Advertisement

What Processes Underlie the Relation Between Spatial Skill and Mathematics?

  • Christopher Young
  • Susan C. Levine
  • Kelly S. S. Mix
Chapter
Part of the Research in Mathematics Education book series (RME)

Abstract

In this chapter, we review approaches to modeling a connection between spatial and mathematical thinking across development. We critically evaluate the strengths and weaknesses of factor analyses, meta-analyses, and experimental literatures. We examine those studies that set out to describe the nature and number of spatial and mathematical abilities and specific connections among these abilities, especially those that include children as participants. We also find evidence of strong spatial-mathematical connections and transfer from spatial interventions to mathematical understanding. Finally, we map out the kinds of studies that could enhance our understanding of the mechanism by which spatial and mathematical processing are connected and the principles by which mathematical outcomes could be enhanced through spatial training in educational settings.

Keywords

Process modeling Cognitive processes Factor analysis Spatial skills Spatial cognition Cognitive development Mathematical concepts Latent structure Spatial visualization Cognitive science Education Spatial ability Mathematical ability Individual differences Intelligence Number concepts Common Core State Standards for Mathematics Exploratory factor analysis Confirmatory factor analysis Multidimensionality Meta-analysis 

References

  1. Aiken, L. R., Jr. (1970). Attitudes toward mathematics. Review of Educational Research, 40(4), 551–596.CrossRefGoogle Scholar
  2. Armstrong, J. S., & Soelberg, P. (1968). On the interpretation of factor analysis. Psychological Bulletin, 70(5), 361.CrossRefGoogle Scholar
  3. Ashcraft, M. H. (1987). Children’s knowledge of simple arithmetic: A developmental model and simulation. In Formal methods in developmental psychology (pp. 302–338). New York: Springer.CrossRefGoogle Scholar
  4. Atit, K., Shipley, T. F., & Tikoff, B. (2013). Twisting space: Are rigid and non-rigid mental transformations separate spatial skills? Cognitive Processing, 14(2), 163–173.CrossRefGoogle Scholar
  5. Baddeley, A. D., & Hitch, G. (1974). Working memory. Psychology of Learning and Motivation, 8, 47–89.CrossRefGoogle Scholar
  6. Baroody, A. J. (2003). The development of adaptive expertise and flexibility: The integration of conceptual and procedural knowledge. Mahwah, NJ: Erlbaum.Google Scholar
  7. Barth, H., Beckmann, L., & Spelke, E. S. (2008). Nonsymbolic, approximate arithmetic in children: Abstract addition prior to instruction. Developmental Psychology, 44(5), 1466.CrossRefGoogle Scholar
  8. Battista, M. T. (1990). Spatial visualization and gender differences in high school geometry. Journal for Research in Mathematics Education, 21, 47–60.CrossRefGoogle Scholar
  9. Beery, K. E., & Beery, N. A. (2004). The Beery-Buktenica developmental test of visual-motor integration: Administration, scoring, and teaching manual (5th ed.). Minneapolis, MN: NCS Pearson.Google Scholar
  10. Bethell-Fox, C. E., & Shepard, R. N. (1988). Mental rotation: Effects of stimulus complexity and familiarity. Journal of Experimental Psychology: Human Perception and Performance, 14(1), 12.Google Scholar
  11. Bollen, K. A. (1989). A new incremental fit index for general structural equation models. Sociological Methods & Research, 17(3), 303–316.CrossRefGoogle Scholar
  12. Booth, J. L., & Siegler, R. S. (2006). Developmental and individual differences in pure numerical estimation. Developmental Psychology, 42(1), 189.CrossRefGoogle Scholar
  13. Boyer, T. W., & Levine, S. C. (2012). Child proportional scaling: Is 1/3= 2/6= 3/9= 4/12? Journal of Experimental Child Psychology, 111(3), 516–533.CrossRefGoogle Scholar
  14. Broadbent, D. E. (2018). Successive responses to simultaneous stimuli. Quarterly Journal of Experimental Psychology, 8(4), 145–152.CrossRefGoogle Scholar
  15. Browne, M. W. (2010). An overview of analytic rotation in exploratory factor analysis. Multivariate Behavioral Research, 36(1), 111–150.CrossRefGoogle Scholar
  16. Bruce, C. D., & Hawes, Z. (2015). The role of 2D and 3D mental rotation in mathematics for young children: What is it? Why does it matter? And what can we do about it? ZDM, 47(3), 331–343.CrossRefGoogle Scholar
  17. Bull, R., Espy, K. A., & Wiebe, S. A. (2008). Short-term memory, working memory, and executive functioning in preschoolers: Longitudinal predictors of mathematical achievement at age 7 years. Developmental Neuropsychology, 33(3), 205–228.CrossRefGoogle Scholar
  18. Carriedo, N., Corral, A., Montoro, P. R., Herrero, L., & Rucián, M. (2016). Development of the updating executive function: From 7-year-olds to young adults. Developmental Psychology, 52(4), 666.CrossRefGoogle Scholar
  19. Carr, M., Steiner, H. H., Kyser, B., & Biddlecomb, B. (2008). A comparison of predictors of early emerging gender differences in mathematics competency. Learning and Individual Differences, 18(1), 61–75.CrossRefGoogle Scholar
  20. Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies. Cambridge University Press.Google Scholar
  21. Casey, M. B., Nuttall, R., Pezaris, E., & Benbow, C. P. (1995). The influence of spatial ability on gender differences in mathematics college entrance test scores across diverse samples. Developmental Psychology, 31(4), 697.CrossRefGoogle Scholar
  22. Casey, M. B., Nuttall, R. L., & Pezaris, E. (2001). Spatial-mechanical reasoning skills versus mathematics self-confidence as mediators of gender differences on mathematics subtests using cross-national gender-based items. Journal for Research in Mathematics Education, 32, 28–57.CrossRefGoogle Scholar
  23. Casey, B. M., Andrews, N., Schindler, H., Kersh, J. E., Samper, A., & Copley, J. (2008). The development of spatial skills through interventions involving block building activities. Cognition and Instruction, 26(3), 269–309.CrossRefGoogle Scholar
  24. Chatterjee, A. (2008, August). The neural organization of spatial thought and language. In Seminars in speech and language (Vol. 29, No. 3, pp. 226–238). Thieme Medical Publishers.Google Scholar
  25. Cheng, Y. L., & Mix, K. S. (2014). Spatial training improves children’s mathematics ability. Journal of Cognition and Development, 15(1), 2–11.CrossRefGoogle Scholar
  26. Cheng, Y.-L., Mix, K. S., Reckase, M. D., Levine, S. C., & Freer, D. (under review). The Dimensionality of Visuo- Spatial Working Memory and Arithmetic Computation in Third Grade Students. Cognitive Science. Google Scholar
  27. Clark III, H. T. (1988). Cognitive Style and Competence in Mathematics Problem Solving.Google Scholar
  28. Cliff, N., & Pennell, R. (1967). The influence of communality, factor strength, and loading size on the sampling characteristics of factor loadings. Psychometrika, 32(3), 309–326.CrossRefGoogle Scholar
  29. Coleman, R.H. (1960) An analysis of certain components of mathematical ability and an attempt to predict mathematical achievement in a specific situation. Doctoral dissertation, Indiana University, University Microfilms, Ann Arbor, MI (1956), p. 945 No. 17.Google Scholar
  30. Common Core State Standards Initiative. (2010). Common Core State Standards for Mathematics (CCSSM). Washington, DC: National Governors Association Center for Best Practices and the Council of Chief State School Officers.Google Scholar
  31. Congdon, E. L., Novack, M. A., Brooks, N., Hemani-Lopez, N., O’Keefe, L., & Goldin-Meadow, S. (2017). Better together: Simultaneous presentation of speech and gesture in math instruction supports generalization and retention. Learning and instruction, 50, 65–74.CrossRefGoogle Scholar
  32. Cooper, L. A., & Shepard, R. N. (1973). Chronometric studies of the rotation of mental images. In Visual information processing (pp. 75–176).CrossRefGoogle Scholar
  33. Corballis, M. C. (1988). Recognition of disoriented shapes. Psychological Review, 95(1), 115.CrossRefGoogle Scholar
  34. Davidson, P. M. (1987). Early function concepts: Their development and relation to certain mathematical and logical abilities. Child Development, 58, 1542–1555.CrossRefGoogle Scholar
  35. Delgado, A. R., & Prieto, G. (2004). Cognitive mediators and sex-related differences in mathematics. Intelligence, 32(1), 25–32.CrossRefGoogle Scholar
  36. DeLoache, J. S., Uttal, D. H., & Pierroutsakos, S. L. (1998). The development of early symbolization: Educational implications. Learning and Instruction, 8(4), 325–339.CrossRefGoogle Scholar
  37. Doumas, L. A., Hummel, J. E., & Sandhofer, C. M. (2008). A theory of the discovery and predication of relational concepts. Psychological Review, 115(1), 1.CrossRefGoogle Scholar
  38. Dulaney, A., Vasilyeva, M., & O'Dwyer, L. (2015). Individual differences in cognitive resources and elementary school mathematics achievement: Examining the roles of storage and attention. Learning and Individual Differences, 37, 55–63.CrossRefGoogle Scholar
  39. Ecker, U. K., Lewandowsky, S., & Oberauer, K. (2014). Removal of information from working memory: A specific updating process. Journal of Memory and Language, 74, 77–90.CrossRefGoogle Scholar
  40. Edens, K. M., & Potter, E. F. (2013). An exploratory look at the relationships among math skills, motivational factors and activity choice. Early Childhood Education Journal, 41(3), 235–243.CrossRefGoogle Scholar
  41. Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307–314.CrossRefGoogle Scholar
  42. Foley, A. E., Vasilyeva, M., & Laski, E. V. (2017). Children’s use of decomposition strategies mediates the visuospatial memory and arithmetic accuracy relation. British Journal of Developmental Psychology, 35(2), 303–309.CrossRefGoogle Scholar
  43. Frick, A., Möhring, W., & Newcombe, N. S. (2014). Picturing perspectives: Development of perspective-taking abilities in 4-to 8-year-olds. Frontiers in Psychology, 5, 386.CrossRefGoogle Scholar
  44. Gerbing, D. W., & Hamilton, J. G. (1996). Viability of exploratory factor analysis as a precursor to confirmatory factor analysis. Structural Equation Modeling: A Multidisciplinary Journal, 3(1), 62–72.CrossRefGoogle Scholar
  45. Ginsburg, H. P., & Baroody, A. J. (2003). Test of early mathematics ability. Austin, TX: PRO-ED.Google Scholar
  46. Goldin-Meadow, S., Cook, S. W., & Mitchell, Z. A. (2009). Gesturing gives children new ideas about math. Psychological Science, 20(3), 267–272.CrossRefGoogle Scholar
  47. Guilford, J. P. (1967). The nature of human intelligence. New York, NY, US: McGraw-Hill.Google Scholar
  48. Gunderson, E. A., Ramirez, G., Levine, S. C., & Beilock, S. L. (2012). The role of parents and teachers in the development of gender-related math attitudes. Sex Roles, 66(3–4), 153–166.CrossRefGoogle Scholar
  49. Hair, J. F., Jr., Anderson, R. E., Tatham, R. L., & Black, W. C. (1995). Multivariate data analysis with readings. Upper Saddle River, NJ: Prentice Hall.Google Scholar
  50. Hawes, Z., Moss, J., Caswell, B., & Poliszczuk, D. (2015). Effects of mental rotation training on children’s spatial and mathematics performance: A randomized controlled study. Trends in Neuroscience and Education, 4(3), 60–68.CrossRefGoogle Scholar
  51. Hegarty, M., & Kozhevnikov, M. (1999). Types of visual–spatial representations and mathematical problem solving. Journal of Educational Psychology, 91(4), 684.CrossRefGoogle Scholar
  52. Hegarty, M., Montello, D. R., Richardson, A. E., Ishikawa, T., & Lovelace, K. (2006). Spatial abilities at different scales: Individual differences in aptitude-test performance and spatial-layout learning. Intelligence, 34(2), 151–176.CrossRefGoogle Scholar
  53. Hegarty, M., & Waller, D. (2004). A dissociation between mental rotation and perspective-taking spatial abilities. Intelligence, 32(2), 175–191.CrossRefGoogle Scholar
  54. Hegarty, M., & Waller, D. (2005). Individual differences in spatial abilities. In P. Shah & A. Miyake (Eds.), The Cambridge handbook of visuospatial thinking (pp. 121–169). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  55. Henson, R. N. (1998). Short-term memory for serial order: The start-end model. Cognitive Psychology, 36(2), 73–137.CrossRefGoogle Scholar
  56. Hresko, W. P., Schlieve, P. L., Herron, S. R., Swain, C., & Sherbenou, R. J. (2003). Comprehensive mathematical abilities test. Austin, TX: PRO-ED.Google Scholar
  57. Huttenlocher, J., Newcombe, N., & Vasilyeva, M. (1999). Spatial scaling in young children. Psychological Science, 10(5), 393–398.CrossRefGoogle Scholar
  58. Huttenlocher, J., & Presson, C. C. (1973). Mental rotation and the perspective problem. Cognitive Psychology, 4(2), 277–299.CrossRefGoogle Scholar
  59. Johnson, M. K., Raye, C. L., Mitchell, K. J., Greene, E. J., Cunningham, W. A., & Sanislow, C. A. (2005). Using fMRI to investigate. Cognitive, Affective, & Behavioral Neuroscience, 5(3), 339–361.CrossRefGoogle Scholar
  60. Kaiser, H. F. (2016). The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20(1), 141–151.CrossRefGoogle Scholar
  61. Kaminski, J. A., Sloutsky, V. M., & Heckler, A. F. (2009). Concrete instantiations of mathematics: A double-edged sword. Journal for Research in Mathematics Education, 40(2), 90–93.Google Scholar
  62. Kaufman, A. S., & Kaufman, N. L. (1983). Kaufman Assessment Battery for Children (K-ABC) administration and scoring manual. Circle Pines, MN: American Guidance Service.Google Scholar
  63. Kelley, T. D., Lee, F. J., & Wiley, P. (2000). Developing an ACT-R model of spatial manipulation (ARL Tech. Rep. No. 2179). Aberdeen, MD: Aberdeen Proving Ground.Google Scholar
  64. Kline, W. E. (1960). A synthesis of two factor analyses of intermediate algebra. Doctoral dissertation, Princeton University, University Microfilms, Ann Arbor, MI.Google Scholar
  65. Kozhevnikov, M., & Hegarty, M. (2001). A dissociation between object manipulation spatial ability and spatial orientation ability. Memory & Cognition, 29(5), 745–756.CrossRefGoogle Scholar
  66. Kozhevnikov, M., Kozhevnikov, M., Yu, C. J., & Blazhenkova, O. (2013). Creativity, visualization abilities, and visual cognitive style. British Journal of Educational Psychology, 83(2), 196–209.CrossRefGoogle Scholar
  67. Krakowski, M., Ratliff, K., Gomez, L. M., & Levine, S. (2010, June). Spatial intelligence and the research: Practice challenge. In Proceedings of the 9th International Conference of the Learning Sciences (Vol. 1, pp. 556–563). International Society of the Learning Sciences.Google Scholar
  68. Kung, E., & Hamm, J. P. (2010). A model of rotated mirror/normal letter discriminations. Memory & Cognition, 38(2), 206–220.CrossRefGoogle Scholar
  69. Kyttälä, M., Aunio, P., Lehto, J. E., Van Luit, J., & Hautamäki, J. (2003). Visuospatial working memory and early numeracy. Educational and Child Psychology, 20(3), 65–76.Google Scholar
  70. Kyttälä, M., & Lehto, J. E. (2008). Some factors underlying mathematical performance: The role of visuospatial working memory and non-verbal intelligence. European Journal of Psychology of Education, 23(1), 77–94.CrossRefGoogle Scholar
  71. Landy, D., & Goldstone, R. L. (2010). Proximity and precedence in arithmetic. The Quarterly Journal of Experimental Psychology, 63(10), 1953–1968.CrossRefGoogle Scholar
  72. Landy, D., Brookes, D., & Smout, R. (2011, January). Modeling abstract numeric relations using concrete notations. In Proceedings of the Annual Meeting of the Cognitive Science Society, (Vol. 33, No. 33).Google Scholar
  73. Lendínez, C., Pelegrina, S., & Lechuga, M. T. (2015). Age differences in working memory updating: The role of interference, focus switching and substituting information. Acta Psychologica, 157, 106–113.CrossRefGoogle Scholar
  74. Levine, S. C., Ratliff, K. R., Huttenlocher, J., & Cannon, J. (2012). Early puzzle play: a predictor of preschoolers’ spatial transformation skill. Developmental Psychology, 48(2), 530.CrossRefGoogle Scholar
  75. Levine, S. C., Foley, A., Lourenco, S., Ehrlich, S., & Ratliff, K. (2016). Sex differences in spatial cognition: Advancing the conversation. Wiley Interdisciplinary Reviews: Cognitive Science, 7(2), 127–155.Google Scholar
  76. Levine, S. C., Goldin-Meadow, S., Carlson, M. T., & Hemani-Lopez, N. (2018). Mental transformation skill in young children: the role of concrete and abstract motor training. Cognitive Science, 42(4), 1207–1228.CrossRefGoogle Scholar
  77. Libertus, M. E., Feigenson, L., & Halberda, J. (2013). Numerical approximation abilities correlate with and predict informal but not formal mathematics abilities. Journal of Experimental Child Psychology, 116(4), 829–838.CrossRefGoogle Scholar
  78. Li, Y., & Geary, D. C. (2013). Developmental gains in visuospatial memory predict gains in mathematics achievement. PLoS One, 8(7), e70160.CrossRefGoogle Scholar
  79. Liben, L. S., & Downs, R. M. (1989). Understanding maps as symbols: The development of map concepts in children. Advances in Child Development and Behavior, 22, 145–201.CrossRefGoogle Scholar
  80. Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child Development, 56, 1479–1498.CrossRefGoogle Scholar
  81. Little, R. J., & Rubin, D. B. (1989). The analysis of social science data with missing values. Sociological Methods & Research, 18(2–3), 292–326.CrossRefGoogle Scholar
  82. Lohman, D. F. (1988). Spatial abilities as traits, processes, and knowledge. In R. J. Sternberg (Ed.), Advances in the psychology of human intelligence (Vol. 4, pp. 181–248). Hillsdale, NJ: Erlbaum.Google Scholar
  83. Lohman, D. F. (1994). Spatially gifted, verbally inconvenienced. In Talent development (Vol. 2, pp. 251–264).Google Scholar
  84. Lovett, A., & Schultheis, H. (2014, January). Modeling spatial abstraction during mental rotation. In Proceedings of the Annual Meeting of the Cognitive Science Society (Vol. 36, No. 36).Google Scholar
  85. Lowrie, T., Logan, T., & Ramful, A. (2017). Visuospatial training improves elementary students’ mathematics performance. British Journal of Educational Psychology, 87(2), 170–186.CrossRefGoogle Scholar
  86. Lyons, I. M., Price, G. R., Vaessen, A., Blomert, L., & Ansari, D. (2014). Numerical predictors of arithmetic success in grades 1–6. Developmental Science, 17(5), 714–726.CrossRefGoogle Scholar
  87. MacCallum, R. C., Widaman, K. F., Zhang, S., & Hong, S. (1999). Sample size in factor analysis. Psychological Methods, 4, 84–99.CrossRefGoogle Scholar
  88. Markey, S. M. (2009). The relationship between visual-spatial reasoning ability and math and geometry problem-solving. American International College.Google Scholar
  89. Marmor, G. S. (1977). Mental rotation and number conservation: Are they related? Developmental Psychology, 13(4), 320.CrossRefGoogle Scholar
  90. Matthews, P. G., Lewis, M. R., & Hubbard, E. M. (2016). Individual differences in nonsymbolic ratio processing predict symbolic math performance. Psychological Science, 27(2), 191–202.CrossRefGoogle Scholar
  91. Maul, A. (2013). Method effects and the meaning of measurement. Frontiers in Psychology, 4, 169.Google Scholar
  92. Mazzocco, M. M., Feigenson, L., & Halberda, J. (2011). Preschoolers’ precision of the approximate number system predicts later school mathematics performance. PLoS One, 6(9), e23749.CrossRefGoogle Scholar
  93. McGee, M. G. (1979). Human spatial abilities: Psychometric studies and environmental, genetic, hormonal, and neurological influences. Psychological Bulletin, 86(5), 889.CrossRefGoogle Scholar
  94. Michael, W. B., Guilford, J. P., Fruchter, B., & Zimmerman, W. S. (1957). The description of spatial-visualization abilities. Educational and Psychological Measurement, 17(2), 185–199.CrossRefGoogle Scholar
  95. Miller, D. I., & Halpern, D. F. (2013). Can spatial training improve long-term outcomes for gifted STEM undergraduates? Learning and Individual Differences, 26, 141–152.CrossRefGoogle Scholar
  96. Miura, I. T., Okamoto, Y., Vlahovic-Stetic, V., Kim, C. C., & Han, J. H. (1999). Language supports for children’s understanding of numerical fractions: Cross-national comparisons. Journal of Experimental Child Psychology, 74(4), 356–365.CrossRefGoogle Scholar
  97. Mix, K. S. (2010). Spatial tools for mathematical thought. Space and Language, 41–66.Google Scholar
  98. Mix, K. S., & Cheng, Y. L. (2011). The relation between space and math: Developmental and educational implications. Advances in Child Development and Behavior, 42, 197–243.CrossRefGoogle Scholar
  99. Mix, K. S., & Cheng, Y. L. (2012). The relation between space and math: Developmental and educational implications. In Advances in child development and behavior (Vol. 42, pp. 197–243). JAI.Google Scholar
  100. Mix, K. S., Levine, S. C., Cheng, Y. L., Young, C., Hambrick, D. Z., Ping, R., & Konstantopoulos, S. (2016). Separate but correlated: The latent structure of space and mathematics across development. Journal of Experimental Psychology: General, 145(9), 1206.CrossRefGoogle Scholar
  101. Mix, K. S., Levine, S. C., Cheng, Y. L., Young, C. J., Hambrick, D. Z., & Konstantopoulos, S. (2017). The latent structure of spatial skills and mathematics: A replication of the two-factor model. Journal of Cognition and Development, 18(4), 465–492.CrossRefGoogle Scholar
  102. Mix, K. S., Hambrick, D. Z., Satyam, V. R., Burgoyne, A. P., & Levine, S. C. (2018). The latent structure of spatial skill: A test of the 2× 2 typology. Cognition, 180, 268–278.CrossRefGoogle Scholar
  103. Mix, K. S., Levine, S. C., Cheng, Y.-L. & Stockton, J. D. (under review). Does Spatial Training Improve Mathematics Performance? A Comparison of Training Type, Age, and Mathematics Outcome. Child DevelopmentGoogle Scholar
  104. Miyake, A., Friedman, N. P., Rettinger, D. A., Shah, P., & Hegarty, M. (2001). How are visuospatial working memory, executive functioning, and spatial abilities related? A latent-variable analysis. Journal of Experimental Psychology: General, 130(4), 621.CrossRefGoogle Scholar
  105. Möhring, W., Newcombe, N. S., & Frick, A. (2015). The relation between spatial thinking and proportional reasoning in preschoolers. Journal of experimental child psychology, 132, 213–220.CrossRefGoogle Scholar
  106. Mundy, E., & Gilmore, C. K. (2009). Children’s mapping between symbolic and nonsymbolic representations of number. Journal of Experimental Child Psychology, 103(4), 490–502.CrossRefGoogle Scholar
  107. Nath, S., & Szücs, D. (2014). Construction play and cognitive skills associated with the development of mathematical abilities in 7-year-old children. Learning and Instruction, 32, 73–80.CrossRefGoogle Scholar
  108. National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: National Council of Teachers of Mathematics.Google Scholar
  109. National Research Council, and Geographical Sciences Committee. (2005). Learning to think spatially. National Academies Press.Google Scholar
  110. Nee, D. E., Brown, J. W., Askren, M. K., Berman, M. G., Demiralp, E., Krawitz, A., & Jonides, J. (2013). A meta-analysis of executive components of working memory. Cerebral Cortex, 23(2), 264–282.CrossRefGoogle Scholar
  111. Neubauer, A. C., Bergner, S., & Schatz, M. (2010). Two-vs. three-dimensional presentation of mental rotation tasks: Sex differences and effects of training on performance and brain activation. Intelligence, 38(5), 529–539.CrossRefGoogle Scholar
  112. Neuburger, S., Jansen, P., Heil, M., & Quaiser-Pohl, C. (2011). Gender differences in pre-adolescents’ mental-rotation performance: Do they depend on grade and stimulus type? Personality and Individual Differences, 50(8), 1238–1242.CrossRefGoogle Scholar
  113. Newcombe, N. S. (2010). Picture this: Increasing math and science learning by improving spatial thinking. American Educator, 34(2), 29.Google Scholar
  114. Newcombe, N. S., & Shipley, T. F. (2015). Thinking about spatial thinking: New typology, new assessments. In J. S. Gero (Ed.), Studying visual and spatial reasoning for design creativity (pp. 179–192). Amsterdam, The Netherlands: Springer.Google Scholar
  115. Overton, W. F., & Reese, H. W. (1973). Models of development: Methodological implications. In J. R. Nesselroade & H. W. Reese (Eds.), Life-span developmental psychology: Methodological issues (pp. 65–86). New York: Academic Press.CrossRefGoogle Scholar
  116. Paik, J. H., & Mix, K. S. (2003). US and Korean Children’s Comprehension of Fraction Names: A reexamination of cross–national differences. Child Development, 74(1), 144–154.CrossRefGoogle Scholar
  117. Passolunghi, M. C., & Mammarella, I. C. (2010). Spatial and visual working memory ability in children with difficulties in arithmetic word problem solving. European Journal of Cognitive Psychology, 22(6), 944–963.CrossRefGoogle Scholar
  118. Peters, M., Laeng, B., Latham, K., Jackson, M., Zaiyouna, R., & Richardson, C. (1995). A redrawn Vandenberg and Kuse mental rotations test-different versions and factors that affect performance. Brain and Cognition, 28(1), 39–58.CrossRefGoogle Scholar
  119. Preacher, K. J., & MacCallum, R. C. (2002). Exploratory factor analysis in behavior genetics research: Factor recovery with small sample sizes. Behavior Genetics, 32, 153–161.CrossRefGoogle Scholar
  120. Primi, R., Ferrão, M. E., & Almeida, L. S. (2010). Fluid intelligence as a predictor of learning: A longitudinal multilevel approach applied to math. Learning and Individual Differences, 20(5), 446–451.CrossRefGoogle Scholar
  121. Provost, A., & Heathcote, A. (2015). Titrating decision processes in the mental rotation task. Psychological Review, 122(4), 735.CrossRefGoogle Scholar
  122. Raghubar, K. P., Barnes, M. A., & Hecht, S. A. (2010). Working memory and mathematics: A review of developmental, individual difference, and cognitive approaches. Learning and Individual Differences, 20(2), 110–122.CrossRefGoogle Scholar
  123. Reuhkala, M. (2001). Mathematical skills in ninth-graders: Relationship with visuo-spatial abilities and working memory. Educational Psychology, 21(4), 387–399.CrossRefGoogle Scholar
  124. Richland, L. E., Stigler, J. W., & Holyoak, K. J. (2012). Teaching the conceptual structure of mathematics. Educational Psychologist, 47(3), 189–203.CrossRefGoogle Scholar
  125. Rips, L. J., Bloomfield, A., & Asmuth, J. (2008). From numerical concepts to concepts of number. Behavioral and brain sciences, 31(6), 623–642.CrossRefGoogle Scholar
  126. Rittle-Johnson, B., Siegler, R. S., & Alibali, M. W. (2001). Developing conceptual understanding and procedural skill in mathematics: An iterative process. Journal of Educational Psychology, 93, 346–362.  https://doi.org/10.1037//0022-0663.93.2.346CrossRefGoogle Scholar
  127. Rittle-Johnson, B., Fyfe, E. R., Hofer, K. G., & Farran, D. C. (2016). Early Math Trajectories: Low-Income Children's Mathematics Knowledge From Ages 4 to 11. Child Development, 88(5), 1727–1742.CrossRefGoogle Scholar
  128. Rousselle, L., & Noël, M. P. (2007). Basic numerical skills in children with mathematics learning disabilities: A comparison of symbolic vs non-symbolic number magnitude processing. Cognition, 102(3), 361–395.CrossRefGoogle Scholar
  129. Rummel, R. J. (1970). Applied factor Analysis. Evanston, IL: Northwestern University Press.Google Scholar
  130. Rusch, C. E. (1957). An analysis of arithmetic achievement in grades four, six, and eight. Doctoral dissertation, University of Wisconsin, University Microfilms, Ann Arbor, MI.Google Scholar
  131. Sarnecka, B. W., & Carey, S. (2008). How counting represents number: What children must learn and when they learn it. Cognition, 108(3), 662–674.CrossRefGoogle Scholar
  132. Searle, J. A., & Hamm, J. P. (2012). Individual differences in the mixture ratio of rotation and nonrotation trials during rotated mirror/normal letter discriminations. Memory & Cognition, 40(4), 594–613.CrossRefGoogle Scholar
  133. Searle, J. A., & Hamm, J. P. (2017). Mental rotation: An examination of assumptions. Wiley Interdisciplinary Reviews: Cognitive Science, 8(6).  https://doi.org/10.1002/wcs.1443Google Scholar
  134. Schneider, M., Beeres, K., Coban, L., Merz, S., Susan Schmidt, S., Stricker, J., & De Smedt, B. (2016). Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: A meta-analysis. Developmental Science, 20(3).CrossRefGoogle Scholar
  135. Schoenfeld, A. H. (2014). Mathematical problem solving. Elsevier.Google Scholar
  136. Shepard, R. N. (1978). The mental image. American Psychologist, 33(2), 125.CrossRefGoogle Scholar
  137. Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171(3972), 701–703.CrossRefGoogle Scholar
  138. Shepard, S., & Metzler, D. (1988). Mental rotation: Effects of dimensionality of objects and type of task. Journal of Experimental Psychology: Human Perception and Performance, 14(1), 3.Google Scholar
  139. Shipstead, Z., Harrison, T. L., & Engle, R. W. (2016). Working memory capacity and fluid intelligence maintenance and disengagement. Perspectives on Psychological Science, 11(6), 771–799.CrossRefGoogle Scholar
  140. Siegler, R. S. (1999). Strategic development. Trends in Cognitive Sciences, 3(11), 430–435.CrossRefGoogle Scholar
  141. Siegler, R. S., & Opfer, J. E. (2003). The development of numerical estimation: Evidence for multiple representations of numerical quantity. Psychological Science, 14(3), 237–250.CrossRefGoogle Scholar
  142. Simons, D. J., Boot, W. R., Charness, N., Gathercole, S. E., Chabris, C. F., Hambrick, D. Z., & Stine-Morrow, E. A. (2016). Do “brain-training” programs work? Psychological Science in the Public Interest, 17(3), 103–186.CrossRefGoogle Scholar
  143. Skemp, R. R. (1961). Reflective intelligence and mathematics. British Journal of Educational Psychology, 31(P1), 45–55.CrossRefGoogle Scholar
  144. Slusser, E. B., Santiago, R. T., & Barth, H. C. (2013). Developmental change in numerical estimation. Journal of Experimental Psychology: General, 142(1), 193.CrossRefGoogle Scholar
  145. Smith, E. E., & Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science, 283(5408), 1657–1661.CrossRefGoogle Scholar
  146. Sorby, S. A. (2009). Educational research in developing 3-D spatial skills for engineering students. International Journal of Science Education, 31(3), 459–480.CrossRefGoogle Scholar
  147. Sorby, S., Casey, B., Veurink, N., & Dulaney, A. (2013). The role of spatial training in improving spatial and calculus performance in engineering students. Learning and Individual Differences, 26, 20–29.CrossRefGoogle Scholar
  148. Spearman, C. (1927). The abilities of man. Oxford: Macmillan.Google Scholar
  149. Star, J. R. (2005). Reconceptualizing procedural knowledge. Journal for Research in Mathematics Education, 36(5), 404–411.Google Scholar
  150. Stieff, M. (2012). Sex differences in the mental rotation of chemistry representations. Journal of Chemical Education, 90(2), 165–170.CrossRefGoogle Scholar
  151. Szűcs, D., Devine, A., Soltesz, F., Nobes, A., & Gabriel, F. (2014). Cognitive components of a mathematical processing network in 9-year-old children. Developmental Science, 17(4), 506–524.CrossRefGoogle Scholar
  152. Thayer, Z. C., & Johnson, B. W. (2006). Cerebral processes during visuo-motor imagery of hands. Psychophysiology, 43(4), 401–412.CrossRefGoogle Scholar
  153. Thompson, J. M., Nuerk, H. C., Moeller, K., & Kadosh, R. C. (2013). The link between mental rotation ability and basic numerical representations. Acta Psychologica, 144(2), 324–331.CrossRefGoogle Scholar
  154. Thompson, C. A., & Opfer, J. E. (2010). How 15 hundred is like 15 cherries: Effect of progressive alignment on representational changes in numerical cognition. Child Development, 81(6), 1768–1786.CrossRefGoogle Scholar
  155. Thompson, C. A., Ratcliff, R., & Mckoon, G. (2016). Individual differences in the components of children’s and adults’ information processing for simple symbolic and non-symbolic numeric decisions. Journal of Experimental Child Psychology, 150, 48–71.CrossRefGoogle Scholar
  156. Thurstone, L. L. (1933). A simplified multiple factor method and an outline of the computations. Chicago: University of Chicago Bookstore.Google Scholar
  157. Thurstone, L. L. (1938). Primary mental abilities. Chicago: University of Chicago Press.Google Scholar
  158. Tomarken, A. J., & Waller, N. G. (2005). Structural equation modeling: Strengths, limitations, and misconceptions. Annual Review of Clinical Psychology, 1(1), 31–65.CrossRefGoogle Scholar
  159. Tucker, L. R., & Lewis, C. (1973). A reliability coefficient for maximum likelihood factor analysis. Psychometrika, 38(1), 1–10.CrossRefGoogle Scholar
  160. Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., & Newcombe, N. S. (2013). The malleability of spatial skills: A meta-analysis of training studies. Psychological Bulletin, 139(2), 352–402.CrossRefGoogle Scholar
  161. Verdine, B. N., Irwin, C. M., Golinkoff, R. M., & Hirsh-Pasek, K. (2014). Contributions of executive function and spatial skills to preschool mathematics achievement. Journal of Experimental Child Psychology, 126, 37–51.CrossRefGoogle Scholar
  162. Voyer, D., Voyer, S., & Bryden, M. P. (1995). Magnitude of sex differences in spatial abilities: a meta-analysis and consideration of critical variables. Psychological bulletin, 117(2), 250.CrossRefGoogle Scholar
  163. Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101(4), 817.CrossRefGoogle Scholar
  164. Wechsler D, Kaplan E, Fein D, Kramer J, Morris R, Delis D, Maerlender A. (2004). WISC-IV Technical and Interpretative Manual. San Antonio, TX: NCS Pearson.Google Scholar
  165. Werdelin, I. (1966). A synthesis of two factor analyses of problem solving in mathematics. Didakometry, 8, 14.Google Scholar
  166. Wingfield, A. (2016). Evolution of models of working memory and cognitive resources. Ear and Hearing, 37, 35S–43S.CrossRefGoogle Scholar
  167. Witt, M. (2011). School based working memory training: Preliminary finding of improvement in children’s mathematical performance. Advances in Cognitive Psychology, 7, 7–15.CrossRefGoogle Scholar
  168. Xu, C., & LeFevre, J. A. (2016). Training young children on sequential relations among numbers and spatial decomposition: Differential transfer to number line and mental transformation tasks. Developmental Psychology, 52(6), 854.CrossRefGoogle Scholar
  169. Young, C., Raudenbush, S., Fraumeni, B., & Levine, S. (August, 2017). The Structure of Young Children’s Numerical and Spatial Abilities. Poster presented at the Annual Meeting of the Cognitive Science Society, London, UK.Google Scholar
  170. Zacks, J. M. (2008). Neuroimaging studies of mental rotation: A meta-analysis and review. Journal of Cognitive Neuroscience, 20(1), 1–19.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Christopher Young
    • 1
  • Susan C. Levine
    • 2
  • Kelly S. S. Mix
    • 3
  1. 1.Consortium on School ResearchUniversity of ChicagoChicagoUSA
  2. 2.Departments of Psychology, and Comparative Human Development and Committee on EducationUniversity of ChicagoChicagoUSA
  3. 3.Department of Human Development and Quantitative MethodologyUniversity of MarylandCollege ParkUSA

Personalised recommendations