rotter ML, Kampf G, Suchomel M, Kundi M (2007) Population kinetics of the skin flora on gloved hands following surgical hand disinfection with 3 propanol-based hand rubs: a prospective, randomized, double-blind trial. Infect Control Hosp Epidemiol 28(3):346–350PubMedCrossRefGoogle Scholar
  319. 319.
    Rotter ML, Koller W (1990) Surgical hand disinfection: effect of sequential use of two chlorhexidine preparations. J Hosp Infect 16:161–166PubMedCrossRefGoogle Scholar
  320. 320.
    Ruiz-Linares M, Aguado-Perez B, Baca P, Arias-Moliz MT, Ferrer-Luque CM (2017) Efficacy of antimicrobial solutions against polymicrobial root canal biofilm. Int Endod J 50(1):77–83.  https://doi.org/10.1111/iej.12598CrossRefPubMedGoogle Scholar
  321. 321.
    Russell AD (2000) Do biocides select for antibiotic resistance? J Pharm Pharmacol 52(2):227–233PubMedCrossRefGoogle Scholar
  322. 322.
    Russell AD (2002) Introduction of biocides into clinical practice and the impact on antibiotic-resistant bacteria. Symposium Series (Society for Applied Microbiology) 31:121s–135sCrossRefGoogle Scholar
  323. 323.
    Russell AD, Mills AP (1974) Comparative sensitivity and resistance of some strains of Pseudomonas aeruginosa and Pseudomonas stutzeri to antibacterial agents. J Clin Pathol 27(6):463–466PubMedPubMedCentralCrossRefGoogle Scholar
  324. 324.
    Russell AD, Tattawasart U, Maillard JY, Furr JR (1998) Possible link between bacterial resistance and use of antibiotics and biocides. Antimicrob Agents Chemother 42(8):2151PubMedPubMedCentralGoogle Scholar
  325. 325.
    Rutter JD, Angiulo K, Macinga DR (2014) Measuring residual activity of topical antimicrobials: is the residual activity of chlorhexidine an artefact of laboratory methods? J Hosp Infect 88(2):113–115.  https://doi.org/10.1016/j.jhin.2014.06.010CrossRefPubMedGoogle Scholar
  326. 326.
    Salim N, Moore C, Silikas N, Satterthwaite J, Rautemaa R (2013) Chlorhexidine is a highly effective topical broad-spectrum agent against Candida spp. Int J Antimicrob Agents 41(1):65–69.  https://doi.org/10.1016/j.ijantimicag.2012.08.014CrossRefPubMedGoogle Scholar
  327. 327.
    Sandle T, Vijayakumar R, Saleh Al Aboody M, Saravanakumar S (2014) In vitro fungicidal activity of biocides against pharmaceutical environmental fungal isolates. J Appl Microbiol 117(5):1267–1273.  https://doi.org/10.1111/jam.12628CrossRefPubMedGoogle Scholar
  328. 328.
    Santos GOD, Milanesi FC, Greggianin BF, Fernandes MI, Oppermann RV, Weidlich P (2017) Chlorhexidine with or without alcohol against biofilm formation: efficacy, adverse events and taste preference. Brazilian Oral Res 31:e32.  https://doi.org/10.1590/1807-3107BOR-2017.vol31.0032CrossRefGoogle Scholar
  329. 329.
    Schedler K, Assadian O, Brautferger U, Muller G, Koburger T, Classen S, Kramer A (2017) Proposed phase 2/step 2 in-vitro test on basis of EN 14561 for standardised testing of the wound antiseptics PVP-iodine, chlorhexidine digluconate, polihexanide and octenidine dihydrochloride. BMC Infect Dis 17(1):143.  https://doi.org/10.1186/s12879-017-2220-4CrossRefPubMedPubMedCentralGoogle Scholar
  330. 330.
    Scheibler E, da Silva RM, Leite CE, Campos MM, Figueiredo MA, Salum FG, Cherubini K (2018) Stability and efficacy of combined nystatin and chlorhexidine against suspensions and biofilms of Candida albicans. Arch Oral Biol 89:70–76.  https://doi.org/10.1016/j.archoralbio.2018.02.009CrossRefPubMedGoogle Scholar
  331. 331.
    Sedlock DM, Bailey DM (1985) Microbicidal activity of octenidine hydrochloride, a new alkanediylbis[pyridine] germicidal agent. Antimicrob Agents Chemother 28(6):786–790PubMedPubMedCentralCrossRefGoogle Scholar
  332. 332.
    Seier-Petersen MA, Jasni A, Aarestrup FM, Vigre H, Mullany P, Roberts AP, Agerso Y (2014) Effect of subinhibitory concentrations of four commonly used biocides on the conjugative transfer of Tn916 in Bacillus subtilis. J Antimicrob Chemother 69(2):343–348.  https://doi.org/10.1093/jac/dkt370CrossRefPubMedGoogle Scholar
  333. 333.
    Sekavec JG, Moore WT, Gillock ET (2013) Chlorhexidine resistance in a Gram-negative bacterium isolated from an aquatic source. J Environ Sci Health Part A Toxic/Hazard Subst Environ Eng 48(14):1829–1834.  https://doi.org/10.1080/10934529.2013.823338CrossRefGoogle Scholar
  334. 334.
    Sekiguchi J, Asagi T, Miyoshi-Akiyama T, Fujino T, Kobayashi I, Morita K, Kikuchi Y, Kuratsuji T, Kirikae T (2005) Multidrug-resistant Pseudomonas aeruginosa strain that caused an outbreak in a neurosurgery ward and its aac(6’)-Iae gene cassette encoding a novel aminoglycoside acetyltransferase. Antimicrob Agents Chemother 49(9):3734–3742.  https://doi.org/10.1128/aac.49.9.3734-3742.2005CrossRefPubMedPubMedCentralGoogle Scholar
  335. 335.
    Serra E, Hidalgo-Bastida LA, Verran J, Williams D, Malic S (2018) Antifungal activity of commercial essential oils and biocides against Candida Albicans. Pathogens (Basel, Switzerland) 7(1).  https://doi.org/10.3390/pathogens7010015
  336. 336.
    Sethi KS, Karde PA, Joshi CP (2016) Comparative evaluation of sutures coated with triclosan and chlorhexidine for oral biofilm inhibition potential and antimicrobial activity against periodontal pathogens: An in vitro study. Indian J Dental Res: Off Publ Indian Soc Dental Res 27(5):535–539.  https://doi.org/10.4103/0970-9290.195644CrossRefGoogle Scholar
  337. 337.
    Shen Y, Stojicic S, Haapasalo M (2011) Antimicrobial efficacy of chlorhexidine against bacteria in biofilms at different stages of development. J Endod 37(5):657–661.  https://doi.org/10.1016/j.joen.2011.02.007CrossRefPubMedGoogle Scholar
  338. 338.
    Sheng WH, Wang JT, Lauderdale TL, Weng CM, Chen D, Chang SC (2009) Epidemiology and susceptibilities of methicillin-resistant Staphylococcus aureus in Taiwan: emphasis on chlorhexidine susceptibility. Diagn Microbiol Infect Dis 63(3):309–313.  https://doi.org/10.1016/j.diagmicrobio.2008.11.014CrossRefPubMedGoogle Scholar
  339. 339.
    Sheridan A, Lenahan M, Duffy G, Fanning S, Burgess C (2012) The potential for biocide tolerance in Escherichia coli and its impact on the response to food processing stresses. Food Control 26(1):98–106CrossRefGoogle Scholar
  340. 340.
    Shi GS, Boost M, Cho P (2015) Prevalence of antiseptic-resistance genes in staphylococci isolated from orthokeratology lens and spectacle wearers in Hong Kong. Invest Ophthalmol Vis Sci 56(5):3069–3074.  https://doi.org/10.1167/iovs.15-16550CrossRefPubMedGoogle Scholar
  341. 341.
    Shigeta S, Yasunaga Y, Honzumi K, Okamura H, Kumata R, Endo S (1978) Cerebral ventriculitis associated with Achromobacter xylosoxidans. J Clin Pathol 31(2):156–161PubMedPubMedCentralCrossRefGoogle Scholar
  342. 342.
    Shirato M, Nakamura K, Kanno T, Lingstrom P, Niwano Y, Ortengren U (2017) Time-kill kinetic analysis of antimicrobial chemotherapy based on hydrogen peroxide photolysis against Streptococcus mutans biofilm. J Photochem Photobiol, B 173:434–440.  https://doi.org/10.1016/j.jphotobiol.2017.06.023CrossRefGoogle Scholar
  343. 343.
    Sickbert-Bennett EE, Weber DJ, Gergen-Teague MF, Sobsey MD, Samsa GP, Rutala WA (2005) Comparative efficacy of hand hygiene agents in the reduction of bacteria and viruses. Am J Infect Control 33(2):67–77PubMedCrossRefGoogle Scholar
  344. 344.
    Siqueira AB, Rodriguez LR, Santos RK, Marinho RR, Abreu S, Peixoto RF, Gurgel BC (2015) Antifungal activity of propolis against Candida species isolated from cases of chronic periodontitis. Brazilian Oral Res 29.  https://doi.org/10.1590/1807-3107bor-2015.vol29.0083
  345. 345.
    Siqueira JF Jr, Rocas IN, Paiva SS, Guimaraes-Pinto T, Magalhaes KM, Lima KC (2007) Bacteriologic investigation of the effects of sodium hypochlorite and chlorhexidine during the endodontic treatment of teeth with apical periodontitis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 104(1):122–130.  https://doi.org/10.1016/j.tripleo.2007.01.027CrossRefPubMedGoogle Scholar
  346. 346.
    Skovgaard S, Larsen MH, Nielsen LN, Skov RL, Wong C, Westh H, Ingmer H (2013) Recently introduced qacA/B genes in Staphylococcus epidermidis do not increase chlorhexidine MIC/MBC. J Antimicrob Chemother 68(10):2226–2233.  https://doi.org/10.1093/jac/dkt182CrossRefPubMedGoogle Scholar
  347. 347.
    Slee AM, O’Connor JR (1983) In vitro antiplaque activity of octenidine dihydrochloride (WIN 41464-2) against preformed plaques of selected oral plaque-forming microorganisms. Antimicrob Agents Chemother 23(3):379–384PubMedPubMedCentralCrossRefGoogle Scholar
  348. 348.
    Smith K, Gemmell CG, Hunter IS (2008) The association between biocide tolerance and the presence or absence of qac genes among hospital-acquired and community-acquired MRSA isolates. J Antimicrob Chemother 61(1):78–84.  https://doi.org/10.1093/jac/dkm395CrossRefPubMedGoogle Scholar
  349. 349.
    Smith K, Hunter IS (2008) Efficacy of common hospital biocides with biofilms of multi-drug resistant clinical isolates. J Med Microbiol 57(Pt 8):966–973.  https://doi.org/10.1099/jmm.0.47668-0CrossRefPubMedGoogle Scholar
  350. 350.
    Smith K, Robertson DP, Lappin DF, Ramage G (2013) Commercial mouthwashes are ineffective against oral MRSA biofilms. Oral Surg Oral Med Oral Pathol Oral Radiol 115(5):624–629.  https://doi.org/10.1016/j.oooo.2012.12.014CrossRefPubMedGoogle Scholar
  351. 351.
    Sobel JD, Hashman N, Reinherz G, Merzbach D (1982) Nosocomial Pseudomonas cepacia infection associated with chlorhexidine contamination. Am J Med 73(2):183–186PubMedCrossRefGoogle Scholar
  352. 352.
    Soulsby ME, Barnett JB, Maddox S (1986) The antiseptic efficacy of chlorxylenol-containing vs. chlorhexidine gluconate-containing surgical scrub preparations. Infection Control: IC 7(4):223–226Google Scholar
  353. 353.
    Spijkervet FKL, van Saene JJM, van Saene HKF, Panders AK, Vermey A, Fidler V (1990) Chlorhexidine inactivation by saliva. Oral Surg Oral Med Oral Pathol 69(4):444–449.  https://doi.org/10.1016/0030-4220(90)90377-5CrossRefPubMedGoogle Scholar
  354. 354.
    Srinivasan VB, Rajamohan G (2013) KpnEF, a new member of the Klebsiella pneumoniae cell envelope stress response regulon, is an SMR-type efflux pump involved in broad-spectrum antimicrobial resistance. Antimicrob Agents Chemother 57(9):4449–4462.  https://doi.org/10.1128/aac.02284-12CrossRefPubMedPubMedCentralGoogle Scholar
  355. 355.
    Srinivasan VB, Singh BB, Priyadarshi N, Chauhan NK, Rajamohan G (2014) Role of novel multidrug efflux pump involved in drug resistance in Klebsiella pneumoniae. PLoS ONE 9(5):e96288.  https://doi.org/10.1371/journal.pone.0096288CrossRefPubMedPubMedCentralGoogle Scholar
  356. 356.
    Stanley A, Wilson M, Newman HN (1989) The in vitro effects of chlorhexidine on subgingival plaque bacteria. J Clin Periodontol 16(4):259–264PubMedCrossRefGoogle Scholar
  357. 357.
    Stickler D, Dolman J, Rolfe S, Chawla J (1989) Activity of antiseptics against Escherichia coli growing as biofilms on silicone surfaces. Eur J Clin Microbiol Infect Dis 8(11):974–978PubMedCrossRefGoogle Scholar
  358. 358.
    Stickler D, Hewett P (1991) Activity of antiseptics against biofilms of mixed bacterial species growing on silicone surfaces. Eur J Clin Microbiol Infect Dis 10(5):416–421PubMedCrossRefGoogle Scholar
  359. 359.
    Stickler DJ (1974) Chlorhexidine resistance in Proteus mirabilis. J Clin Pathol 27(4):284–287PubMedPubMedCentralCrossRefGoogle Scholar
  360. 360.
    Stickler DJ (2002) Susceptibility of antibiotic-resistant Gram-negative bacteria to biocides: a perspective from the study of catheter biofilms. J Appl Microbiol 92(Suppl):163s–170sPubMedCrossRefGoogle Scholar
  361. 361.
    Stickler DJ, Clayton CL, Chawla JC (1987) The resistance of urinary tract pathogens to chlorhexidine bladder washouts. J Hosp Infect 10:28–39PubMedCrossRefGoogle Scholar
  362. 362.
    Stickler DJ, Thomas B (1980) Antiseptic and antibiotic resistance in gram-negative bacteria causing urinary tract infections. J Clin Pathol 33(3):288–296PubMedPubMedCentralCrossRefGoogle Scholar
  363. 363.
    Stickler DJ, Thomas B, Chawla JC (1981) Antiseptic and antibiotic resistance in gram-negative bacteria causing urinary tract infection in spinal cord injured patients. Paraplegia 19:50–58PubMedPubMedCentralGoogle Scholar
  364. 364.
    Suci PA, Tyler BJ (2003) A method for discrimination of subpopulations of Candida albicans biofilm cells that exhibit relative levels of phenotypic resistance to chlorhexidine. J Microbiol Methods 53(3):313–325PubMedCrossRefGoogle Scholar
  365. 365.
    Suller MTE, Russell AD (1999) Antibiotic and biocide resistance in methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococcus. J Hosp Infect 43:281–291PubMedCrossRefGoogle Scholar
  366. 366.
    Taha M, Kalab M, Yi QL, Landry C, Greco-Stewart V, Brassinga AK, Sifri CD, Ramirez-Arcos S (2014) Biofilm-forming skin microflora bacteria are resistant to the bactericidal action of disinfectants used during blood donation. Transfusion 54(11):2974–2982.  https://doi.org/10.1111/trf.12728CrossRefPubMedGoogle Scholar
  367. 367.
    Taheri N, Ardebili A, Amouzandeh-Nobaveh A, Ghaznavi-Rad E (2016) Frequency of antiseptic resistance among staphylococcus aureus and coagulase-negative Staphylococci isolated from a university hospital in Central Iran. Oman medical journal 31(6):426–432.  https://doi.org/10.5001/omj.2016.86CrossRefPubMedPubMedCentralGoogle Scholar
  368. 368.
    Takahashi H, Nadres ET, Kuroda K (2017) Cationic amphiphilic polymers with antimicrobial activity for oral care applications: eradication of S. mutans biofilm. Biomacromol 18(1):257–265.  https://doi.org/10.1021/acs.biomac.6b01598CrossRefGoogle Scholar
  369. 369.
    Takenaka S, Trivedi HM, Corbin A, Pitts B, Stewart PS (2008) Direct visualization of spatial and temporal patterns of antimicrobial action within model oral biofilms. Appl Environ Microbiol 74(6):1869–1875.  https://doi.org/10.1128/aem.02218-07CrossRefPubMedPubMedCentralGoogle Scholar
  370. 370.
    Takeo Y, Oie S, Kamiya A, Konishi H, Nakazawa T (1994) Efficacy of disinfectants against biofilm cells of Pseudomonas aeruginosa. Microbios 79(318):19–26PubMedPubMedCentralGoogle Scholar
  371. 371.
    Tattawasart U, Hann AC, Maillard J-Y, Furr JR, Russell AD (2000) Cytological changes in chlorhexidine-resistant isolates of Pseudomonas stutzeri. J Antimicrob Chemother 45:145–152PubMedCrossRefGoogle Scholar
  372. 372.
    Tattawasart U, Maillard J-Y, Furr JR, Russell AD (1999) Development of resistance to chlorhexidine diacetate and cetylpyridinium chloride in Pseudomonas stutzeri and changes in antibiotic susceptibility. J Hosp Infect 42(3):219–229PubMedCrossRefGoogle Scholar
  373. 373.
    Tattawasart U, Maillard J-Y, Furr JR, Russell AD (2000) Outer membrane changes in Pseudomonas stutzeri resistant to chlorhexidine diacetate and cetylpyridinium chloride. Int J Antimicrob Agents 16:233–238PubMedCrossRefGoogle Scholar
  374. 374.
    Tena D, Carranza R, Barbera JR, Valdezate S, Garrancho JM, Arranz M, Saez-Nieto JA (2005) Outbreak of long-term intravascular catheter-related bacteremia due to Achromobacter xylosoxidans subspecies xylosoxidans in a hemodialysis unit. Eur J Clin Microbiol Infect Dis 24(11):727–732.  https://doi.org/10.1007/s10096-005-0028-4CrossRefPubMedGoogle Scholar
  375. 375.
    Tetz G, Tetz V (2015) In vitro antimicrobial activity of a novel compound, Mul-1867, against clinically important bacteria. Antimicrob Resist Infect Control 4:45.  https://doi.org/10.1186/s13756-015-0088-xCrossRefPubMedPubMedCentralGoogle Scholar
  376. 376.
    Theraud M, Bedouin Y, Guiguen C, Gangneux JP (2004) Efficacy of antiseptics and disinfectants on clinical and environmental yeast isolates in planktonic and biofilm conditions. J Med Microbiol 53(Pt 10):1013–1018.  https://doi.org/10.1099/jmm.0.05474-0CrossRefPubMedGoogle Scholar
  377. 377.
    Thomas B, Sykes L, Stickler DJ (1978) Sensitivity of urine-grown cells of Providencia stuartii to antiseptics. J Clin Pathol 31:929–932PubMedPubMedCentralCrossRefGoogle Scholar
  378. 378.
    Thomas L, Maillard JY, Lambert RJ, Russell AD (2000) Development of resistance to chlorhexidine diacetate in Pseudomonas aeruginosa and the effect of a “residual” concentration. J Hosp Infect 46:297–303PubMedCrossRefGoogle Scholar
  379. 379.
    Thurmond JM, Brown AT, Sims RE, Ferretti GA, Raybould TP, Lillich TT, Henslee PJ (1991) Oral Candida albicans in bone marrow transplant patients given chlorhexidine rinses: occurrence and susceptibilities to the agent. Oral Surg Oral Med Oral Pathol 72(3):291–295PubMedCrossRefGoogle Scholar
  380. 380.
    Tirali RE, Bodur H, Ece G (2012) In vitro antimicrobial activity of sodium hypochlorite, chlorhexidine gluconate and octenidine dihydrochloride in elimination of microorganisms within dentinal tubules of primary and permanent teeth. Medicina oral, patologia oral y cirugia bucal 17(3):e517–522PubMedCrossRefGoogle Scholar
  381. 381.
    Tong Z, Zhou L, Jiang W, Kuang R, Li J, Tao R, Ni L (2011) An in vitro synergetic evaluation of the use of nisin and sodium fluoride or chlorhexidine against Streptococcus mutans. Peptides 32(10):2021–2026.  https://doi.org/10.1016/j.peptides.2011.09.002CrossRefPubMedGoogle Scholar
  382. 382.
    Tortorano AM, Viviani MA, Biraghi E, Rigoni AL, Prigitano A, Grillot R (2005) In vitro testing of fungicidal activity of biocides against Aspergillus fumigatus. J Med Microbiol 54(Pt 10):955–957.  https://doi.org/10.1099/jmm.0.45997-0CrossRefPubMedPubMedCentralGoogle Scholar
  383. 383.
    Tote K, Horemans T, Vanden Berghe D, Maes L, Cos P (2010) Inhibitory effect of biocides on the viable masses and matrices of Staphylococcus aureus and Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 76(10):3135–3142.  https://doi.org/10.1128/aem.02095-09CrossRefPubMedPubMedCentralGoogle Scholar
  384. 384.
    Touzel RE, Sutton JM, Wand ME (2016) Establishment of a multi-species biofilm model to evaluate chlorhexidine efficacy. J Hosp Infect 92(2):154–160.  https://doi.org/10.1016/j.jhin.2015.09.013CrossRefPubMedGoogle Scholar
  385. 385.
    Traboulsi RS, Mukherjee PK, Ghannoum MA (2008) In vitro activity of inexpensive topical alternatives against Candida spp. isolated from the oral cavity of HIV-infected patients. Int J Antimicrob Agents 31(3):272–276.  https://doi.org/10.1016/j.ijantimicag.2007.11.008CrossRefPubMedGoogle Scholar
  386. 386.
    Traore O, Springthorpe VS, Sattar SA (2002) Testing chemical germicides against Candida species using quantitative carrier and fingerpad methods. J Hosp Infect 50(1):66–75.  https://doi.org/10.1053/jhin.2001.1133CrossRefPubMedGoogle Scholar
  387. 387.
    Tremblay YD, Caron V, Blondeau A, Messier S, Jacques M (2014) Biofilm formation by coagulase-negative staphylococci: impact on the efficacy of antimicrobials and disinfectants commonly used on dairy farms. Vet Microbiol 172(3–4):511–518.  https://doi.org/10.1016/j.vetmic.2014.06.007CrossRefPubMedGoogle Scholar
  388. 388.
    Tuuli MG, Liu J, Stout MJ, Martin S, Cahill AG, Odibo AO, Colditz GA, Macones GA (2016) A randomized trial comparing skin antiseptic agents at cesarean delivery. N Engl J Med 374(7):647–655.  https://doi.org/10.1056/NEJMoa1511048CrossRefPubMedPubMedCentralGoogle Scholar
  389. 389.
    Ueda S, Kuwabara Y (2007) Susceptibility of biofilm Escherichia coli, Salmonella Enteritidis and Staphylococcus aureus to detergents and sanitizers. Biocontrol science 12(4):149–153PubMedCrossRefGoogle Scholar
  390. 390.
    Ulusoy AT, Kalyoncuoglu E, Reis A, Cehreli ZC (2016) Antibacterial effect of N-acetylcysteine and taurolidine on planktonic and biofilm forms of Enterococcus faecalis. Dental Traumatol: Off Publ Int Assoc Dental Traumatol 32(3):212–218.  https://doi.org/10.1111/edt.12237CrossRefGoogle Scholar
  391. 391.
    Uri M, Buckley LM, Marriage L, McEwan N, Schmidt VM (2016) A pilot study comparing in vitro efficacy of topical preparations against veterinary pathogens. Vet Dermatol 27(3):152–e139.  https://doi.org/10.1111/vde.12306CrossRefPubMedGoogle Scholar
  392. 392.
    Uzer Celik E, Tunac AT, Ates M, Sen BH (2016) Antimicrobial activity of different disinfectants against cariogenic microorganisms. Brazilian Oral Res 30(1):e125.  https://doi.org/10.1590/1807-3107BOR-2016.vol30.0125CrossRefGoogle Scholar
  393. 393.
    Valentine BK, Dew W, Yu A, Weese JS (2012) In vitro evaluation of topical biocide and antimicrobial susceptibility of Staphylococcus pseudintermedius from dogs. Vet Dermatol 23(6):493–e495.  https://doi.org/10.1111/j.1365-3164.2012.01095.xCrossRefPubMedGoogle Scholar
  394. 394.
    Valenzuela AS, Benomar N, Abriouel H, Canamero MM, Lopez RL, Galvez A (2013) Biocide and copper tolerance in enterococci from different sources. J Food Prot 76(10):1806–1809.  https://doi.org/10.4315/0362-028x.jfp-13-124CrossRefPubMedGoogle Scholar
  395. 395.
    Vali L, Dashti AA, El-Shazly S, Jadaon MM (2015) Klebsiella oxytoca with reduced sensitivity to chlorhexidine isolated from a diabetic foot ulcer. Int J Infect Dis: IJID: Off Publ Int Soc Infect Dis 34:112–116.  https://doi.org/10.1016/j.ijid.2015.03.021CrossRefGoogle Scholar
  396. 396.
    Vali L, Dashti AA, Mathew F, Udo EE (2017) Characterization of heterogeneous MRSA and MSSA with reduced susceptibility to Chlorhexidine in Kuwaiti hospitals. Front Microbiol 8:1359.  https://doi.org/10.3389/fmicb.2017.01359CrossRefPubMedPubMedCentralGoogle Scholar
  397. 397.
    Vali L, Davies SE, Lai LL, Dave J, Amyes SG (2008) Frequency of biocide resistance genes, antibiotic resistance and the effect of chlorhexidine exposure on clinical methicillin-resistant Staphylococcus aureus isolates. J Antimicrob Chemother 61(3):524–532.  https://doi.org/10.1093/jac/dkm520CrossRefPubMedGoogle Scholar
  398. 398.
    Vaziri S, Kangarlou A, Shahbazi R, Nazari Nasab A, Naseri M (2012) Comparison of the bactericidal efficacy of photodynamic therapy, 2.5% sodium hypochlorite, and 2% chlorhexidine against Enterococcous faecalis in root canals; an in vitro study. Dental Res J 9(5):613–618Google Scholar
  399. 399.
    Verkaik MJ, Busscher HJ, Jager D, Slomp AM, Abbas F, van der Mei HC (2011) Efficacy of natural antimicrobials in toothpaste formulations against oral biofilms in vitro. J Dent 39(3):218–224.  https://doi.org/10.1016/j.jdent.2010.12.007CrossRefPubMedGoogle Scholar
  400. 400.
    Vestby LK, Nesse LL (2015) Wound care antiseptics - performance differences against Staphylococcus aureus in biofilm. Acta Vet Scand 57:22.  https://doi.org/10.1186/s13028-015-0111-5CrossRefPubMedPubMedCentralGoogle Scholar
  401. 401.
    Vijayakumar R, Kannan VV, Sandle T, Manoharan C (2012) In vitro antifungal efficacy of biguanides and quaternary ammonium compounds against cleanroom fungal isolates. PDA J Pharm Sci Technol 66(3):236–242.  https://doi.org/10.5731/pdajpst.2012.00866CrossRefPubMedGoogle Scholar
  402. 402.
    Wakamatsu R, Takenaka S, Ohsumi T, Terao Y, Ohshima H, Okiji T (2014) Penetration kinetics of four mouthrinses into Streptococcus mutans biofilms analyzed by direct time-lapse visualization. Clin Oral Invest 18(2):625–634.  https://doi.org/10.1007/s00784-013-1002-7CrossRefGoogle Scholar
  403. 403.
    Walker EM, Lowes JA (1985) An investigation into in vitro methods for the detection of chlorhexidine resistance. J Hosp Infect 6(4):389–397PubMedCrossRefGoogle Scholar
  404. 404.
    Wand ME, Baker KS, Benthall G, McGregor H, McCowen JW, Deheer-Graham A, Sutton JM (2015) Characterization of pre-antibiotic era Klebsiella pneumoniae isolates with respect to antibiotic/disinfectant susceptibility and virulence in Galleria mellonella. Antimicrob Agents Chemother 59(7):3966–3972.  https://doi.org/10.1128/aac.05009-14CrossRefPubMedPubMedCentralGoogle Scholar
  405. 405.
    Wand ME, Bock LJ, Bonney LC, Sutton JM (2017) Mechanisms of increased resistance to chlorhexidine and cross-resistance to colistin following exposure of klebsiella pneumoniae clinical isolates to chlorhexidine. Antimicrob Agents Chemother 61(1).  https://doi.org/10.1128/aac.01162-16
  406. 406.
    Wang JT, Sheng WH, Wang JL, Chen D, Chen ML, Chen YC, Chang SC (2008) Longitudinal analysis of chlorhexidine susceptibilities of nosocomial methicillin-resistant Staphylococcus aureus isolates at a teaching hospital in Taiwan. J Antimicrob Chemother 62(3):514–517.  https://doi.org/10.1093/jac/dkn208CrossRefPubMedGoogle Scholar
  407. 407.
    Wang Y, Leng V, Patel V, Phillips KS (2017) Injections through skin colonized with Staphylococcus aureus biofilm introduce contamination despite standard antimicrobial preparation procedures. Sci Rep 7:45070.  https://doi.org/10.1038/srep45070CrossRefPubMedPubMedCentralGoogle Scholar
  408. 408.
    Wesgate R, Grasha P, Maillard JY (2016) Use of a predictive protocol to measure the antimicrobial resistance risks associated with biocidal product usage. Am J Infect Control 44(4):458–464.  https://doi.org/10.1016/j.ajic.2015.11.009CrossRefPubMedGoogle Scholar
  409. 409.
    Wiegand C, Abel M, Ruth P, Elsner P, Hipler UC (2015) pH influence on antibacterial efficacy of common antiseptic substances. Skin Pharmacol Physiol 28(3):147–158.  https://doi.org/10.1159/000367632CrossRefPubMedGoogle Scholar
  410. 410.
    Wiegand C, Abel M, Ruth P, Hipler UC (2012) Analysis of the adaptation capacity of Staphylococcus aureus to commonly used antiseptics by microplate laser nephelometry. Skin Pharmacol Physiol 25(6):288–297.  https://doi.org/10.1159/000341222CrossRefPubMedGoogle Scholar
  411. 411.
    Wisplinghoff H, Schmitt R, Wohrmann A, Stefanik D, Seifert H (2007) Resistance to disinfectants in epidemiologically defined clinical isolates of Acinetobacter baumannii. J Hosp Infect 66(2):174–181.  https://doi.org/10.1016/j.jhin.2007.02.016CrossRefPubMedGoogle Scholar
  412. 412.
    Witney AA, Gould KA, Pope CF, Bolt F, Stoker NG, Cubbon MD, Bradley CR, Fraise A, Breathnach AS, Butcher PD, Planche TD, Hinds J (2014) Genome sequencing and characterization of an extensively drug-resistant sequence type 111 serotype O12 hospital outbreak strain of Pseudomonas aeruginosa. Clin Microbiol Infect 20(10):O609–618.  https://doi.org/10.1111/1469-0691.12528CrossRefPubMedGoogle Scholar
  413. 413.
    Wong HS, Townsend KM, Fenwick SG, Trengove RD, O’Handley RM (2010) Comparative susceptibility of planktonic and 3-day-old Salmonella Typhimurium biofilms to disinfectants. J Appl Microbiol 108(6):2222–2228.  https://doi.org/10.1111/j.1365-2672.2009.04630.xCrossRefPubMedGoogle Scholar
  414. 414.
    Wong TZ, Zhang M, O’Donoghue M, Boost M (2013) Presence of antiseptic resistance genes in porcine methicillin-resistant Staphylococcus aureus. Vet Microbiol 162(2–4):977–979.  https://doi.org/10.1016/j.vetmic.2012.10.017CrossRefPubMedGoogle Scholar
  415. 415.
    Wu D, Lu R, Chen Y, Qiu J, Deng C, Tan Q (2016) Study of cross-resistance mediated by antibiotics, chlorhexidine and Rhizoma coptidis in Staphylococcus aureus. J Global Antimicrob Resis 7:61–66.  https://doi.org/10.1016/j.jgar.2016.07.011CrossRefGoogle Scholar
  416. 416.
    Xu Y, He Y, Zhou L, Gao C, Sun S, Wang X, Pang G (2014) Effects of contact lens solution disinfectants against filamentous fungi. Optom Vision Sci: Off Publ Am Acad Optom 91(12):1440–1445.  https://doi.org/10.1097/opx.0000000000000407CrossRefGoogle Scholar
  417. 417.
    Yadav P, Chaudhary S, Saxena RK, Talwar S, Yadav S (2017) Evaluation of antimicrobial and antifungal efficacy of chitosan as endodontic irrigant against Enterococcus Faecalis and Candida Albicans biofilm formed on tooth substrate. J Clin Exp Dent 9(3):e361–e367.  https://doi.org/10.4317/jced.53210CrossRefPubMedPubMedCentralGoogle Scholar
  418. 418.
    Yamamoto M, Takami T, Matsumura R, Dorofeev A, Hirata Y, Nagamune H (2016) In Vitro evaluation of the biocompatibility of newly synthesized bis-quaternary ammonium compounds with spacer structures derived from pentaerythritol or hydroquinone. Biocontrol Sci 21(4):231–241.  https://doi.org/10.4265/bio.21.231CrossRefPubMedGoogle Scholar
  419. 419.
    Yamamoto T, Tamura Y, Yokota T (1988) Antiseptic and antibiotic resistance plasmid in Staphylococcus aureus that possesses ability to confer chlorhexidine and acrinol resistance. Antimicrob Agents Chemother 32(6):932–935PubMedPubMedCentralCrossRefGoogle Scholar
  420. 420.
    Ye JZ, Yu X, Li XS, Sun Y, Li MM, Zhang W, Fan H, Cao JM, Zhou TL (2014) [Antimicrobial resistance characteristics of and disinfectant-resistant gene distribution in Staphylococcus aureus isolates from male urogenital tract infection]. Zhonghua nan ke xue = Natl J Androl 20(7):630–636Google Scholar
  421. 421.
    Zaura-Arite E, van Marle J, ten Cate JM (2001) Conofocal microscopy study of undisturbed and chlorhexidine-treated dental biofilm. J Dent Res 80(5):1436–1440.  https://doi.org/10.1177/00220345010800051001CrossRefPubMedGoogle Scholar
  422. 422.
    Zeng P, Rao A, Wiedmann TS, Bowles W (2009) Solubility properties of chlorhexidine salts. Drug Dev Ind Pharm 35(2):172–176.  https://doi.org/10.1080/03639040802220318CrossRefPubMedGoogle Scholar
  423. 423.
    Zhang M, O’Donoghue MM, Ito T, Hiramatsu K, Boost MV (2011) Prevalence of antiseptic-resistance genes in Staphylococcus aureus and coagulase-negative staphylococci colonising nurses and the general population in Hong Kong. J Hosp Infect 78(2):113–117.  https://doi.org/10.1016/j.jhin.2011.02.018CrossRefPubMedGoogle Scholar
  424. 424.
    Zhang M, O’Dononghue M, Boost MV (2012) Characterization of staphylococci contaminating automated teller machines in Hong Kong. Epidemiol Infect 140(8):1366–1371.  https://doi.org/10.1017/s095026881100207xCrossRefPubMedGoogle Scholar
  425. 425.
    Zmantar T, Ben Slama R, Fdhila K, Kouidhi B, Bakhrouf A, Chaieb K (2017) Modulation of drug resistance and biofilm formation of Staphylococcus aureus isolated from the oral cavity of Tunisian children. Brazilian J Infect Dis: An Off Publ Brazilian Soc Infect Dis 21(1):27–34.  https://doi.org/10.1016/j.bjid.2016.10.009CrossRefGoogle Scholar
  426. 426.
    Zurita J, Mejia L, Zapata S, Trueba G, Vargas AC, Aguirre S, Falconi G (2014) Healthcare-associated respiratory tract infection and colonization in an intensive care unit caused by Burkholderia cepacia isolated in mouthwash. Int J Infect Dis: IJID: Off Publ Int Soc Infect Dis 29:96–99.  https://doi.org/10.1016/j.ijid.2014.07.016CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of Hygiene and Environmental MedicineUniversity of GreifswaldGreifswaldGermany

Personalised recommendations