Advertisement

Back to the Future: The Evolution of Pharmacovigilance in the Age of Digital Healthcare

  • Michael A. IbaraEmail author
  • Rachel L. Richesson
Chapter
Part of the Health Informatics book series (HI)

Abstract

Pharmacovigilance originated in an attempt to better understand the safety of drugs so that we can protect individual patients and consumers. Over time the development of the field has been heavily influenced by the need for the pharmaceutical industry to fulfill regulatory requirements, with the unintended result of losing track of the individual patient. With the onset of digitized healthcare data, we have an opportunity to reunite the industrial and personal in pharmacovigilance. Informatics can help with this by focusing future work on a pharmacovigilance research agenda.

Keywords

Pharmacovigilance Informatics Adverse drug events Postmarketing surveillance Pharmacoepidemiology Quantitative signal detection Risk management plans 

References

  1. 1.
    Ai H, Chen W, Zhang L, Huang L, Yin Z, Hu H, Zhao Q, Zhao J, Liu H. Predicting drug-induced liver injury using ensemble learning methods and molecular fingerprints. Toxicol Sci. 2018;  https://doi.org/10.1093/toxsci/kfy121.CrossRefGoogle Scholar
  2. 2.
    Andrews EB, Moore N. Mann’s pharmacovigilance. 3rd ed. Chichester: Wiley-Blackwell; 2014.CrossRefGoogle Scholar
  3. 3.
    Banda JM, Lee E, Vanguri RS, Tatonetti NP, Ryan PB, Shah NH. A curated and standardized adverse drug event resource to accelerate drug safety research. Sci Data. 2016;3:160026.CrossRefGoogle Scholar
  4. 4.
    Bari A. Severe toxicity of Fialuridine (FIAU). N Engl J Med. 1996;334(17):1135; author reply 1137–38.CrossRefGoogle Scholar
  5. 5.
    Bean DM, Honghan W, Iqbal E, Dzahini O, Ibrahim ZM, Broadbent M, Stewart R, Dobson RJB. Knowledge graph prediction of unknown adverse drug reactions and validation in electronic health records. Sci Rep. 2017;7(1):16416.CrossRefGoogle Scholar
  6. 6.
    Boland MR, Jacunski A, Lorberbaum T, Romano JD, Moskovitch R, Tatonetti NP. Systems biology approaches for identifying adverse drug reactions and elucidating their underlying biological mechanisms. Wiley Interdiscip Rev Syst Biol Med. 2016;8(2):104–22.CrossRefGoogle Scholar
  7. 7.
    Cai M-C, Xu Q, Pan Y-J, Pan W, Ji N, Li Y-B, Jin H-J, Liu K, Ji Z-L. ADReCS: an ontology database for aiding standardization and hierarchical classification of adverse drug reaction terms. Nucleic Acids Res. 2015;43(D1):D907–13.CrossRefGoogle Scholar
  8. 8.
    Chilcott M. How data analytics and artificial intelligence are changing the pharmaceutical industry. Forbes Mag. May 10, 2018. 2018. https://www.forbes.com/sites/forbestechcouncil/2018/05/10/how-data-analytics-and-artificial-intelligence-are-changing-the-pharmaceutical-industry/.
  9. 9.
    Cimino JJ, Clayton PD, Hripcsak G, Johnson SB. Knowledge-based approaches to the maintenance of a large controlled medical terminology. J Am Med Inform Assoc JAMIA. 1994;1(1):35–50.CrossRefGoogle Scholar
  10. 10.
    Dua S, Rajendra Acharya U, Dua P. Machine learning in healthcare informatics. Intelligent Systems Reference Library. 2014. https://link.springer.com/book/10.1007%2F978-3-642-40017-9.CrossRefGoogle Scholar
  11. 11.
    Ethier J-F, Dameron O, Curcin V, McGilchrist MM, Verheij RA, Arvanitis TN, Taweel A, Delaney BC, Burgun A. A unified structural/terminological interoperability framework based on LexEVS: application to TRANSFoRm. J Am Med Inform Assoc: JAMIA. 2013;20(5):986–94.CrossRefGoogle Scholar
  12. 12.
    Frid AA, Matthews EJ. Prediction of drug-related cardiac adverse effects in humans – B: use of QSAR programs for early detection of drug-induced cardiac toxicities. Regul Toxicol Pharmacol: RTP. 2010;56(3):276–89.CrossRefGoogle Scholar
  13. 13.
    Gershgorn D. The data that transformed AI research – and possibly the world. Quartz. Quartz. July 26, 2017. 2017 https://qz.com/1034972/the-data-that-changed-the-direction-of-ai-research-and-possibly-the-world/.
  14. 14.
    Gruber TR. A translation approach to portable ontology specifications. Knowl Acquis. 1993;5(2):199–220.CrossRefGoogle Scholar
  15. 15.
    Härmark L, van Grootheest AC. Pharmacovigilance: methods, recent developments and future perspectives. Eur J Clin Pharmacol. 2008;64(8):743–52.  https://doi.org/10.1007/s00228-008-0475-9. Epub 2008 Jun 4. https://www.ncbi.nlm.nih.gov/pubmed/18523760.CrossRefPubMedGoogle Scholar
  16. 16.
    Harpaz R, DuMouchel W, Shah NH, Madigan D, Ryan P, Friedman C. Novel data-mining methodologies for adverse drug event discovery and analysis. Clin Pharmacol Ther. 2012;91(6):1010–21.CrossRefGoogle Scholar
  17. 17.
    Henegar C, Bousquet C, Louët AL-L, Degoulet P, Jaulent M-C. Building an ontology of adverse drug reactions for automated signal generation in pharmacovigilance. Comput Biol Med. 2006;36(7):748–67.CrossRefGoogle Scholar
  18. 18.
    Ho T-B, Le L, Thai DT, Taewijit S. Data-driven approach to detect and predict adverse drug reactions. Curr Pharm Des. 2016;22(23):3498–526.CrossRefGoogle Scholar
  19. 19.
  20. 20.
    Huang L-C, Wu X, Chen JY. Predicting adverse side effects of drugs. BMC Genomics. 2011;12(5):S11.CrossRefGoogle Scholar
  21. 21.
    ImageNet Large Scale Visual Recognition Competition (ILSVRC). n.d. Accessed 2 Jul 2018. http://www.image-net.org/challenges/LSVRC/.
  22. 22.
    Institute of Medicine (US) Committee to Review the Fialuridine (FIAU/FIAC) Clinical Trials. In: Manning FJ, Swartz M, editors. Review of the fialuridine (FIAU) clinical trials. Washington, DC: National Academies Press (US); 1995.Google Scholar
  23. 23.
    Jamal S, Goyal S, Shanker A, Grover A. Predicting neurological adverse drug reactions based on biological, chemical and phenotypic properties of drugs using machine learning models. Sci Rep. 2017;7(1):872.CrossRefGoogle Scholar
  24. 24.
    Jiang M, Chen Y, Mei L, Trent Rosenbloom S, Mani S, Denny JC, Hua X. A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries. J Am Med Inform Assoc: JAMIA. 2011;18(5):601–6.CrossRefGoogle Scholar
  25. 25.
    Jiang G, Liu H, Solbrig HR, Chute CG. ADEpedia 2.0: integration of normalized adverse drug events (ADEs) knowledge from the UMLS. In:AMIA joint summits on translational science proceedings. AMIA joint summits on translational science 2013 (March); 2013. p. 100–4.Google Scholar
  26. 26.
    Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, Wang Y, Dong Q, Shen H, Wang Y. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. 2017;2:230–43. September, svn – 2017–000101.CrossRefGoogle Scholar
  27. 27.
    Kim E, Nam H. Prediction models for drug-induced hepatotoxicity by using weighted molecular fingerprints. BMC Bioinforma. 2017;18(7):227.CrossRefGoogle Scholar
  28. 28.
    Kotsampasakou E, Montanari F, Ecker GF. Predicting drug-induced liver injury: the importance of data curation. Toxicology. 2017;389:139–45.CrossRefGoogle Scholar
  29. 29.
    Koutkias VG, Jaulent M-C. Computational approaches for pharmacovigilance signal detection: toward integrated and semantically-enriched frameworks. Drug Saf: Int J Med Toxicol Drug Experience. 2015;38(3):219–32.CrossRefGoogle Scholar
  30. 30.
    Kovacevic A, Dehghan A, Filannino M, Keane JA, Nenadic G. Combining rules and machine learning for extraction of temporal expressions and events from clinical narratives. J Am Med Inform Assoc: JAMIA. 2013;20(5):859–66.CrossRefGoogle Scholar
  31. 31.
    Kuhn TS. The structure of scientific revolutions. Chicago: University of Chicago Press; 2012. pu3430623_3430810. April 2012. http://www.press.uchicago.edu/ucp/books/book/chicago/S/bo13179781.html.CrossRefGoogle Scholar
  32. 32.
    Linder JA, Haas JS, Iyer A, Labuzetta MA, Ibara M, Celeste M, Getty G, Bates DW. Secondary use of electronic health record data: spontaneous triggered adverse drug event reporting. Pharmacoepidemiol Drug Saf. 2010;19(12):1211–5.  https://doi.org/10.1002/pds.2027.CrossRefPubMedGoogle Scholar
  33. 33.
    Lynch T, Price A. The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am Fam Physician. 2007;76(3):391–6.PubMedGoogle Scholar
  34. 34.
    Moghaddass R. The factorized self-controlled case series method: an approach for estimating the effects of many drugs on many outcomes. n.d.Google Scholar
  35. 35.
    Murff HJ, Patel VL, Hripcsak G, Bates DW. Detecting adverse events for patient safety research: a review of current methodologies. J Biomed Inform. 2003;36(1–2):131–43.CrossRefGoogle Scholar
  36. 36.
    Natsiavas P, Boyce RD, Jaulent M-C, Koutkias V. OpenPVSignal: advancing information search, sharing and reuse on pharmacovigilance signals via FAIR principles and semantic web technologies. Front Pharmacol. 2018;9:609.CrossRefGoogle Scholar
  37. 37.
    Naughton J. How a 1930s theory explains the economics of the internet. The Guardian. September 7, 2013. 2013. http://www.theguardian.com/technology/2013/sep/08/1930s-theory-explains-economics-internet.
  38. 38.
    OMOP Common Data Model – OHDSI. n.d. Accessed 8 Mar 2018. https://www.ohdsi.org/data-standardization/the-common-data-model/.
  39. 39.
    Pacaci A, Gonul S, Anil Sinaci A, Yuksel M, Erturkmen GBL. A semantic transformation methodology for the secondary use of observational healthcare data in postmarketing safety studies. Front Pharmacol. 2018;9:435.CrossRefGoogle Scholar
  40. 40.
    PatientsLikeMe and the FDA Sign Research Collaboration Agreement|PatientsLikeMe. n.d. Accessed 28 June 2018. http://news.patientslikeme.com/press-release/patientslikeme-and-fda-sign-research-collaboration-agreement.
  41. 41.
    [PDF]Guidance for Industry Postmarketing Adverse Event Reporting … – FDA. n.d. https://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm071982.pdf.
  42. 42.
  43. 43.
    [PDF]NoNIE Guidance on Impact Evaluation – World Bank Group. n.d. http://siteresources.worldbank.org/EXTOED/Resources/nonie_guidance.pdf.
  44. 44.
    [PDF]The Nature of the Firm R. H. Coase Economica, New Series, Vol. 4, No. n.d. https://www.colorado.edu/ibs/es/alston/econ4504/readings/The%20Nature%20of%20the%20Firm%20by%20Coase.pdf.
  45. 45.
    Pérez-Nueno VI, Souchet M, Karaboga AS, Ritchie DW. GESSE: predicting drug side effects from drug–target relationships. J Chem Inf Model. 2015;55(9):1804–23.CrossRefGoogle Scholar
  46. 46.
    Personeni G, Bresso E, Devignes M-D, Dumontier M, Smaïl-Tabbone M, Coulet A. Discovering associations between adverse drug events using pattern structures and ontologies. J Biomed Semant. 2017;8(1):29.CrossRefGoogle Scholar
  47. 47.
    Quintiles Launches Patient Website iGuard for Drug Safety Service – CenterWatch News Online. CenterWatch news online. September 13, 2007. 2007. https://www.centerwatch.com/news-online/2007/09/13/quintiles-launches-patient-website-iguard-for-drug-safety-service/.
  48. 48.
    Reich C, Ryan PB, Stang PE, Rocca M. Evaluation of alternative standardized terminologies for medical conditions within a network of observational healthcare databases. J Biomed Inform. 2012;45(4):689–96.CrossRefGoogle Scholar
  49. 49.
    Research, Center for Drug Evaluation and. Guidances (drugs) – E2B(R3) electronic transmission of individual case safety reports implementation guide – data elements and message specification; and appendix to the implementation guide – backwards and forwards compatibility. n.d. https://www.fda.gov/drugs/guidancecomplianceregulatoryinformation/guidances/ucm274966.htm.
  50. 50.
    Schroll JB, Maund E, Gøtzsche PC. Challenges in coding adverse events in clinical trials: a systematic review. PLoS One. 2012;7(7):e41174.CrossRefGoogle Scholar
  51. 51.
    Schuemie MJ, Ryan PB, Hripcsak G, Madigan D, Suchard MA. A systematic approach to improving the reliability and scale of evidence from health care data. 2018. arXiv [stat.AP]. arXiv. http://arxiv.org/abs/1803.10791.
  52. 52.
    Shaddox TR, Ryan PB, Schuemie MJ, Madigan D, Suchard MA. Hierarchical models for multiple, rare outcomes using massive observational healthcare databases. Stat Anal Data Min. 2016;9(4):260–8.CrossRefGoogle Scholar
  53. 53.
    St Sauver JL, Olson JE, Roger VL, Nicholson WT, Black JL 3rd, Takahashi PY, Caraballo PJ, et al. CYP2D6 phenotypes are associated with adverse outcomes related to opioid medications. Pharmacogenomics Personalized Med. 2017;10:217–27.CrossRefGoogle Scholar
  54. 54.
    Stiensmeier-Pelster J, Heckhausen H. Causal attribution of behavior and achievement. In: Heckhausen J, Heckhausen H, editors. Motivation and action. Cham: Springer International Publishing; 2018. p. 623–78.CrossRefGoogle Scholar
  55. 55.
    Talbot J, Aronson JK, editors. Stephens’ detection and evaluation of adverse drug reactions: principles and practice. 6th ed. Chichester: Wiley; 2011.Google Scholar
  56. 56.
    Tatonetti NP. The next generation of drug safety science: coupling detection, corroboration, and validation to discover novel drug effects and drug-drug interactions. Clin Pharmacol Ther. 2018;103(2):177–9.CrossRefGoogle Scholar
  57. 57.
    The Cure That Killed | DiscoverMagazine.com. Discover Magazine. n.d. Accessed 4 Jul 2018. http://discovermagazine.com/1994/mar/thecurethatkille345.
  58. 58.
    The MIT Press, editor. The sciences of the artificial. 3rd ed: The MIT Press; n.d. Accessed 29 June 2018. https://mitpress.mit.edu/books/sciences-artificial-third-edition.
  59. 59.
    Voss EA, Boyce RD, Ryan PB, van der Lei J, Rijnbeek PR, Schuemie MJ. Accuracy of an automated knowledge base for identifying drug adverse reactions. J Biomed Inform. 2017;66:72–81.CrossRefGoogle Scholar
  60. 60.
    Wang Z, Clark NR, Ma’ayan A. Drug-induced adverse events prediction with the LINCS L1000 data. Bioinformatics. 2016;32(15):2338–45.CrossRefGoogle Scholar
  61. 61.
  62. 62.
    Wikipedia contributors. ImageNet. Wikipedia, the free encyclopedia. June 21, 2018. 2018a. https://en.wikipedia.org/w/index.php?title=ImageNet&oldid=846928201.
  63. 63.
    Wikipedia contributors. List of datasets for machine learning research. Wikipedia, the free encyclopedia. July 1, 2018. 2018b. https://en.wikipedia.org/w/index.php?title=List_of_datasets_for_machine_learning_research&oldid=848338519.
  64. 64.
    WuXi Global Forum Team. Artificial intelligence already revolutionizing pharma. January. 2018. http://www.pharmexec.com/artificial-intelligence-already-revolutionizing-pharma.
  65. 65.
    Yang H, Sun L, Li W, Liu G, Tang Y. In silico prediction of chemical toxicity for drug design using machine learning methods and structural alerts. Front Chem. 2018;6:30.CrossRefGoogle Scholar
  66. 66.
    Yuksel M, Gonul S, Erturkmen GBL, Sinaci AA, Invernizzi P, Facchinetti S, Migliavacca A, Bergvall T, Depraetere K, De Roo J. An interoperability platform enabling reuse of electronic health records for signal verification studies. Biomed Res Int. 2016;2016:1–18.  https://doi.org/10.1155/2016/6741418.CrossRefGoogle Scholar
  67. 67.
    Zhang W, Liu F, Luo L, Zhang J. Predicting drug side effects by multi-label learning and ensemble learning. BMC Bioinforma. 2015;16:365.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2019

Authors and Affiliations

  1. 1.Elligo Health ResearchPrincetonUSA
  2. 2.Division of Clinical Systems and AnalyticsDuke University School of NursingDurhamUSA
  3. 3.Duke Center for Health InformaticsDurhamUSA

Personalised recommendations