Advertisement

Clinical Research in the Postgenomic Era

  • Stephane M. MeystreEmail author
  • Ramkiran Gouripeddi
Chapter
Part of the Health Informatics book series (HI)

Abstract

Clinical research, being patient-oriented, is based predominantly on clinical data – symptoms reported by patients, observations of patients made by health-care providers, radiological images, and various metrics, including laboratory measurements that reflect physiological functions. Recently, however, a new type of data – genes and their products – has entered the picture, and the expectation is that given clinical conditions can ultimately be linked to the function of specific genes. The postgenomic era is characterized by the availability of the human genome as well as the complete genomes of numerous reference organisms. How genomic information feeds into clinical research is the topic of this chapter. We first review the molecules that form the “blueprint of life” and discuss the surrounding research methodologies. Then we discuss how genetic data are clinically integrated. Finally, we relate how this new type of data is used in different clinical research domains.

Keywords

Postgenomic era Genetic data Molecular biology genomic data Bioinformatics Sequence ontology Bioinformatics Sequence Markup Language Sequence analysis data Structure analysis data Functional analysis data 

References

  1. 1.
    Collins FS, Morgan M, Patrinos A. The human genome project: lessons from large-scale biology. Science. 2003;300(5617):286–90.PubMedCrossRefGoogle Scholar
  2. 2.
    Crick FH. On protein synthesis. Symp Soc Exp Biol. 1958;12:138–63.PubMedGoogle Scholar
  3. 3.
    Mitchell JA, Fomous C, Fun J. Challenges and strategies of the genetics home reference. J Med Libr Assoc. 2006;94(3):336–42.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Miller GW, Jones DP. The nature of nurture: refining the definition of the exposome. Toxicol Sci. 2014;137(1):1–2.PubMedCrossRefGoogle Scholar
  5. 5.
    Luscombe NM, Greenbaum D, Gerstein M. What is bioinformatics? A proposed definition and overview of the field. Methods Inf Med. 2001;40(4):346–58.PubMedCrossRefGoogle Scholar
  6. 6.
    Benson DA, Cavanaugh M, Clark K, et al. GenBank Nucleic Acids Res. 2018;46(D1):D41–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Eilbeck K, Lewis SE. Sequence ontology annotation guide. Comp Funct Genomics. 2004;5(8):642–7.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Smith B, Ashburner M, Rosse C, et al. The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. Nat Biotechnol. 2007;25(11):1251–5.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Cuff AL, Sillitoe I, Lewis T, et al. The CATH classification revisited – architectures reviewed and new ways to characterize structural divergence in superfamilies. Nucleic Acids Res. 2009;37(Database issue):D310–4.PubMedCrossRefGoogle Scholar
  10. 10.
    Westbrook J, Ito N, Nakamura H, et al. PDBML: the representation of archival macromolecular structure data in XML. Bioinformatics. 2005;21(7):988–92.PubMedCrossRefGoogle Scholar
  11. 11.
  12. 12.
    Rose AS, Hildebrand PW. NGL Viewer: a web application for molecular visualization. Nucleic Acids Res. 2015;43(W1):W576–9.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Maglott D, Ostell J, Pruitt KD, Tatusova T. Entrez Gene: gene-centered information at NCBI. Nucleic Acids Res. 2005;33(Database issue):D54–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. Gene Ontol Consortium Nat Genet. 2000;25(1):25–9.Google Scholar
  15. 15.
    White JA, McAlpine PJ, Antonarakis S, et al. Guidelines for human gene nomenclature (1997). HUGO Nomenclature Committee. Genomics. 1997;45(2):468–71.PubMedCrossRefGoogle Scholar
  16. 16.
    Yoou MH. Case study of a patient with Parkinson’s disease. Taehan Kanho. 1991;30(5):56–60.PubMedGoogle Scholar
  17. 17.
    Frezal J. Genatlas database, genes and development defects. C R Acad Sci III Sci Vie. 1998;321(10):805–17.CrossRefGoogle Scholar
  18. 18.
    Rebhan M, Chalifa-Caspi V, Prilusky J, Lancet D. GeneCards: a novel functional genomics compendium with automated data mining and query reformulation support. Bioinformatics. 1998;14(8):656–64.PubMedCrossRefGoogle Scholar
  19. 19.
    Brazma A, Hingamp P, Quackenbush J, et al. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet. 2001;29(4):365–71.PubMedCrossRefGoogle Scholar
  20. 20.
    Bandrowski A, Brinkman R, Brochhausen M, et al. The ontology for biomedical investigations. PLoS One. 2016;11(4):e0154556.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Edgar R, Domrachev M, Lash AE. Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30(1):207–10.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Oh JE, Krapfenbauer K, Fountoulakis M, et al. Evidence for the existence of hypothetical proteins in human bronchial epithelial, fibroblast, amnion, lymphocyte, mesothelial and kidney cell lines. Amino Acids. 2004;26(1):9–18.PubMedCrossRefGoogle Scholar
  23. 23.
    Stoevesandt O, Taussig MJ, He M. Protein microarrays: high-throughput tools for proteomics. Expert Rev Proteomics. 2009;6(2):145–57.PubMedCrossRefGoogle Scholar
  24. 24.
    Natale DA, Arighi CN, Barker WC, et al. Framework for a protein ontology. BMC Bioinform. 2007;8(Suppl 9(Suppl 9)):S1.CrossRefGoogle Scholar
  25. 25.
    Wishart DS, Tzur D, Knox C, et al. HMDB: the human metabolome database. Nucleic Acids Res. 2007;35(Database issue):D521–6.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    King ZA, Lu J, Dräger A, et al. BiGG Models: a platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res. 2016;44(D1):D515–22.PubMedCrossRefGoogle Scholar
  27. 27.
    The International HapMap Project. Nature. 2003;426(6968):789–96.CrossRefGoogle Scholar
  28. 28.
  29. 29.
    Kaiser J. DNA sequencing. A plan to capture human diversity in 1000 genomes. Science. 2008;319(5862):395.PubMedCrossRefGoogle Scholar
  30. 30.
    1000 Genomes Project Consortium, Auton A, Brooks LD, et al. A global reference for human genetic variation. Nature. 2015;526(7571):68–74.CrossRefGoogle Scholar
  31. 31.
    Sudmant PH, Rausch T, Gardner EJ, et al. An integrated map of structural variation in 2,504 human genomes. Nature. 2015;526(7571):75–81.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    IGSR. The international genome sample resource. http://www.internationalgenome.org.
  33. 33.
    A Catalog of Published Genome-Wide Association Studies. http://www.genome.gov/gwastudies/#1.
  34. 34.
    MacArthur J, Bowler E, Cerezo M, et al. The new NHGRI-EBI catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res. 2017;45(D1):D896–901.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Stenson PD, Mort M, Ball EV, et al. The human gene mutation database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Hum Genet. 2014;133(1):1–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Bamford S, Dawson E, Forbes S, et al. The COSMIC (catalogue of somatic mutations in cancer) database and website. Br J Cancer. 2004;91(2):355–8.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    MITOMAP. A human mitochondrial genome database. http://www.mitomap.org.
  38. 38.
    What is the human variome project? Nat Genet. 2007; 39(4):423.Google Scholar
  39. 39.
    Cotton RG, Auerbach AD, Axton M, et al. GENETICS. The human variome project. Science. 2008;322(5903):861–2.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Cao R, Shi Y, Chen S, et al. dbSAP: single amino-acid polymorphism database for protein variation detection. Nucleic Acids Res. 2017;45(D1):D827–32.PubMedCrossRefGoogle Scholar
  41. 41.
    Phan L, Hsu J, LQM T, et al. dbVar structural variant cluster set for data analysis and variant comparison. F1000Res. 2016;5:673.PubMedCrossRefGoogle Scholar
  42. 42.
    Beck T, Hastings RK, Gollapudi S, et al. GWAS Central: a comprehensive resource for the comparison and interrogation of genome-wide association studies. Eur J Hum Genet. 2014;22(7):949–52.PubMedCrossRefGoogle Scholar
  43. 43.
    Cariaso M, Lennon G. SNPedia: a wiki supporting personal genome annotation, interpretation and analysis. Nucleic Acids Res. 2012;40(Database issue):D1308–12.PubMedCrossRefGoogle Scholar
  44. 44.
    Martin-Sanchez F, Iakovidis I, Norager S, et al. Synergy between medical informatics and bioinformatics: facilitating genomic medicine for future health care. J Biomed Inform. 2004;37(1):30–42.PubMedCrossRefGoogle Scholar
  45. 45.
    Butte AJ, Kohane IS. Creation and implications of a phenome-genome network. Nat Biotechnol. 2006;24(1):55–62.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Chen DP, Weber SC, Constantinou PS et al. Clinical arrays of laboratory measures, or “clinarrays,” built from an electronic health record enable disease subtyping by severity. AMIA Annu Symp Proc. 2007:115–119.Google Scholar
  47. 47.
    Butte AJ, Chen R. Finding disease-related genomic experiments within an international repository: first steps in translational bioinformatics. AMIA Annu Symp Proc. 2006:106–110.Google Scholar
  48. 48.
    Shah NH, Jonquet C, Chiang AP, et al. Ontology-driven indexing of public datasets for translational bioinformatics. BMC Bioinforma. 2009;10(Suppl 2(Suppl 2)):S1.CrossRefGoogle Scholar
  49. 49.
    Kahn MG, Weng C. Clinical research informatics: a conceptual perspective. J Am Med Inform Assoc. 2012;19(e1):e36–42.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Tenenbaum JD, Avillach P, Benham-Hutchins M, et al. An informatics research agenda to support precision medicine: seven key areas. J Am Med Inform Assoc. 2016;23(4):791–5.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Tenenbaum JD, Sansone S-A, Haendel M. A sea of standards for omics data: sink or swim? J Am Med Inform Assoc. 2014;21(2):200–3.PubMedCrossRefGoogle Scholar
  52. 52.
    Sam LT, Mendonca EA, Li J, et al. PhenoGO: an integrated resource for the multiscale mining of clinical and biological data. BMC Bioinforma. 2009;10(Suppl 2(Suppl 2)):S8.CrossRefGoogle Scholar
  53. 53.
    Liu CC, Hu J, Kalakrishnan M, et al. Integrative disease classification based on cross-platform microarray data. BMC Bioinforma. 2009;10(Suppl 1(Suppl 1)):S25.CrossRefGoogle Scholar
  54. 54.
    Pathak J, Solbrig HR, Buntrock JD, et al. LexGrid: a framework for representing, storing, and querying biomedical terminologies from simple to sublime. J Am Med Inform Assoc. 2009;16(3):305–15.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Whetzel PL, Noy NF, Shah NH, et al. BioPortal: enhanced functionality via new Web services from the national center for biomedical ontology to access and use ontologies in software applications. Nucleic Acids Res. 2011;39(Web Server issue):W541–5.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Mattingly CJ, Boyles R, Lawler CP, et al. Laying a community-based foundation for data-driven semantic standards in environmental health sciences. Environ Health Perspect. 2016;124(8):1136–40.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Burnett N, Gouripeddi R, Cummins M et al. Towards a molecular basis of exposomic research. AMIA joint summits on translational science proceedings AMIA Summit on Translational Science, San Francisco. 2018:320.Google Scholar
  58. 58.
    Hewett M, Oliver DE, Rubin DL, et al. PharmGKB: the pharmacogenetics knowledge base. Nucleic Acids Res. 2002;30(1):163–5.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Wilkinson MD, Dumontier M, Aalbersberg IJJ, et al. The FAIR guiding principles for scientific data management and stewardship. Sci Data. 2016;160018:3.Google Scholar
  60. 60.
    Gouripeddi R, Schultz D, Bradshaw R, Facelli J. FURTHeR: an infrastructure for clinical, translational and comparative effectiveness research. AMIA Annu Symp Proc, Washington, DC: 2013:513.Google Scholar
  61. 61.
    Chen X, Gururaj AE, Ozyurt B, et al. DataMed – an open source discovery index for finding biomedical datasets. J Am Med Inform Assoc. 2018;25(3):300–8.CrossRefGoogle Scholar
  62. 62.
    Sansone S-A, Gonzalez-Beltran A, Rocca-Serra P, et al. DATS, the data tag suite to enable discoverability of datasets. Sci Data. 2017;4:170059.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Murphy SN, Mendis ME, Berkowitz DA, et al. Integration of clinical and genetic data in the i2b2 architecture. AMIA Annu Symp Proc. 2006:1040.Google Scholar
  64. 64.
    Deshmukh VG, Meystre SM, Mitchell JA. Evaluating the informatics for integrating biology and the bedside system for clinical research. BMC Med Res Methodol. 2009;9(1):70.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Lee J-M, Ivanova EV, Seong IS, et al. Unbiased gene expression analysis implicates the huntingtin polyglutamine tract in extra-mitochondrial energy metabolism. PLoS Genet. 2007;3(8):e135.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Himes BE, Wu AC, Duan QL, et al. Predicting response to short-acting bronchodilator medication using Bayesian networks. Pharmacogenomics. 2009;10(9):1393–412.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
  68. 68.
    Saltz J, Oster S, Hastings S, et al. caGrid: design and implementation of the core architecture of the cancer biomedical informatics grid. Bioinformatics. 2006;22(15):1910–6.PubMedCrossRefGoogle Scholar
  69. 69.
    Amin W, Parwani AV, Schmandt L, et al. National mesothelioma virtual bank: a standard based biospecimen and clinical data resource to enhance translational research. BMC Cancer. 2008;8(1):236.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
  71. 71.
    Shabo A. The implications of electronic health record for personalized medicine. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2005;149((2):suppl):251–8.Google Scholar
  72. 72.
    Clinical Data Interchange Standards Consortium (CDISC). http://www.cdisc.org/.
  73. 73.
    Biomedical Research Integrated Domain Group (BRIDG). https://bridgmodel.nci.nih.gov/about-bridg.
  74. 74.
    Schenk PW, van Fessem MA, Verploegh-Van Rij S, et al. Association of graded allele-specific changes in CYP2D6 function with imipramine dose requirement in a large group of depressed patients. Mol Psychiatry. 2008;13(6):597–605.PubMedCrossRefGoogle Scholar
  75. 75.
    Loi S, Buyse M, Sotiriou C, Cardoso F. Challenges in breast cancer clinical trial design in the postgenomic era. Curr Opin Oncol. 2004;16(6):536–41.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Vogel CL, Cobleigh MA, Tripathy D, et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol. 2002;20(3):719–26.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Jahromi MM, Eisenbarth GS. Cellular and molecular pathogenesis of type 1A diabetes. Cell Mol Life Sci. 2007;64(7–8):865–72.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
  79. 79.
    Cancer Genome Anatomy Project. http://cgap.nci.nih.gov.
  80. 80.
    FDA-NCI Clinical Proteomics Program. http://home.ccr.cancer.gov/ncifdaproteomics/default.asp.
  81. 81.
    Dimitrakopoulos L, Prassas I, Diamandis EP, Charames GS. Onco-proteogenomics: multi-omics level data integration for accurate phenotype prediction. Crit Rev Clin Lab Sci. 2017;54(6):414–32.PubMedCrossRefGoogle Scholar
  82. 82.
    Mancinelli L, Cronin M, Sadée W. Pharmacogenomics: the promise of personalized medicine. AAPS PharmSci. 2000;2(1):E4–41.PubMedCrossRefGoogle Scholar
  83. 83.
    Leich E, Hartmann EM, Burek C, et al. Diagnostic and prognostic significance of gene expression profiling in lymphomas. APMIS. 2007;115(10):1135–46.PubMedCrossRefGoogle Scholar
  84. 84.
    Codony C, Crespo M, Abrisqueta P, et al. Gene expression profiling in chronic lymphocytic leukaemia. Best Pract Res Clin Haematol. 2009;22(2):211–22.PubMedCrossRefGoogle Scholar
  85. 85.
    Chan KS, Espinosa I, Chao M, et al. Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. Proc Natl Acad Sci U S A. 2009;106(33):14016–21.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Hoffman AC, Danenberg KD, Taubert H, et al. A three-gene signature for outcome in soft tissue sarcoma. Clin. Cancer Res. 2009;15(16):5191–8.PubMedCrossRefGoogle Scholar
  87. 87.
    Gold KA, Kim ES. Role of molecular markers and gene profiling in head and neck cancers. Curr Opin Oncol. 2009;21(3):206–11.PubMedCrossRefGoogle Scholar
  88. 88.
    Petillo D, Kort EJ, Anema J, et al. MicroRNA profiling of human kidney cancer subtypes. Int J Oncol. 2009;35(1):109–14.PubMedCrossRefGoogle Scholar
  89. 89.
    Yoshihara K, Tajima A, Komata D, et al. Gene expression profiling of advanced-stage serous ovarian cancers distinguishes novel subclasses and implicates ZEB2 in tumor progression and prognosis. Cancer Sci. 2009;100(8):1421–8.PubMedCrossRefGoogle Scholar
  90. 90.
    Volchenboum SL, Cohn SL. Are molecular neuroblastoma classifiers ready for prime time? Lancet Oncol. 2009;10(7):641–2.PubMedCrossRefGoogle Scholar
  91. 91.
    Vermeulen J, De Preter K, Naranjo A, et al. Predicting outcomes for children with neuroblastoma using a multigene-expression signature: a retrospective SIOPEN/COG/GPOH study. Lancet Oncol. 2009;10(7):663–71.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Ugurel S, Utikal J, Becker JC. Tumor biomarkers in melanoma. Cancer Control. 2009;16(3):219–24.PubMedCrossRefGoogle Scholar
  93. 93.
    Kim C, Taniyama Y, Paik S. Gene expression-based prognostic and predictive markers for breast cancer: a primer for practicing pathologists. Arch Pathol Lab Med. 2009;133(6):855–9.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Sotiriou C, Pusztai L. Gene-expression signatures in breast cancer. N Engl J Med. 2009;360(8):790–800.PubMedCrossRefGoogle Scholar
  95. 95.
    Rabson AB, Weissmann D. From microarray to bedside: targeting NF-kappaB for therapy of lymphomas. Clin Cancer Res. 2005;11(1):2–6.PubMedGoogle Scholar
  96. 96.
    XDx’s AlloMap(R) Gene Expression Test Cleared By U.S. FDA For Heart Transplant ‘Recipients. http://www.medicalnewstoday.com/articles/119546.php.
  97. 97.
    Khatri P, Sarwal MM. Using gene arrays in diagnosis of rejection. Curr Opin Organ Transplant. 2009;14(1):34–9.PubMedCrossRefGoogle Scholar
  98. 98.
    van Baarsen LG, Bos CL, van der Pouw Kraan TC, Verweij CL. Transcription profiling of rheumatic diseases. Arthritis Res Ther. 2009;11(1):207.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Bauer JW, Bilgic H, Baechler EC. Gene-expression profiling in rheumatic disease: tools and therapeutic potential. Nat Rev Rheumatol. 2009;5(5):257–65.PubMedCrossRefGoogle Scholar
  100. 100.
    Lin B, Malanoski AP. Resequencing arrays for diagnostics of respiratory pathogens. Methods Mol Biol. 2009;529(Chapter 15):231–57.PubMedCrossRefGoogle Scholar
  101. 101.
    Individualize Drug Dosing Based on Metabolic Profiling with the AmpliChip CYP450 Test. http://www.amplichip.us/.
  102. 102.
    23andMe. Genetics just got personal. https://www.23andme.com/.
  103. 103.
    There’s DNA. And then there’s what you do with it. http://www.thermofisher.com/us/en/home.html.
  104. 104.
    deCODE your health. https://www.decode.com.
  105. 105.
    PatientsLikeMe. Patients helping patients live better every day. http://www.patientslikeme.com/.
  106. 106.
    Kaput J, Rodriguez RL. Nutritional genomics: the next frontier in the postgenomic era. Physiol Genomics. 2004;16(2):166–77.PubMedCrossRefGoogle Scholar
  107. 107.
    Cannon-Albright LA, Thomas A, Goldgar DE, et al. Familiality of cancer in Utah. Cancer Res. 1994;54(9):2378–85.PubMedGoogle Scholar
  108. 108.
    Hamshere ML, Schulze TG, Schumacher J, et al. Mood-incongruent psychosis in bipolar disorder: conditional linkage analysis shows genome-wide suggestive linkage at 1q32.3, 7p13 and 20q13.31. Bipolar Disord. 2009;11(6):610–20.PubMedCrossRefGoogle Scholar
  109. 109.
    Hamshere ML, Segurado R, Moskvina V, et al. Large-scale linkage analysis of 1302 affected relative pairs with rheumatoid arthritis. BMC Proc. 2007;1(Suppl 1):S100.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Bos JM, Towbin JA, Ackerman MJ. Diagnostic, prognostic, and therapeutic implications of genetic testing for hypertrophic cardiomyopathy. J Am Coll Cardiol. 2009;54(3):201–11.PubMedCrossRefGoogle Scholar
  111. 111.
    la Fuente de M, Csaba N, Garcia-Fuentes M, Alonso MJ. Nanoparticles as protein and gene carriers to mucosal surfaces. Nanomedicine (Lond). 2008;3(6):845–57.CrossRefGoogle Scholar
  112. 112.
    Emerich DF, Thanos CG. Targeted nanoparticle-based drug delivery and diagnosis. J Drug Target. 2007;15(3):163–83.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Martin-Sanchez F, Gray K, Bellazzi R, Lopez-Campos G. Exposome informatics: considerations for the design of future biomedical research information systems. J Am Med Inform Assoc. 2014;21(3):386–90.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Wen J, Gouripeddi R, Facelli JC. Metadata discovery of heterogeneous biomedical datasets using token-based features. IT Convergence and Security 2017, Singapore: Springer. Dermatol Sin. 2018;449(6):60–7.Google Scholar
  115. 115.
    University of Utah PRISMS informatics center. http://prisms.bmi.utah.edu/project/.

Copyright information

© Springer International Publishing 2019

Authors and Affiliations

  1. 1.Biomedical Informatics CenterMedical University of South CarolinaCharlestonUSA
  2. 2.Department of Biomedical InformaticsUniversity of UtahSalt Lake CityUSA

Personalised recommendations