Advertisement

Nano-biosensors and Nano-aptasensors for Stimulant Detection

  • Saeideh EbrahimiEmail author
  • Rana Eftekhar Nahli
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 21)

Abstract

Stimulants increase mental alertness, attention span and physical activity by motivating the central nervous system. Their application in attention-deficit hyperactivity disorder and narcolepsy treatment is attended. Currently, using biosensors for detection of stimulants represent a typical platform in which an aptamer is bio-recognition element. Nanotechnology has exciting ingredients for the improvement of biosensors that have exquisite sensitivity, specificity and versatility. The use of nanomaterials has enabled faster detection and nanobiosensors reproducibility with reduced instrumentation size.

The present paper reviews principles of the most stimulant electrochemical biosensor and nano-bio-sensors. The relevant systems are divided by the type of detection method and type of nanoparticles used for detection. Few examples of biosensors are reported using variety of nanomaterials such as quantum dots, gold nanoparticles, and carbon nanotubes for detection of caffeine, cocaine, methamphetamine, amphetamin and nicotine. Colorimetric, fluorescence, electrochemical and luminescence methods are described for detection of stimulants. Some of the most typical assays are also mentioned in the text.

Keywords

Nanoparticles Sensor Stimulants Aptamer Nano-biosensor Nano-aptasensor Stimulants detection Calorimetric Fluorescence Electrochemical 

References

  1. Angrist B, Sudilovsky A (1978) Central nervous system stimulants: historical aspects and clinical effects. In: Stimulants. Springer, Boston, pp 99–165CrossRefGoogle Scholar
  2. Asturias-Arribas L et al (2013) Electrochemical determination of cocaine using screen-printed cytochrome P450 2B4 based biosensors. Talanta 105:131–134CrossRefGoogle Scholar
  3. Barone J, Roberts H (1984) Human consumption of caffeine. In: Caffeine. Springer, Berlin Heidelberg New York, pp 59–73CrossRefGoogle Scholar
  4. Basheer C et al (2006) Development and application of porous membrane-protected carbon nanotube micro-solid-phase extraction combined with gas chromatography/mass spectrometry. Anal Chem 78:2853–2858CrossRefGoogle Scholar
  5. Benowitz NL (1996) Pharmacology of nicotine: addiction and therapeutics. Annu Rev Pharmacol Toxicol 36:597–613CrossRefGoogle Scholar
  6. Benowitz NL (2010) Nicotine addiction. N Engl J Med 362:2295–2303CrossRefGoogle Scholar
  7. Benowitz NL et al (1988) Nicotine absorption and cardiovascular effects with smokeless tobacco use: comparison with cigarettes and nicotine gum. Clin Pharmacol Ther 44:23–28CrossRefGoogle Scholar
  8. Bin Ahmad M et al (2012) Preparation, characterization and thermal degradation of polyimide (4-APS/BTDA)/SiO2 composite films. Int J Mol Sci 13:4860–4872CrossRefGoogle Scholar
  9. Butler D et al (2006) Development of a disposable amperometric immunosensor for the detection of ecstasy and its analogues using screen-printed electrodes. Anal Chim Acta 556:333–339CrossRefGoogle Scholar
  10. Cai Z et al (2010) Electrochemiluminescence detection of methamphetamine based on a Ru (bpy) 32+-doped silica nanoparticles/Nafion composite film modified electrode. Luminescence 25:367–372CrossRefGoogle Scholar
  11. Cai Q et al (2011) Determination of cocaine on banknotes through an aptamer-based electrochemiluminescence biosensor. Anal Bioanal Chem 400:289–294CrossRefGoogle Scholar
  12. Cheng W-C et al (2007) A rapid and convenient LC/MS method for routine identification of methamphetamine/dimethylamphetamine and their metabolites in urine. Forensic Sci Int 166:1–7CrossRefGoogle Scholar
  13. Costill D et al (1977) Effects of caffeine ingestion on metabolism and exercise performance. Med Sci Sports 10:155–158Google Scholar
  14. Dai H et al (2009) An electrochemiluminescent sensor for methamphetamine hydrochloride based on multiwall carbon nanotube/ionic liquid composite electrode. Biosens Bioelectron 24:1230–1234CrossRefGoogle Scholar
  15. Du Y et al (2010) Solid-state probe based electrochemical aptasensor for cocaine: a potentially convenient, sensitive, repeatable, and integrated sensing platform for drugs. Anal Chem 82:1556–1563CrossRefGoogle Scholar
  16. Ebrahimiasl S, Rajabpour A (2015) Synthesis and characterization of novel bactericidal Cu/HPMC BNCs using chemical reduction method for food packaging. J Food Sci Technol 52:5982–5988CrossRefGoogle Scholar
  17. Ebrahimiasl S, Zakaria A (2016) Electrochemical Synthesis, Characterization and Gas Sensing Properties of Hybrid Ppy/CS Coated ZnO Nanospheres. Int J Electrochem Sci 11:9902–9916CrossRefGoogle Scholar
  18. Ebrahimiasl S et al (2012) Preparation and photovoltaic property of a new hybrid nanocrystalline SnO 2/Polypyrrole p–n heterojunction. Opt Quant Electron 43:129–136CrossRefGoogle Scholar
  19. Ebrahimiasl S et al (2015) Novel conductive polypyrrole/zinc oxide/chitosan bionanocomposite: synthesis, characterization, antioxidant, and antibacterial activities. Int J Nanomed 10:217Google Scholar
  20. Emrani AS et al (2016) A novel fluorescent aptasensor based on hairpin structure of complementary strand of aptamer and nanoparticles as a signal amplification approach for ultrasensitive detection of cocaine. Biosens Bioelectron 79:288–293CrossRefGoogle Scholar
  21. Fang L et al (2008) A electrochemiluminescence aptasensor for detection of thrombin incorporating the capture aptamer labeled with gold nanoparticles immobilized onto the thio-silanized ITO electrode. Anal Chim Acta 628:80–86CrossRefGoogle Scholar
  22. Ferapontova EE et al (2008) An RNA aptamer-based electrochemical biosensor for detection of theophylline in serum. J Am Chem Soc 130:4256–4258CrossRefGoogle Scholar
  23. Garrido J et al (2016) Carbon nanotube β-cyclodextrin-modified electrode for quantification of cocaine in seized street samples. Ionics 22:2511–2518CrossRefGoogle Scholar
  24. Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107:4797–4862CrossRefGoogle Scholar
  25. Golub E et al (2009) Electrochemical, photoelectrochemical, and surface plasmon resonance detection of cocaine using supramolecular aptamer complexes and metallic or semiconductor nanoparticles. Anal Chem 81:9291–9298CrossRefGoogle Scholar
  26. Hansen JA et al (2006) Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor. J Am Chem Soc 128:2228–2229CrossRefGoogle Scholar
  27. Holzinger M et al (2014) Nanomaterials for biosensing applications: a review. Front Chem 2:63CrossRefGoogle Scholar
  28. Hu P et al (2010) Carbon nanostructure-based field-effect transistors for label-free chemical/biological sensors. Sensors 10:5133–5159CrossRefGoogle Scholar
  29. Inoue H et al (2008) Simple and simultaneous detection of methamphetamine and dimethyl sulfone in crystalline methamphetamine seizures by fast gas chromatography. For Toxicol 26:19–22Google Scholar
  30. Jiang B et al (2012) Highly sensitive electrochemical detection of cocaine on graphene/AuNP modified electrode via catalytic redox-recycling amplification. Biosens Bioelectron 32:305–308CrossRefGoogle Scholar
  31. Kaistha K, Jaffe JH (1972) TLC techniques for identification of narcotics, barbiturates, and CNS stimulants in a drug abuse urine screening program. J Pharm Sci 61:679–689CrossRefGoogle Scholar
  32. Kalasinsky KS et al (2001) Regional distribution of methamphetamine in autopsied brain of chronic human methamphetamine users. Forensic Sci Int 116:163–169CrossRefGoogle Scholar
  33. Katiyar N et al (2013) Gold nanoparticles based colorimetric aptasensor for theophylline. Anal Methods 5:653–659CrossRefGoogle Scholar
  34. Khatamian M et al (2012) Heterogeneous photocatalytic degradation of 4-nitrophenol in aqueous suspension by Ln (La 3+, Nd 3+ or Sm 3+) doped ZnO nanoparticles. J Mol Catal A Chem 365:120–127CrossRefGoogle Scholar
  35. Kohzadi R et al (2016) Designing a label free aptasensor for detection of methamphetamine. Biom J 2:28–33Google Scholar
  36. Kwon SJ, Bard AJ (2012) DNA analysis by application of Pt nanoparticle electrochemical amplification with single label response. J Am Chem Soc 134:10777–10779CrossRefGoogle Scholar
  37. Lee H et al (2010) Colorimetric detection of mutations in epidermal growth factor receptor using gold nanoparticle aggregation. Biosens Bioelectron 25:1669–1674CrossRefGoogle Scholar
  38. Li Y et al (2007) Electrogenerated chemiluminescence aptamer-based biosensor for the determination of cocaine. Electrochem Commun 9:2571–2575CrossRefGoogle Scholar
  39. Li X et al (2008) Electrochemical aptasensor for the determination of cocaine incorporating gold nanoparticles modification. Electroanalysis 20:1475–1482CrossRefGoogle Scholar
  40. Li Y et al (2011) Chemiluminescence aptasensor for cocaine based on double-functionalized gold nanoprobes and functionalized magnetic microbeads. Anal Bioanal Chem 401:213–219CrossRefGoogle Scholar
  41. Lim Y et al (2010) Aptasensors: a review. J Biomed Nanotechnol 6:93–105CrossRefGoogle Scholar
  42. Liu J, Lu Y (2006) Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew Chem 118:96–100CrossRefGoogle Scholar
  43. Liu W et al (2012) Highly sensitive and selective colorimetric detection of cartap residue in agricultural products. Talanta 101:382–387CrossRefGoogle Scholar
  44. Luppa PB et al (2001) Immunosensors—principles and applications to clinical chemistry. Clin Chim Acta 314:1–26CrossRefGoogle Scholar
  45. Ma L et al (2013) Electrogenerated chemiluminescence biosensor with gold nanoparticles/Ru (bpy) 32+ multilayer films on gold electrodes for the determination of ephedrine hydrochloride. Asian J Chem 25:2527CrossRefGoogle Scholar
  46. Maehashi K et al (2007) Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors. Anal Chem 79:782–787CrossRefGoogle Scholar
  47. Mallat E et al (2001) Fast determination of paraquat residues in water by an optical immunosensor and validation using capillary electrophoresis-ultraviolet detection. Anal Chim Acta 427:165–171CrossRefGoogle Scholar
  48. Mao K et al (2016) G-quadruplex–hemin DNAzyme molecular beacon probe for the detection of methamphetamine. RSC Adv 6:62754–62759CrossRefGoogle Scholar
  49. Martin W et al (1971) Physiologic, subjective, and behavioral effects of amphetamine, methamphetamine, ephedrine, phenmetrazine, and methylphenidate in man. Clin Pharmacol Ther 12:245–258CrossRefGoogle Scholar
  50. Mei H et al (2010) Label-free electrochemical cocaine aptasensor based on a target-inducing aptamer switching conformation. Anal Sci 26:1265–1270CrossRefGoogle Scholar
  51. Müller M et al (2016) A cytochrome P450 3A4 biosensor based on generation 4.0 PAMAM dendrimers for the detection of caffeine. Biosensors 6:44CrossRefGoogle Scholar
  52. Nakashima K et al (2003) Determination of methamphetamine and amphetamine in abusers’ plasma and hair samples with HPLC-FL. Biomed Chromatogr 17:471–476CrossRefGoogle Scholar
  53. O’Sullivan CK (2002) Aptasensors-the future of biosensing? Anal Bioanal Chem 372:44–48CrossRefGoogle Scholar
  54. Pan Q et al (2008) An electrochemical approach for detection of specific DNA-binding protein by gold nanoparticle-catalyzed silver enhancement. Anal Biochem 375:179–186CrossRefGoogle Scholar
  55. Pelossof G et al (2011) Amplified surface plasmon resonance based DNA biosensors, aptasensors, and Hg2+ sensors using hemin/G-quadruplexes and Au nanoparticles. Chem Eur J 17:8904–8912CrossRefGoogle Scholar
  56. Pohanka M, Skládal P (2008) Electrochemical biosensors–principles and applications. J Appl Biomed 6:57–64Google Scholar
  57. Post RM (1975) Cocaine psychoses: a continuum model. Am J Psychiatry 132(3):225–231Google Scholar
  58. Rafiee B et al (2015) Impedimetric and stripping voltammetric determination of methamphetamine at gold nanoparticles-multiwalled carbon nanotubes modified screen printed electrode. Sensors Actuators B Chem 218:271–279CrossRefGoogle Scholar
  59. Roushani M, Shahdost-fard F (2015) A novel ultrasensitive aptasensor based on silver nanoparticles measured via enhanced voltammetric response of electrochemical reduction of riboflavin as redox probe for cocaine detection. Sensors Actuators B Chem 207:764–771CrossRefGoogle Scholar
  60. Roushani M, Shahdost-fard F (2016) An aptasensor for voltammetric and impedimetric determination of cocaine based on a glassy carbon electrode modified with platinum nanoparticles and using rutin as a redox probe. Microchim Acta 183:185–193CrossRefGoogle Scholar
  61. Sanles-Sobrido M et al (2009) Label-free SERS detection of relevant bioanalytes on silver-coated carbon nanotubes: the case of cocaine. Nanoscale 1:153–158CrossRefGoogle Scholar
  62. Sassolas A et al (2009) Electrochemical aptasensors. Electroanalysis 21:1237–1250CrossRefGoogle Scholar
  63. Schivelbusch W (1992) Tastes of paradise: a social history of spices, stimulants, and intoxicants. Pantheon Books, New YorkGoogle Scholar
  64. Shahdost-fard F et al (2014) Highly selective and sensitive adenosine aptasensor based on platinum nanoparticles as catalytical label for amplified detection of biorecognition events through H 2 O 2 reduction. Biosens Bioelectron 53:355–362CrossRefGoogle Scholar
  65. Shekelle PG et al (2003) Efficacy and safety of ephedra and ephedrine for weight loss and athletic performance: a meta-analysis. JAMA 289:1537–1545Google Scholar
  66. Shi H et al (2011) Colorimetric immunosensing via protein functionalized gold nanoparticle probe combined with atom transfer radical polymerization. Biosens Bioelectron 26:3788–3793CrossRefGoogle Scholar
  67. Shi Y et al (2013) Fluorescent sensing of cocaine based on a structure switching aptamer, gold nanoparticles and graphene oxide. Analyst 138:7152–7156CrossRefGoogle Scholar
  68. Shi Q et al (2015) Colorimetric and bare eye determination of urinary methylamphetamine based on the use of aptamers and the salt-induced aggregation of unmodified gold nanoparticles. Microchim Acta 182:505–511CrossRefGoogle Scholar
  69. Soldano C et al (2010) Production, properties and potential of graphene. Carbon 48:2127–2150CrossRefGoogle Scholar
  70. Staiano M et al (2005) Glucose biosensors as models for the development of advanced protein-based biosensors. Mol BioSyst 1:354–362CrossRefGoogle Scholar
  71. Stojanovic MN, Landry DW (2002) Aptamer-based colorimetric probe for cocaine. J Am Chem Soc 124:9678–9679CrossRefGoogle Scholar
  72. Stojanovic MN et al (2000) Fluorescent sensors based on aptamer self-assembly. J Am Chem Soc 122:11547–11548CrossRefGoogle Scholar
  73. Stojanovic MN et al (2001) Aptamer-based folding fluorescent sensor for cocaine. J Am Chem Soc 123:4928–4931CrossRefGoogle Scholar
  74. Suave RVC, “Traducido por cchr mexico como un servicio a la sociedad.”Google Scholar
  75. Sun J et al (2008) Analysis of amphetamines in urine with liquid–liquid extraction by capillary electrophoresis with simultaneous electrochemical and electrochemiluminescence detection. Electrophoresis 29:3999–4007CrossRefGoogle Scholar
  76. Suzuki O et al (1984) Detection of methamphetamine and amphetamine in a single human hair by gas chromatography/chemical ionization mass spectrometry. J For Sci 29:611–617Google Scholar
  77. Švorc Ľ et al (2014) Electrochemical behavior of methamphetamine and its voltammetric determination in biological samples using self-assembled boron-doped diamond electrode. J Electroanal Chem 717:34–40CrossRefGoogle Scholar
  78. Taghdisi SM et al (2015) A novel electrochemical aptasensor based on single-walled carbon nanotubes, gold electrode and complimentary strand of aptamer for ultrasensitive detection of cocaine. Biosens Bioelectron 73:245–250CrossRefGoogle Scholar
  79. Wang Y et al (2010) Colorimetric biosensing of mercury (II) ion using unmodified gold nanoparticle probes and thrombin-binding aptamer. Biosens Bioelectron 25:1994–1998CrossRefGoogle Scholar
  80. Wang G-L et al (2012) “Oxidative etching-aggregation” of silver nanoparticles by melamine and electron acceptors: an innovative route toward ultrasensitive and versatile functional colorimetric sensors. Anal Chim Acta 747:92–98CrossRefGoogle Scholar
  81. Wei F et al (2005) Poly (methacrylic acid-ethylene glycol dimethacrylate) monolith in-tube solid-phase microextraction applied to simultaneous analysis of some amphetamine derivatives in urine by capillary zone electrophoresis. Electrophoresis 26:3141–3150CrossRefGoogle Scholar
  82. Wenger B et al (2012) Au-labeled antibodies to enhance the sensitivity of a refractometric immunoassay: detection of cocaine. Biosens Bioelectron 34:94–99CrossRefGoogle Scholar
  83. Wilens TE, Biederman J (1992) The stimulants. Psychiatr Clin N Am 15:191–222CrossRefGoogle Scholar
  84. Wilens TE, Spencer TJ (2000) The stimulants revisited. Child Adolesc Psychiatry Clin N Am 9:573–603CrossRefGoogle Scholar
  85. Wilens TE et al (2008) Misuse and diversion of stimulants prescribed for ADHD: a systematic review of the literature. J Am Acad Child Adolesc Psychiatry 47:21–31CrossRefGoogle Scholar
  86. Wilson GS, Hu Y (2000) Enzyme-based biosensors for in vivo measurements. Chem Rev 100:2693–2704CrossRefGoogle Scholar
  87. Wolfbeis OS (2000) Fiber-optic chemical sensors and biosensors. Anal Chem 72:81–90CrossRefGoogle Scholar
  88. Wolfbeis OS (2008) Fiber-optic chemical sensors and biosensors. Anal Chem 80:4269–4283CrossRefGoogle Scholar
  89. Yagiuda K et al (1996) Development of a conductivity-based immunosensor for sensitive detection of methamphetamine (stimulant drug) in human urine. Biosens Bioelectron 11:703–707CrossRefGoogle Scholar
  90. Yamaguchi M et al (2001) A rapid enzyme immunoassay for cocaine and benzoylecgonine using glucose oxidase. J Health Sci 47:419–423CrossRefGoogle Scholar
  91. Yan X et al (2010) DNA aptamer folding on magnetic beads for sequential detection of adenosine and cocaine by substrate-resolved chemiluminescence technology. Analyst 135:2400–2407CrossRefGoogle Scholar
  92. Yarbakht M, Nikkhah M (2016) Unmodified gold nanoparticles as a colorimetric probe for visual methamphetamine detection. J Exp Nanosci 11:593–601CrossRefGoogle Scholar
  93. Yeh C-H et al (2012) A developed competitive immunoassay based on impedance measurements for methamphetamine detection. Microfluid Nanofluid 13:319–329CrossRefGoogle Scholar
  94. Yi C et al (2005) Electrochemiluminescent determination of methamphetamine based on tris (2, 2′-bipyridine) ruthenium (II) ion-association in organically modified silicate films. Anal Chim Acta 541:73–81CrossRefGoogle Scholar
  95. Yu J et al (2011) Microfluidic paper-based chemiluminescence biosensor for simultaneous determination of glucose and uric acid. Lab Chip 11:1286–1291CrossRefGoogle Scholar
  96. Zarei A et al. (2014) Development of bactericidal Ag/chitosan nanobiocomposites for active food packaging In: International multidisciplinary microscopy congress, pp 255–260CrossRefGoogle Scholar
  97. Zhang C-y, Johnson LW (2009) Single quantum-dot-based aptameric nanosensor for cocaine. Anal Chem 81:3051–3055CrossRefGoogle Scholar
  98. Zhang S et al (2016) A novel, label-free fluorescent aptasensor for cocaine detection based on a G-quadruplex and ruthenium polypyridyl complex molecular light switch. Anal Methods 8:3740–3746CrossRefGoogle Scholar
  99. Zhou J et al (2012) Aptamer sensor for cocaine using minor groove binder based energy transfer. Anal Chim Acta 719:76–81CrossRefGoogle Scholar
  100. Zhu D et al (2012) Designing bifunctionalized gold nanoparticle for colorimetric detection of Pb 2+ under physiological condition. Biosens Bioelectron 31:505–509CrossRefGoogle Scholar
  101. Zou R et al (2012) Highly specific triple-fragment aptamer for optical detection of cocaine. RSC Adv 2:4636–4638CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Ahar BranchIslamic Azad UniversityAharIran
  2. 2.Industrial Nanotechnology Research Center, Tabriz BranchIsmalic Azad UniversityTabrizIran
  3. 3.Department of Toxicology, Ahar BranchIslamic Azad UniversityAharIran

Personalised recommendations