Advertisement

Fundamentals and Advances in 3D Face Recognition

  • Soodamani RamalingamEmail author
  • Aruna Shenoy
  • Nguyen Trong Viet
Chapter

Abstract

In this chapter, we focus on the fundamentals and advances in the research and commercial aspects of 3D face recognition systems. We consider security applications that have accelerated the growth of biometrics leading to both commercial and research-based system developments. A review of such systems and the factors influencing the choice of biometrics are considered. Advanced techniques in 3D face recognition are touched up on with emphasis on case studies based on different sensor-based databases. These sensors include the FRVT, Microsoft KINECT and stereo vision-based systems. The development of biometric systems needs to consider standards for interoperability, basis for evaluation through a benchmarking process as well as legal and privacy consideration which are covered in this chapter.

References

  1. 1.
    D. Scheuermann, S. Schwiderski-Grosche, B. Struif, Usability of Biometrics in Relation to Electronic Signatures (GMD-Forschungszentrum Informationstechnik, Sankt Augustin, 2000)Google Scholar
  2. 2.
    P.S. Teh, A.B.J. Teoh, S. Yue, A survey of keystroke dynamics biometrics. Sci. World J. 2013, 24 (2013)CrossRefGoogle Scholar
  3. 3.
    A.K. Jain, P. Flynn, A.A. Ross, Handbook of Biometrics (Springer-Verlag, New York, 2007)Google Scholar
  4. 4.
    M. Satone, G. Kharate, Feature selection using genetic algorithm for face recognition based on PCA, wavelet and SVM. Int. J. Electr. Eng. Inf. 6, 39–52 (2014)Google Scholar
  5. 5.
    A.F. Abate, M. Nappi, D. Riccio, G. Sabatino, 2D and 3D face recognition: A survey. Pattern Recogn. Lett. 28, 1885–1906 (2007)CrossRefGoogle Scholar
  6. 6.
    P.J. Phillips, P. Grother, R. Micheals, D.M. Blackburn, E. Tabassi, M. Bone, Face recognition vendor test 2002, Presented at the Proceedings of the IEEE International Workshop on Analysis and Modeling of Faces and Gestures, 2003Google Scholar
  7. 7.
    SITA, Biometrics Centred Border Management: Helping governments reliably and securely verify travellers’ identities, SITA2010Google Scholar
  8. 8.
    UK Her Majesty Post office, Guidance on Biometric Passport and Passport Reader, 2016Google Scholar
  9. 9.
    A.M. Bronstein, M.M. Bronstein, R. Kimmel, Expression-invariant 3D face recognition, in Audio- and Video-Based Biometric Person Authentication: 4th International Conference, AVBPA 2003 Guildford, UK, June 9–11, 2003 Proceedings, ed. by J. Kittler, M.S. Nixon (Springer, Berlin Heidelberg, 2003), pp. 62–70Google Scholar
  10. 10.
    S. Mansfield-Devine, Comment on biometrics. Biometric Technol. Today, July–August, 12 (2010)Google Scholar
  11. 11.
    V.D. Kaushik, A. Budhwar, A. Dubey, R. Agrawal, S. Gupta, V.K. Pathak, et al., An Efficient 3D Face Recognition Algorithm, in 2009 Third International Conference on New Technologies, Mobility and Security, 2009, pp. 1–5Google Scholar
  12. 12.
    H. Yuxiao, J. Dalong, Y. Shuicheng, Z. Lei, Z. Hongjiang, Automatic 3D reconstruction for face recognition, in Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings, 2004, pp. 843–848Google Scholar
  13. 13.
    V. Blanz, T. Vetter, Face recognition based on fitting a 3D morphable model. IEEE Trans. Pattern Anal. Mach. Intell. 25, 1063–1074 (2003)CrossRefGoogle Scholar
  14. 14.
    B. Brecht. Facing the future with 3D facial recognition technology. Biometric Technol. Today. Jan 2009, 8–9 (2009)CrossRefGoogle Scholar
  15. 15.
    A. Suman, Automated face recognition, applications within law enforcement, Market Technol. Rev., Oct 2006 (2006)Google Scholar
  16. 16.
    C. Beumier, M. Acheroy, Face verification from 3D and grey level clues. Pattern Recogn. Lett. 22, 1321–1329 (2001)CrossRefGoogle Scholar
  17. 17.
    X. Chenghua, W. Yunhong, T. Tieniu, Q. Long, Automatic 3D face recognition combining global geometric features with local shape variation information, in Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings, 2004, pp. 308–313Google Scholar
  18. 18.
    Y. Wang, C.-S. Chua, Y.-K. Ho, Facial feature detection and face recognition from 2D and 3D images. Pattern Recogn. Lett. 23, 1191–1202 (2002)CrossRefGoogle Scholar
  19. 19.
    Z. Michael, M. Michael, G. Gunther, S. Marc, S. Jochen, Automatic reconstruction of personalized avatars from 3D face scans. Comput. Animat. Virtual Worlds 22, 195–202 (2011)CrossRefGoogle Scholar
  20. 20.
    A. Ansari, M. Abdel-Mottaleb, M.H. Mahoor, Disparity-based modelling for 3D face recognition, in ICIP, 2006, pp. 657–660Google Scholar
  21. 21.
    V. Blanz, K. Scherbaum, H.P. Seidel, Fitting a morphable model to 3D scans of faces, in IEEE ICCV, 2007, pp. 1–8Google Scholar
  22. 22.
    X. Lu, A. Jain, Deformation modeling for robust 3D face matching. IEEE Trans. Pattern Anal. Mach. Intell. 30, 1346–1357 (Aug 2008)CrossRefGoogle Scholar
  23. 23.
    Y.A. Li, Y.J. Shen, G.D. Zhang, T. Yuan, X.J. Xiao, H.L. Xu, An efficient 3D face recognition method using geometric features, in 2010 Second International Workshop on Intelligent Systems and Applications, 2010, pp. 1–4Google Scholar
  24. 24.
    Y. Pan, B. Dai, Q. Peng, Fast and robust 3D face matching approach, in Image Analysis and Signal Processing, 2010, pp. 195–198Google Scholar
  25. 25.
    Y. Wang, J. Liu, X. Tang, Robust 3D face recognition by local shape difference boosting. IEEE PAMI 32, 1858–1870 (2010)CrossRefGoogle Scholar
  26. 26.
    N. Uchida, T. Shibahara, T. Aoki, H. Nakajima, K. Kobayashi, Face recognition using passive stereo vision, in IEEE International Conference on Image Processing, 2005, pp. 950–953Google Scholar
  27. 27.
    P. Sharma, M. Goyani, 3D face recognition techniques - a review. Int. J. Eng. Res. Appl. IJERA 2, 787–798 (2012)Google Scholar
  28. 28.
    S. Huq, B. Abidi, S. G. Kong, M. Abidi, A survey on 3D modeling of human faces for face recognition, in 3D Imaging for Safety and Security, vol. 35, ed. by A. Koschan, M. Pollefeys, M.A. Abidi (Springer, Dordrecht, 2007), pp. 25–67Google Scholar
  29. 29.
    N.U. Powar, J.D. Foytik, V. K. Asari, H. Vajaria, Facial expression analysis using 2D and 3D features, in Proceedings of the 2011 I.E. National Aerospace and Electronics Conference (NAECON), 2011, pp. 73–78Google Scholar
  30. 30.
    Y. Sheng, A.H. Sadka, A.M. Kondoz, Automatic single view-based 3-D face synthesis for unsupervised multimedia applications. IEEE Transactions on Circuits and Systems for Video Technology 18, 961–974 (2008)CrossRefGoogle Scholar
  31. 31.
    M.P. Segundo, L. Silva, O.R.P. Bellon, C.C. Queirolo, Automatic face segmentation and facial landmark detection in range images. IEEE Trans. Syst. Man Cybernet. Part B Cybernet. 40, 1319–1330 (2010)CrossRefGoogle Scholar
  32. 32.
    T.S.N. Uchida, T. Aoki, H. Nakajima, K. Kobayashi, Face recognition using passive stereo vision, in IEEE International Conference on Image Processing, 2005, pp. 950–953Google Scholar
  33. 33.
    D. Huang, K. Ouji, M. Ardabilian, Y. Wang, L. Chen, 3D face recognition based on local shape patterns and sparse representation classifier, in Advances in Multimedia Modeling, Lecture Notes in Computer Science, vol. 6523, ed. by K.T. Lee, W.H. Tsai, H.Y. Liao, T. Chen, J.W. Hsieh, C.C. Tseng, (Springer, Berlin/Heidelberg, 2011), pp. 206–216Google Scholar
  34. 34.
    H. Tang, Y. Sun, B. Yin, Y. Ge, 3D face recognition based on sparse representation. J. Supercomput. 58, 84–95 (2011)CrossRefGoogle Scholar
  35. 35.
    K. Tae-Kyun, J. Kittler, Design and fusion of pose invariant face-identification experts. IEEE Transactions on Circuits and Systems for Video Technology 16, 1096–1106 (2006)CrossRefGoogle Scholar
  36. 36.
    V. Bevilacqua, F. Adriani, G. Mastronardi, 3D head normalization with face geometry analysis, genetic algorithms and PCA. J. Circuits Syst. Comput. 18, 1425–1439 (2005)CrossRefGoogle Scholar
  37. 37.
    H. Zhou, A. Mian, L. Wei, D. Creighton, M. Hossny, S. Nahavandi, Recent advances on singlemodal and multimodal face recognition: A survey. IEEE Trans. Hum.-Mach. Syst. 44, 701–716 (2014)CrossRefGoogle Scholar
  38. 38.
    D.-L. Xu, J.-B. Yang, Y.-M. Wang, The evidential reasoning approach for multi-attribute decision analysis under interval uncertainty. Eur. J. Oper. Res. 174, 1914–1943 (2006)CrossRefGoogle Scholar
  39. 39.
    F. Hajati, A.A. Raie, Y. Gao, Pose-invariant multimodal (2D+3D) face recognition using geodesic distance map. J. Am. Sci. 7(10), 583–590 (2011)Google Scholar
  40. 40.
    P. Xiong, L. Huang, C. Liu, Real-time 3d face recognition with the integration of depth and intensity images, in Eighth International Conference on Image Analysis and Recognition - Volume Part II, ser. ICIAR’11, Berlin, Heidelberg, 2011, pp. 222–232Google Scholar
  41. 41.
    K.W. Bowyer, K. Chang, P. Flynn, A survey of approaches and challenges in 3D and multi-modal 3D + 2D face recognition. Comput. Vis. Image Underst. 101, 1–15 (2006)CrossRefGoogle Scholar
  42. 42.
    Z. Sun, A.A. Paulino, J. Feng, Z. Chai, T. Tan, A.K. Jain, A study of multibiometric traits of identical twins. Proc. SPIE Biometric Technol. Hum. Identif. VII 7667, 76670T-1–76670T-12 (2010)CrossRefGoogle Scholar
  43. 43.
    V. Nirgude, A. Gulve, S. Waghmare, Face recognition system using principal component analysis & linear discriminant analysis method simultaneously with 3d morphable model. UACEE Int. J. Artif. Intell. Neural Netw., 40–44 (2011)Google Scholar
  44. 44.
    G.G. Gordon, Face recognition based on depth and curvature features, in Computer Vision and Pattern Recognition, 1992. Proceedings CVPR'92., 1992 I.E. Computer Society Conference on, 1992, pp. 808–810Google Scholar
  45. 45.
    J.C. Lee, E. Milios, Matching range images of human faces, in [1990] Proceedings Third International Conference on Computer Vision, 1990, pp. 722–726Google Scholar
  46. 46.
    F.B. ter Haar, R.C. Veltkamp, 3D face model fitting for recognition, in Lecture Notes in Computer Science, Part IV, ed. by D. Forsyth, P. Torr, A. Zisserman, 5305th edn., (Springer-Verlag, Berlin Heidelberg, 2008)Google Scholar
  47. 47.
    F. Hajati, A.A. Raie, Y. Gao, 2.5D face recognition using patch geodesic moments. Pattern Recogn. 45, 969–982 (2012)CrossRefGoogle Scholar
  48. 48.
    S. Berretti, A.D. Bimbo, P. Pala, 3D face recognition using iso-geodesic stripes. IEEE Pattern Anal. Mach. Vis. 32, 2162–2177 (2010)CrossRefGoogle Scholar
  49. 49.
    M. Bronstein, R. Kimmel, A. Spira, 3D face recognition without facial surface reconstruction, in European Conference on Computer Vision, 2004Google Scholar
  50. 50.
    W. Liu, A.S. Mian, A. Krishna, B.Y.L. Li, Using Kinect for face recognition under varying poses, expressions, illumination and disguise, Presented at the Proceedings of the 2013 I.E. Workshop on Applications of Computer Vision (WACV), 2013Google Scholar
  51. 51.
    H. van den Yannick, Gender Classification with Visual and Depth Images (Tilburg University, 2012)Google Scholar
  52. 52.
    B.Y.L. Li, A.S. Mian, W. Liu, A. Krishna, Using Kinect for face recognition under varying poses, expressions, illumination and disguise, in 2013 I.E. Workshop on Applications of Computer Vision (WACV), 2013, pp. 186–192Google Scholar
  53. 53.
    Y. Sheng, A.H. Sadka, A.M. Kondoz, Automatic 3D face synthesis using single 2D video frame. Electron. Lett. 40, 1173–1175 (2004)CrossRefGoogle Scholar
  54. 54.
    A. Mian, M. Bennamoun, R. Owens, An efficient multimodal 2D-3D hybrid approach to automatic face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 29, 1927–1943 (2007)CrossRefGoogle Scholar
  55. 55.
    S. Ramalingam, Fuzzy interval-valued multi criteria based decision making for ranking features in multi-modal 3D face recognition. Fuzzy Set Syst. 337, 25–51 (2018)MathSciNetCrossRefGoogle Scholar
  56. 56.
    Artec Broadway 3D, 3D face recognition walk-through device. (3 Aug 2017). Available: https://www.artecid.com/products/artec-broadway-3d
  57. 57.
    Ayonix, Ayonix Public Security (Ayonix, Tokyo)Google Scholar
  58. 58.
    Morpho (ed.), Identification - Morpho 3D Face Reader: Fast, Convenient, Secure Facial Recognition (Morpho, France, 2017)Google Scholar
  59. 59.
    A. Perala, Cheaper biometric smartphones flooding global market: acuity (Jan 23, 2017). Available: http://findbiometrics.com/mobile-biometrics-primer-403020/?omhide=true
  60. 60.
    N.L. Clarke, S.M. Furnell, Authentication of users on mobile telephones – A survey of attitudes and practices. Comput. Secur. 24, 519–527 (2005)CrossRefGoogle Scholar
  61. 61.
    H.A. Shabeer, P. Suganthi, Mobile phones security using biometrics, in International Conference on Computational Intelligence and Multimedia Applications (ICCIMA 2007), 2007, pp. 270–274Google Scholar
  62. 62.
    ISO, Standards on information technology, access control scenario and grading scheme committee, in Biometric Performance Testing and Reporting Part 5, vol. ISO/IEC 19795-5:2011, (International Standards Organisation, Geneva, 2016), p. 36Google Scholar
  63. 63.
    ISO, International standards for HCI and usability, in ISO 13407: Human-Centred Design Processes for Interactive Systems, (International Standards Organisation, Geneva), 1999Google Scholar
  64. 64.
    V.N. Nirgude, V.N. Nirgude, H. Mahapatra, S.A. Shivarkar, Face recognition system using principal component analysis & linear discriminant analysis method simultaneously with 3D morphable model and neural network BPNN method. Glob. J. Adv. Eng. Technol. Sci. 4 (2017)Google Scholar
  65. 65.
    S. Marcel, BEAT – biometrics evaluation and testing. Biometric Technol. Today 2013, 5–7 (2013)CrossRefGoogle Scholar
  66. 66.
    ISO, ISO/IEC 2382-37:2012 Information technology -- vocabulary -- part 37: Biometrics, ed, 2012Google Scholar
  67. 67.
    Common criteria for information technology security evaluation-part 1: introduction and general model, vol. Version 2.3, ed, 2005Google Scholar
  68. 68.
    E.M. Newton, L. Sweeney, B. Malin, Preserving privacy by de-identifying face images. IEEE Trans. Knowl. Data Eng. 17, 232–243 (2005)CrossRefGoogle Scholar
  69. 69.
    K.W. Bowyer, K. Chang, P. Flynn, A survey of approaches and challenges in 3D and multi-modal 3D+2D face recognition. Comput. Vis. Image Underst. 101, 1–15 (2006)CrossRefGoogle Scholar
  70. 70.
    R. Dass, R. Rani, D. Kumar, Face recognition techniques: a review. Int. J. Eng. Res. Dev. 4, 70–78 (2012)Google Scholar
  71. 71.
    W.W. Bledsoe, A Facial Recognition Project Report (Panoramic Research, Palo Alto, 2016)Google Scholar
  72. 72.
    T. Mathew, P. Alex, Eigenfaces for recognition. J. Cogn. Neurosci. 3, 71–86 (1991)CrossRefGoogle Scholar
  73. 73.
    C. Ki-Chung, K. Seok Cheol, K. Sang Ryong, Face recognition using principal component analysis of Gabor filter responses, in Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems, 1999. Proceedings. International Workshop on, 1999, pp. 53–57Google Scholar
  74. 74.
    J.M. Kim, M.A. Kang, A study of face recognition using the PCA and error back-propagation, in 2010 Second International Conference on Intelligent Human-Machine Systems and Cybernetics, 2010, pp. 241–244Google Scholar
  75. 75.
    Y. Jian, D. Zhang, A.F. Frangi, Y. Jing-yu, Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 26, 131–137 (2004)CrossRefGoogle Scholar
  76. 76.
    M.Z. Alom, A. Khan, R. Biswas, M. Khan, Night mode face recognition using adaptively weighted sub-pattern PCA, in 2012 15th International Conference on Computer and Information Technology (ICCIT), 2012, pp. 119–125Google Scholar
  77. 77.
    W.L. Braje, D. Kersten, M.J. Tarr, N.F. Troje, Illumination effects in face recognition. Psychobiology 26, 371–380 (1998)Google Scholar
  78. 78.
    A. Wagner, J. Wright, A. Ganesh, Z. Zhou, H. Mobahi, Y. Ma, Toward a practical face recognition system: robust alignment and illumination by sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 34, 372–386 (2012)CrossRefGoogle Scholar
  79. 79.
    Y.M. Lu, B.Y. Liao, J.S. Pan, A face recognition algorithm decreasing the effect of illumination, in 2008 International Conference on Intelligent Information Hiding and Multimedia Signal Processing, 2008, pp. 378–381Google Scholar
  80. 80.
    L. Wu, P. Zhou, X. Xu, An illumination invariant face recognition scheme to combining normalized structural descriptor with single scale retinex, in Biometric Recognition: 8th Chinese Conference, CCBR 2013, Jinan, China, November 16–17, 2013. Proceedings, ed. by Z. Sun, S. Shan, G. Yang, J. Zhou, Y. Wang, Y. Yin, (Springer International Publishing, Cham, 2013), pp. 34–42CrossRefGoogle Scholar
  81. 81.
    J.Y. Cartoux, J.T. Lapreste, M. Richetin, Face authentification or recognition by profile extraction from range images, in [1989] Proceedings. Workshop on Interpretation of 3D Scenes, 1989, pp. 194–199Google Scholar
  82. 82.
    T. Bajarin, Why your smartphone will be your next PC. TIME (25 Feb 2013). Available: http://techland.time.com/2013/02/25/why-your-smartphone-will-be-your-next-pc/
  83. 83.
    B. Weyrauch, B. Heisele, J. Huang, V. Blanz, Component-Based Face Recognition with 3D Morphable Models, in 2004 Conference on Computer Vision and Pattern Recognition Workshop, 2004, pp. 85–85Google Scholar
  84. 84.
    K. Konolige, Projected texture stereo, in 2010 I.E. International Conference on Robotics and Automation, 2010, pp. 148–155Google Scholar
  85. 85.
    Z. Zhang, Microsoft kinect sensor and its effect. IEEE MultiMedia 19, 4–10 (2012)CrossRefGoogle Scholar
  86. 86.
    R. Berri, D. Wolf, F. Osório, Telepresence robot with image-based face tracking and 3D perception with human gesture interface using kinect sensor, in 2014 Joint Conference on Robotics: SBR-LARS Robotics Symposium and Robocontrol, 2014, pp. 205–210Google Scholar
  87. 87.
    F. Gossen, T. Margaria, Comprehensible People Recognition Using the Kinect’s Face and Skeleton Model, in 2016 I.E. International Conference on Automation, Quality and Testing, Robotics (AQTR), 2016, pp. 1–6Google Scholar
  88. 88.
    Microsoft. Kinect for Windows. (4 Aug 2013, 2017). Available: https://developer.microsoft.com/en-us/windows/kinect/develop
  89. 89.
    S. Ramalingam, N.T. Viet, 3D face synthesis with KINECT, Presented at the Proceedings of the 2013 I.E. International Conference on Systems, Man, and Cybernetics, 2013Google Scholar
  90. 90.
    Non-contact 3D digitizer. (2004). Available: http://www.dirdim.com/pdfs/DDI_Konica_Minolta_Vivid_9i.pdf
  91. 91.
    Z. Zhou, A. Wagner, H. Mobahi, J. Wright, Y. Ma, Face recognition with contiguous occlusion using markov random fields, in 2009 I.E. 12th International Conference on Computer Vision, 2009, pp. 1050–1057Google Scholar
  92. 92.
    H. Yagou, Y. Ohtake, A. Belyaev, Mesh smoothing via mean and median filtering applied to face normals, in Geometric Modeling and Processing. Theory and Applications. GMP 2002. Proceedings, 2002, pp. 124–131Google Scholar
  93. 93.
    J. Vollmer, R. Mencl, H. Müller, Improved Laplacian smoothing of noisy surface meshes. Comput. Graphics Forum 18, 131–138 (1999)CrossRefGoogle Scholar
  94. 94.
    B. Gökberk, A. Ali Salah, L. Akarun, R. Etheve, D. Riccio, J.-L. Dugelay, 3D face recognition, in Guide to Biometric Reference Systems and Performance Evaluation, ed. by D. Petrovska-Delacrétaz, B. Dorizzi, G. Chollet, (Springer, London, 2009), pp. 263–295CrossRefGoogle Scholar
  95. 95.
    A. Mian, M. Bennamoun, R. Owens, Automatic 3D face detection, normalization and recognition, in Proceedings 2006 Third International Symposium on 3D Data Processing, Visualization and Transmission 3DPVT 2006, IEEE, 2006, pp. 735–742Google Scholar
  96. 96.
    S. Ramalingam, R. Venkateswarlu, Stereo face recognition using discriminant eigenvectors, in WSES International Conference on Speech, Signal and Image Processing 2001 (SSIP 2001), Malta, 2001, pp. 2621–2626Google Scholar
  97. 97.
    S. Ramalingam, 3D face recognition: feature extraction based on directional signatures from range data and disparity maps, in 2013 I.E. International Conference on Systems, Man, and Cybernetics, 2013, pp. 4397–4402Google Scholar
  98. 98.
    P.J. Phillips, W.T. Scruggs, A.J.O. Toole, P.J. Flynn, K.W. Bowyer, C.L. Schott, et al., FRVT 2006 and ICE 2006 large-scale experimental results. IEEE Trans. Pattern Anal. Mach. Intell. 32, 831–846 (2010)CrossRefGoogle Scholar
  99. 99.
    P.N. Belhumeur, J.P. Hespanha, D.J. Kriegman, Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19, 711–720 (1997)CrossRefGoogle Scholar
  100. 100.
    S. Ramalingam, N.T. Viet, 3D face synthesis with KINECT, in 2013 I.E. International Conference on Systems, Man, and Cybernetics, 2013, pp. 4433–4438Google Scholar
  101. 101.
    A. Mian, N.E. Pears, 3D face recognition, in 3D Imaging, Analysis and Applications, (Springer, London, 2012), pp. 311–366CrossRefGoogle Scholar
  102. 102.
    G. Cannon, A. Yamada, P. Statham, Biometric security standards, in Encyclopedia of Biometrics, ed. by S.Z. Li, A.K. Jain, (Springer, Boston, 2009), pp. 1–9Google Scholar
  103. 103.
  104. 104.
    Planet biometrics. Available: http://www.planetbiometrics.com/
  105. 105.
    S. Elliott, JTC 1 SC 37 – Biometrics International Standards (Biometrics Standards, Performance, and Assurance Laboratory, Purdue University, US), 2002Google Scholar
  106. 106.
    ISO, ISO/IEC/SC 37 WG2 Biometric technical interfaces. https://www.iso.org/committee/313770.html, 2002
  107. 107.
    JTC 1/SC 37/WG 3 Biometric data interchange formats. https://www.iso.org/committee/313770.html, 2002
  108. 108.
    ISO, Biometric technologies and security, in International Biometric Standards Development Activities, vol. ISO/IEC JTC 1/SC 37, (National Institute of Standards and Technology (NIST), Gaithersburg)Google Scholar
  109. 109.
    JTC 1/SC 37/WG 4 Biometric functional architecture and related profiles. https://www.iso.org/committee/313770.html, 2002
  110. 110.
    JTC 1/SC 37/WG 5 Biometric testing and reporting. https://www.iso.org/committee/313770.html, 2002
  111. 111.
    ISO, Biometric performance testing and reporting, in Information Technology. https://www.iso.org/committee/313770.html, 2002
  112. 112.
    ISO/IEC 19795 Series of International Standards: Information technology — Biometric performance testing and reporting, 2007–2012. https://www.iso.org/committee/313770.html, 2002
  113. 113.
    JTC 1/SC 37/WG 6 Cross-Jurisdictional and Societal Aspects of Biometrics. https://www.iso.org/committee/313770.html, 2002
  114. 114.
    N.B. Nill, Test procedures for verifying image quality requirements for personal identity verification (PIV) single finger capture devices, Centre for Integrated Intelligence Systems, Massachusetts, Report W15P7T-05-C-F600, Dec 2006Google Scholar
  115. 115.
    Current and Future Uses of Biometric Data and Technologies (Common Select Committee, Science and Technology Committee, London, UK, 2014)Google Scholar
  116. 116.
    HECTOS Deliverable D4.1, Selected product types, use cases and validation criteria for biometric case studies, Harmonized Evaluation, Certification and Testing of Security products (HECTOS). (2015). Available: http://hectos-fp7.eu/dissemination.html
  117. 117.
    HECTOS Deliverable D4.2, Working set of performance requirements and associated evaluation methodologies for the selected biometric case studies, Harmonized Evaluation, Certification and Testing of Security Products (HECTOS). (2016). Available: http://hectos-fp7.eu/dissemination.html
  118. 118.
    Directive 95/46/EC of the European Parliament and of the Council of 24 October 1995 on the protection of individuals with regard to the processing of personal data and on the free movement of such data. Off. J. L 281, 31–50 (1995)Google Scholar
  119. 119.
    ISO/IEC JTC 1/SC 27/WG 5, Standard on Identity management and privacy technologies. https://www.iso.org/committee/313770.html, 2002
  120. 120.
    A. Shenoy, L. Meng, F. Rezwan, A. Ariyaeeinia, Retaining expression on de-identified faces, in International Biometric Performance Conference (IBPC), NIST, Gaithersburg, 2012Google Scholar
  121. 121.
    S. Marcel et al., Description of metrics for the evaluation of biometric performance, in BEAT Biometrics Evaluation and Testing (2012)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Soodamani Ramalingam
    • 1
    Email author
  • Aruna Shenoy
    • 2
  • Nguyen Trong Viet
    • 1
  1. 1.School of Engineering and Technology, University of HertfordshireHatfieldUK
  2. 2.National Physical LaboratoryTeddingtonUK

Personalised recommendations