Advertisement

Health Benefits and Potential Risks of Nanostructured Materials

  • Sidhartha Singh
  • Sandeep Kumar
  • Vinod Kumar Yata
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 21)

Abstract

Nano structured materials (NSM) of carbon, lipid, metals, in particular silver and goldnano structured materials are being used for killing of undesired microorganism. Magnetic iron oxide nano structured materials finds it application in multiple fields ranging from diagnosis to treatment of diseases. Nano structured materials are being used in bio imaging, protein delivery, gene delivery, drug delivery, sunscreens, candies, beauty care products. Preparation of these nanoparticles does not involve generalized method but different types of materials are synthesized by different strategies to achieve nanoscale dimension, so their range of effect will also vary depending upon the material and strategy involved. In recent years, nano structured materials and its effect on human health has become a debatable issue as no one has conducted a large scale study of toxicity caused by nano structured materials.

This book chapter reviews and updates data on wide range of nano structured materials. Coverage of each nanomaterial included its importance, studies showing associated health benefits and risks. This collective information gives the conclusive idea that most nano structured materials have the toxicity issues with one or more cell lines or organism though very few are lethal at very low concentration, so their wide spread exposure to human being should be done after solving the toxicity issues or with wise approach.

Keywords

Nano particles Toxicity Carbon based nanoparticles Metal nanoparticles Quantum dots Nanocrystals Nanobiomaterials Dendimers Lipid nanoparticles In vitro studies 

References

  1. Alarifi S, Ali D, Alkahtani S, Verma A, Ahamed M, Ahmed M, Alhadlaq HA (2013) Induction of oxidative stress, DNA damage, and apoptosis in a malignant human skin melanoma cell line after exposure to zinc oxide nanoparticles. Int J Nanomedicine 8:983–993CrossRefGoogle Scholar
  2. Albertazzi L, Gherardini L, Brondi M, Sulis Sato S, Bifone A, Pizzorusso T, Ratto GM, Bardi G (2012) In vivo distribution and toxicity of PAMAM dendrimers in the central nervous system depend on their surface chemistry. Mol Pharm 10(1):249–260CrossRefGoogle Scholar
  3. Alt V, Bechert T, Steinrücke P, Wagener M, Seidel P, Dingeldein E, Domann E, Schnettler R (2004) An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 25(18):4383–4391CrossRefGoogle Scholar
  4. Augustus EN, Allen ET, Nimibofa A, Donbebe W (2017) A review of synthesis, characterization and applications of functionalized dendrimers. Am J Polym Sci 7(1):8–14Google Scholar
  5. Bagher AM (2016) Quantum dots applications. Sens Transd 198(3):37Google Scholar
  6. Bahadoran A, Moeini H, Bejo MH, Hussein MZ, Omar AR (2016) Development of tat-conjugated dendrimer for transdermal DNA vaccine delivery. J Pharm Pharm Sci 19(3):325–338CrossRefGoogle Scholar
  7. Barhoumi L, Dewez D (2013) Toxicity of superparamagnetic iron oxide nanoparticles on green alga Chlorella vulgaris. Biomed Res Int 2013.  https://doi.org/10.1155/2013/647974 CrossRefGoogle Scholar
  8. Beigbeder A, Degee P, Conlan SL, Mutton RJ, Clare AS, Pettitt ME, Callow ME, Callow JA, Dubois P (2008) Preparation and characterisation of silicone-based coatings filled with carbon nanotubes and natural sepiolite and their application as marine fouling-release coatings. Biofouling 24(4):291–302CrossRefGoogle Scholar
  9. Bhatt I, Tripathi BN (2011) Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment. Chemosphere 82(3):308–317CrossRefGoogle Scholar
  10. Bottini M, Bruckner S, Nika K, Bottini N, Bellucci S, Magrini A, Bergamaschi A, Mustelin T (2006) Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol Lett 160(2):121–126CrossRefGoogle Scholar
  11. Bruno V, Diana M, Joao P, Isabel P, Isabel C, Miguel V, Pedro VB (2010) Au-nanoprobes for detection of SNPs associated with antibiotic resistance in Mycobacterium tuberculosis. Nanotechnology 21(41):415101CrossRefGoogle Scholar
  12. Cai K, Jiang F, Luo Z, Chen X (2010) Temperature responsive controlled drug delivery system based on titanium nanotubes. Adv Eng Mater 12(9).  https://doi.org/10.1002/adem.201080015 CrossRefGoogle Scholar
  13. Calvo P, Gouritin B, Villarroya H, Eclancher F, Giannavola C, Klein C, Andreux JP, Couvreur P (2002) Quantification and localization of PEGylated polycyanoacrylate nanoparticles in brain and spinal cord during experimental allergic encephalomyelitis in the rat. Eur J Neurosci 15(8):1317–1326CrossRefGoogle Scholar
  14. Cavalli R, Caputo O, Gasco MR (1993) Solid lipospheres of doxorubicin and idarubicin. Int J Pharm 89(1):R9–R12CrossRefGoogle Scholar
  15. Chairuangkitti P, Lawanprasert S, Roytrakul S, Aueviriyavit S, Phummiratch D, Kulthong K, Chanvorachote P, Maniratanachote R (2013) Silver nanoparticles induce toxicity in A549 cells via ROS-dependent and ROS-independent pathways. Toxicol In Vitro 27(1):330–338CrossRefGoogle Scholar
  16. Cheng L, Yang K, Li Y, Zeng X, Shao M, Lee S-T, Liu Z (2012) Multifunctional nanoparticles for upconversion luminescence/MR multimodal imaging and magnetically targeted photothermal therapy. Biomaterials 33(7):2215–2222CrossRefGoogle Scholar
  17. Chono S, Tanino T, Seki T, Morimoto K (2008) Efficient drug targeting to rat alveolar macrophages by pulmonary administration of ciprofloxacin incorporated into mannosylated liposomes for treatment of respiratory intracellular parasitic infections. J Control Release 127(1):50–58CrossRefGoogle Scholar
  18. Chou T-W, Gao L, Thostenson ET, Zhang Z, Byun J-H (2010) An assessment of the science and technology of carbon nanotube-based fibers and composites. Compos Sci Technol 70(1):1–19CrossRefGoogle Scholar
  19. Chuang H-C, Juan H-T, Chang C-N, Yan Y-H, Yuan T-H, Wang J-S, Chen H-C, Hwang Y-H, Lee C-H, Cheng T-J (2014) Cardiopulmonary toxicity of pulmonary exposure to occupationally relevant zinc oxide nanoparticles. Nanotoxicology 8(6):593–604CrossRefGoogle Scholar
  20. Cross SE, Innes B, Roberts MS, Tsuzuki T, Robertson TA, McCormick P (2007) Human skin penetration of sunscreen nanoparticles: in-vitro assessment of a novel micronized zinc oxide formulation. Skin Pharmacol Physiol 20(3):148–154CrossRefGoogle Scholar
  21. Cui D, Tian F, Ozkan CS, Wang M, Gao H (2005) Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol Lett 155(1):73–85CrossRefGoogle Scholar
  22. D’Agata A, Fasulo S, Dallas LJ, Fisher AS, Maisano M, Readman JW, Jha AN (2014) Enhanced toxicity of ‘bulk’ titanium dioxide compared to ‘fresh’ and ‘aged’ nano-TiO2 in marine mussels (Mytilus galloprovincialis). Nanotoxicology 8(5):549–558CrossRefGoogle Scholar
  23. Dai L, Chang DW, Baek JB, Lu W (2012) Carbon nanomaterials for advanced energy conversion and storage. Small 8(8):1130–1166CrossRefGoogle Scholar
  24. de Kozak Y, Andrieux K, Villarroya H, Klein C, Thillaye-Goldenberg B, Naud M-C, Garcia E, Couvreur P (2004) Intraocular injection of tamoxifen-loaded nanoparticles: a new treatment of experimental autoimmune uveoretinitis. Eur J Immunol 34(12):3702–3712CrossRefGoogle Scholar
  25. De La Zerda A, Zavaleta C, Keren S, Vaithilingam S, Bodapati S, Liu Z, Levi J, Smith BR, Ma T-J, Oralkan O (2008) Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat Nanotechnol 3(9):557–562CrossRefGoogle Scholar
  26. Debabov V, Voeikova T, Shebanova A, Shaitan K, Emel’yanova L, Novikova L, Kirpichnikov M (2013) Bacterial synthesis of silver sulfide nanoparticles. Nanotechnol Russ 8(3–4):269–276CrossRefGoogle Scholar
  27. Desai N, Trieu V, Yao Z, Louie L, Ci S, Yang A, Tao C, De T, Beals B, Dykes D, Noker P, Yao R, Labao E, Hawkins M, Soon-Shiong P (2006) Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin Cancer Res 12(4):1317–1324CrossRefGoogle Scholar
  28. Dias S, Kumawat K, Biswas S, Krupanidhi SB (2017) Solvothermal synthesis of Cu2SnS3 quantum dots and their application in near-infrared photodetectors. Inorg Chem 56(4):2198–2203CrossRefGoogle Scholar
  29. Ding Y, Jiang Z, Saha K, Kim CS, Kim ST, Landis RF, Rotello VM (2014) Gold nanoparticles for nucleic acid delivery. Mol Ther 22(6):1075–1083CrossRefGoogle Scholar
  30. Edelhauser HF, Rowe-Rendleman CL, Robinson MR, Dawson DG, Chader GJ, Grossniklaus HE, Rittenhouse KD, Wilson CG, Weber DA, Kuppermann BD (2010) Ophthalmic drug delivery systems for the treatment of retinal diseases: basic research to clinical applications. Invest Ophthalmol Vis Sci 51(11):5403–5420CrossRefGoogle Scholar
  31. Evanoff K, Khan J, Balandin AA, Magasinski A, Ready WJ, Fuller TF, Yushin G (2012) Towards ultrathick battery electrodes: aligned carbon nanotube–enabled architecture. Adv Mater 24(4):533–537CrossRefGoogle Scholar
  32. Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine 6(1):103–109CrossRefGoogle Scholar
  33. Friedman AJ, Phan J, Schairer DO, Champer J, Qin M, Pirouz A, Blecher-Paz K, Oren A, Liu PT, Modlin RL (2013) Antimicrobial and anti-inflammatory activity of chitosan–alginate nanoparticles: a targeted therapy for cutaneous pathogens. J Investig Dermatol 133(5):1231–1239CrossRefGoogle Scholar
  34. Fujita K, Fukuda M, Endoh S, Maru J, Kato H, Nakamura A, Shinohara N, Uchino K, Honda K (2016) Pulmonary and pleural inflammation after intratracheal instillation of short single-walled and multi-walled carbon nanotubes. Toxicol Lett 257:23–37CrossRefGoogle Scholar
  35. Gajbhiye V, Vijayaraj Kumar P, Kumar Tekade R, Jain N (2007) Pharmaceutical and biomedical potential of PEGylated dendrimers. Curr Pharm Des 13(4):415–429CrossRefGoogle Scholar
  36. Gao G, Vecitis CD (2011) Electrochemical carbon nanotube filter oxidative performance as a function of surface chemistry. Environ Sci Technol 45(22):9726–9734CrossRefGoogle Scholar
  37. Ghosh M, Sonkar SK, Saxena M, Sarkar S (2011) Carbon Nano-onions for imaging the life cycle of Drosophila melanogaster. Small 7(22):3170–3177CrossRefGoogle Scholar
  38. Gilani K, Moazeni E, Ramezanli T, Amini M, Fazeli MR, Jamalifar H (2011) Development of respirable nanomicelle carriers for delivery of amphotericin B by jet nebulization. J Pharm Sci 100(1):252–259CrossRefGoogle Scholar
  39. Gleiter H (2000) Nanostructured materials: basic concepts and microstructure. Acta Mater 48(1):1–29CrossRefGoogle Scholar
  40. Goodarzi S, Da Ros T, Conde JO, Sefat F, Mozafari M (2017) Fullerene: biomedical engineers get to revisit an old friend. Mater Today 20(8):460–480CrossRefGoogle Scholar
  41. Gregoriadis G, Swain CP, Wills EJ, Tavill AS (1974) Drug-carrier potential of liposomes in cancer chemotherapy. Lancet 303(7870):1313–1316CrossRefGoogle Scholar
  42. Grillo R, de Melo NFS, de Araujo DR, de Paula E, Rosa AH, Fraceto LF (2010) Polymeric alginate nanoparticles containing the local anesthetic bupivacaine. J Drug Target 18(9):688–699CrossRefGoogle Scholar
  43. Gupta AK, Gupta M (2005) Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials 26(13):1565–1573CrossRefGoogle Scholar
  44. Haas E, Onel E, Miller H, Ragupathi M, White PF (2012) A double-blind, randomized, active-controlled study for post-hemorrhoidectomy pain management with liposome bupivacaine, a novel local analgesic formulation. Am Surg 78(5):574–581Google Scholar
  45. Hansen SF (2009) Regulation and risk assessment of nanomaterials: too little, too late. Dep Environ Eng, Ph.D. thesis, Technical University of Denmark (DTU), Kgs. Lyngby, DenmarkGoogle Scholar
  46. Haque S, Md S, Sahni JK, Ali J, Baboota S (2014) Development and evaluation of brain targeted intranasal alginate nanoparticles for treatment of depression. J Psychiatr Res 48(1):1–12CrossRefGoogle Scholar
  47. Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114(2):165–172CrossRefGoogle Scholar
  48. He Z, Santos JL, Tian H, Huang H, Hu Y, Liu L, Leong KW, Chen Y, Mao H-Q (2017) Scalable fabrication of size-controlled chitosan nanoparticles for oral delivery of insulin. Biomaterials 130:28–41CrossRefGoogle Scholar
  49. Helland A, Wick P, Koehler A, Schmid K, Som C (2008) Reviewing the environmental and human health knowledge base of carbon nanotubes. Cien Saude Colet 13(2):441–452CrossRefGoogle Scholar
  50. Heller DA, Baik S, Eurell TE, Strano MS (2005) Single-walled carbon nanotube spectroscopy in live cells: towards long-term labels and optical sensors. Adv Mater 17(23):2793–2799CrossRefGoogle Scholar
  51. Horie RT, Sakamoto T, Nakagawa T, Tabata Y, Okamura N, Tomiyama N, Tachibana M, Ito J (2010) Sustained delivery of lidocaine into the cochlea using poly lactic/glycolic acid microparticles. Laryngoscope 120(2):377–383Google Scholar
  52. Huang G, Chen H, Dong Y, Luo X, Yu H, Moore Z, Bey EA, Boothman DA, Gao J (2013) Superparamagnetic iron oxide nanoparticles: amplifying ROS stress to improve anticancer drug efficacy. Theranostics 3(2):116–126CrossRefGoogle Scholar
  53. Huang Y, Kannan P, Zhang L, Chen T, Kim D-H (2015) Concave gold nanoparticle-based highly sensitive electrochemical IgG immunobiosensor for the detection of antibody–antigen interactions. RSC Adv 5(72):58478–58484CrossRefGoogle Scholar
  54. Huczko A, Lange H (2001) Carbon nanotubes: experimental evidence for a null risk of skin irritation and allergy. Fuller Sci Technol 9(2):247–250CrossRefGoogle Scholar
  55. Hussain S, Vanoirbeek JA, Luyts K, De Vooght V, Verbeken E, Thomassen LC, Martens JA, Dinsdale D, Boland S, Marano F (2011) Lung exposure to nanoparticles modulates an asthmatic response in a mouse model. Eur Respir J 37(2):299–309CrossRefGoogle Scholar
  56. Jain K, Kesharwani P, Gupta U, Jain N (2010) Dendrimer toxicity: Let’s meet the challenge. Int J Pharm 394(1):122–142CrossRefGoogle Scholar
  57. Jain S, Hirst D, O’Sullivan J (2012) Gold nanoparticles as novel agents for cancer therapy. Br J Radiol 85(1010):101–113CrossRefGoogle Scholar
  58. Jena NR (2012) DNA damage by reactive species: mechanisms, mutation and repair. J Biosci 37(3):503–517CrossRefGoogle Scholar
  59. Jeyaraj M, Rajesh M, Arun R, MubarakAli D, Sathishkumar G, Sivanandhan G, Dev GK, Manickavasagam M, Premkumar K, Thajuddin N (2013) An investigation on the cytotoxicity and caspase-mediated apoptotic effect of biologically synthesized silver nanoparticles using Podophyllum hexandrum on human cervical carcinoma cells. Colloids Surf B: Biointerfaces 102:708–717CrossRefGoogle Scholar
  60. Jiang Y, Zhao H, Lin Y, Zhu N, Ma Y, Mao L (2010) Colorimetric detection of glucose in rat brain using gold nanoparticles. Angew Chem 122(28):4910–4914CrossRefGoogle Scholar
  61. Jiranek WA, Hanssen AD, Greenwald AS (2006) Antibiotic-loaded bone cement for infection prophylaxis in total joint replacement. J Bone Joint Surg 88(11):2487–2500CrossRefGoogle Scholar
  62. Jumaa M, Müller BW (2000) Lipid emulsions as a novel system to reduce the hemolytic activity of lytic agents: mechanism of the protective effect. Eur J Pharm Sci 9(3):285–290CrossRefGoogle Scholar
  63. Junghanns J, Müller RH (2008) Nanocrystal technology, drug delivery and clinical applications. Int J Nanomedicine 3(3):295–309Google Scholar
  64. Kalishwaralal K, Deepak V, Pandian SRK, Kottaisamy M, BarathManiKanth S, Kartikeyan B, Gurunathan S (2010) Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf B: Biointerfaces 77(2):257–262CrossRefGoogle Scholar
  65. Kam NWS, Dai H (2005) Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J Am Chem Soc 127(16):6021–6026CrossRefGoogle Scholar
  66. Kam NWS, O’Connell M, Wisdom JA, Dai H (2005) Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci USA 102(33):11600–11605CrossRefGoogle Scholar
  67. Kan H, Wu Z, Young S-H, Chen T-H, Cumpston JL, Chen F, Kashon ML, Castranova V (2012) Pulmonary exposure of rats to ultrafine titanium dioxide enhances cardiac protein phosphorylation and substance P synthesis in nodose ganglia. Nanotoxicology 6(7):736–745CrossRefGoogle Scholar
  68. Karthik L, Kumar G, Kirthi AV, Rahuman A, Rao KB (2014) Streptomyces sp. LK3 mediated synthesis of silver nanoparticles and its biomedical application. Bioprocess Biosyst Eng 37(2):261–267CrossRefGoogle Scholar
  69. Khampieng T, Aramwit P, Supaphol P (2015) Silk sericin loaded alginate nanoparticles: preparation and anti-inflammatory efficacy. Int J Biol Macromol 80:636–643CrossRefGoogle Scholar
  70. Khan OF, Zaia EW, Jhunjhunwala S, Xue W, Cai W, Yun DS, Barnes CM, Dahlman JE, Dong Y, Pelet JM (2015) Dendrimer-inspired nanomaterials for the in vivo delivery of siRNA to lung vasculature. Nano Lett 15(5):3008–3016CrossRefGoogle Scholar
  71. Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3(10):3221–3227CrossRefGoogle Scholar
  72. Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70CrossRefGoogle Scholar
  73. Kim ST, Chompoosor A, Yeh YC, Agasti SS, Solfiell DJ, Rotello VM (2012a) Dendronized gold nanoparticles for siRNA delivery. Small 8(21):3253–3256CrossRefGoogle Scholar
  74. Kim SW, Jung JH, Lamsal K, Kim YS, Min JS, Lee YS (2012b) Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology 40(1):53–58CrossRefGoogle Scholar
  75. Klajnert B, Bryszewska M (2001) Dendrimers: properties and applications. Acta Biochim Pol 48(1):199–208Google Scholar
  76. Köhler AR, Som C, Helland A, Gottschalk F (2008) Studying the potential release of carbon nanotubes throughout the application life cycle. J Clean Prod 16(8):927–937CrossRefGoogle Scholar
  77. Lai F, Wissing SA, Müller RH, Fadda AM (2006) Artemisia arborescens L essential oil-loaded solid lipid nanoparticles for potential agricultural application: preparation and characterization. AAPS PharmSciTech 7(1):E10–E18CrossRefGoogle Scholar
  78. Lakouraj MM, Mojerlou F, Zare EN (2014) Nanogel and superparamagnetic nanocomposite based on sodium alginate for sorption of heavy metal ions. Carbohydr Polym 106:34–41CrossRefGoogle Scholar
  79. Lam P-L, Kok S-L, Gambari R, Kok T-W, Leung H-Y, Choi K-L, Wong C-S, Hau D-P, Wong W-Y, Lam K (2015) Evaluation of berberine/bovine serum albumin nanoparticles for liver fibrosis therapy. Green Chem 17(3):1640–1646CrossRefGoogle Scholar
  80. Lee J, Chatterjee DK, Lee MH, Krishnan S (2014) Gold nanoparticles in breast cancer treatment: promise and potential pitfalls. Cancer Lett 347(1):46–53CrossRefGoogle Scholar
  81. Lee SH, Youn Y, Le P, Lim SJ, Smith AM, Selvin PR (2017) Application of small, size-equalized fluorescent quantum dots (SE-QDs) for glutamate receptor tracking in live-neuron imaging. Biophys J 112(3):284a–285aCrossRefGoogle Scholar
  82. Lee VH, Robinson JR (1986) Topical ocular drug delivery: recent developments and future challenges. J Ocul Pharmacol Ther 2(1):67–108CrossRefGoogle Scholar
  83. Li W-R, Xie X-B, Shi Q-S, Duan S-S, Ouyang Y-S, Chen Y-B (2011) Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals 24(1):135–141CrossRefGoogle Scholar
  84. Li X, Robinson SM, Gupta A, Saha K, Jiang Z, Moyano DF, Sahar A, Riley MA, Rotello VM (2014) Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. ACS Nano 8(10):10682–10686CrossRefGoogle Scholar
  85. Li Y, Leung P, Yao L, Song Q, Newton E (2006) Antimicrobial effect of surgical masks coated with nanoparticles. J Hosp Infect 62(1):58–63CrossRefGoogle Scholar
  86. Lin J, Chen R, Feng S, Pan J, Li Y, Chen G, Cheng M, Huang Z, Yu Y, Zeng H (2011) A novel blood plasma analysis technique combining membrane electrophoresis with silver nanoparticle-based SERS spectroscopy for potential applications in noninvasive cancer detection. Nanomedicine 7(5):655–663CrossRefGoogle Scholar
  87. Liu Q, Zhang X, Zhao Y, Lin J, Shu C, Wang C, Fang X (2013) Fullerene-induced increase of glycosyl residue on living plant cell wall. Environ Sci Technol 47(13):7490–7498CrossRefGoogle Scholar
  88. Liu Z, Zhao F, Gao S, Shao J, Chang H (2016) The applications of gold nanoparticle-Initialed Chemiluminescence in biomedical detection. Nanoscale Res Lett 11(1):460CrossRefGoogle Scholar
  89. Lomis N, Westfall S, Farahdel L, Malhotra M, Shum-Tim D, Prakash S (2016) Human serum albumin nanoparticles for use in cancer drug delivery: process optimization and in vitro characterization. Nano 6(6):116Google Scholar
  90. Lu Y, Slomberg DL, Shah A, Schoenfisch MH (2013) Nitric oxide-releasing amphiphilic poly (amidoamine)(PAMAM) dendrimers as antibacterial agents. Biomacromolecules 14(10):3589–3598CrossRefGoogle Scholar
  91. Luszczyn J, Plonska-Brzezinska ME, Palkar A, Dubis AT, Simionescu A, Simionescu DT, Kalska-Szostko B, Winkler K, Echegoyen L (2010) Small noncytotoxic carbon nano-onions: first covalent functionalization with biomolecules. Chem Eur J 16(16):4870–4880CrossRefGoogle Scholar
  92. Ma-Hock L, Strauss V, Treumann S, Küttler K, Wohlleben W, Hofmann T, Gröters S, Wiench K, van Ravenzwaay B, Landsiedel R (2013) Comparative inhalation toxicity of multi-wall carbon nanotubes, graphene, graphite nanoplatelets and low surface carbon black. Part Fibre Toxicol 10(1):23CrossRefGoogle Scholar
  93. Maestrelli F, Mura P, Alonso MJ (2004) Formulation and characterization of triclosan sub-micron emulsions and nanocapsules. J Microencapsul 21(8):857–864CrossRefGoogle Scholar
  94. Manuja A, Kumar B, Chopra M, Bajaj A, Kumar R, Dilbaghi N, Kumar S, Singh S, Riyesh T, Yadav SC (2016) Cytotoxicity and genotoxicity of a trypanocidal drug quinapyramine sulfate loaded-sodium alginate nanoparticles in mammalian cells. Int J Biol Macromol 88:146–155CrossRefGoogle Scholar
  95. Martins M, Azoia NG, Melle-Franco M, Ribeiro A, Cavaco-Paulo A (2017) Permeation of skin with (C60) fullerene dispersions. Eng Life Sci 17(7):732–738CrossRefGoogle Scholar
  96. Mason P (2006) Physiological and medicinal zinc. Pharm J 276(7390):271–274Google Scholar
  97. Miethling-Graff R, Rumpker R, Richter M, Verano-Braga T, Kjeldsen F, Brewer J, Hoyland J, Rubahn H-G, Erdmann H (2014) Exposure to silver nanoparticles induces size-and dose-dependent oxidative stress and cytotoxicity in human colon carcinoma cells. Toxicol In Vitro 28(7):1280–1289CrossRefGoogle Scholar
  98. Mirhosseini M, Firouzabadi FB (2013) Antibacterial activity of zinc oxide nanoparticle suspensions on food-borne pathogens. Int J Dairy Technol 66(2):291–295CrossRefGoogle Scholar
  99. Mironava T, Hadjiargyrou M, Simon M, Rafailovich MH (2014) Gold nanoparticles cellular toxicity and recovery: adipose derived stromal cells. Nanotoxicology 8(2):189–201CrossRefGoogle Scholar
  100. Montazer M, Pakdel E (2011) Functionality of nano titanium dioxide on textiles with future aspects: focus on wool. J Photochem Photobiol C: Photochem Rev 12(4):293–303CrossRefGoogle Scholar
  101. Montazer M, Seifollahzadeh S (2011) Enhanced self-cleaning, antibacterial and UV protection properties of nano TiO2 treated textile through enzymatic pretreatment. Photochem Photobiol 87(4):877–883CrossRefGoogle Scholar
  102. Mukherjee K, Ruan Q, Liberman D, White SN, Moradian-Oldak J (2016) Repairing human tooth enamel with leucine-rich amelogenin peptide–chitosan hydrogel. J Mater Res 31(05):556–563CrossRefGoogle Scholar
  103. Muller J, Huaux F, Moreau N, Misson P, Heilier J-F, Delos M, Arras M, Fonseca A, Nagy JB, Lison D (2005) Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 207(3):221–231CrossRefGoogle Scholar
  104. Newman MD, Stotland M, Ellis JI (2009) The safety of nanosized particles in titanium dioxide- and zinc oxide-based sunscreens. J Am Acad Dermatol 61(4):685–692CrossRefGoogle Scholar
  105. Nicholls FJ, Rotz MW, Ghuman H, MacRenaris KW, Meade TJ, Modo M (2016) DNA–gadolinium–gold nanoparticles for in vivo T1 MR imaging of transplanted human neural stem cells. Biomaterials 77:291–306CrossRefGoogle Scholar
  106. Nozik A (2002) Quantum dot solar cells. Physica E 14(1):115–120CrossRefGoogle Scholar
  107. Oberdörster E (2004) Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112:1058–1062CrossRefGoogle Scholar
  108. Oliveira JM, Salgado AJ, Sousa N, Mano JF, Reis RL (2010) Dendrimers and derivatives as a potential therapeutic tool in regenerative medicine strategies—a review. Prog Polym Sci 35(9):1163–1194CrossRefGoogle Scholar
  109. Otari S, Patil R, Nadaf N, Ghosh S, Pawar S (2014) Green synthesis of silver nanoparticles by microorganism using organic pollutant: its antimicrobial and catalytic application. Environ Sci Pollut Res 21(2):1503–1513CrossRefGoogle Scholar
  110. Paciotti GF, Myer L, Weinreich D, Goia D, Pavel N, McLaughlin RE, Tamarkin L (2004) Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv 11(3):169–183CrossRefGoogle Scholar
  111. Panwar R, Sharma AK, Kaloti M, Dutt D, Pruthi V (2016) Characterization and anticancer potential of ferulic acid-loaded chitosan nanoparticles against ME-180 human cervical cancer cell lines. Appl Nanosci 6(6):803–813CrossRefGoogle Scholar
  112. Park E-J, Kim H, Kim Y, Yi J, Choi K, Park K (2010) Carbon fullerenes (C60s) can induce inflammatory responses in the lung of mice. Toxicol Appl Pharmacol 244(2):226–233CrossRefGoogle Scholar
  113. Pasut G, Veronese F (2007) Polymer–drug conjugation, recent achievements and general strategies. Prog Polym Sci 32(8):933–961CrossRefGoogle Scholar
  114. Patel H, Patel P (2013) Dendrimer applications–a review. Int J Pharma Bio Sci 4(2):454–463Google Scholar
  115. Pawar VK, Singh Y, Meher JG, Gupta S, Chourasia MK (2014) Engineered nanocrystal technology: in-vivo fate, targeting and applications in drug delivery. J Control Release 183:51–66CrossRefGoogle Scholar
  116. Ping L, Juan L, Changzhu W, Qingsheng W, Jian L (2005) Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles. Nanotechnology 16(9):1912CrossRefGoogle Scholar
  117. Preechakasedkit P, Pinwattana K, Dungchai W, Siangproh W, Chaicumpa W, Tongtawe P, Chailapakul O (2012) Development of a one-step immunochromatographic strip test using gold nanoparticles for the rapid detection of Salmonella typhi in human serum. Biosens Bioelectron 31(1):562–566CrossRefGoogle Scholar
  118. Prina-Mello A, Crosbie-Staunton K, Salas G, del Puerto Morales M, Volkov Y (2013) Multiparametric toxicity evaluation of SPIONs by high content screening technique: identification of biocompatible multifunctional nanoparticles for nanomedicine. IEEE Trans Magn 49(1):377–382CrossRefGoogle Scholar
  119. Puglia C, Sarpietro MG, Bonina F, Castelli F, Zammataro M, Chiechio S (2011) Development, characterization, and in vitro and in vivo evaluation of benzocaine- and lidocaine-loaded nanostructrured lipid carriers. J Pharm Sci 100(5):1892–1899CrossRefGoogle Scholar
  120. Qin Y, Zhou Z-W, Pan S-T, He Z-X, Zhang X, Qiu J-X, Duan W, Yang T, Zhou S-F (2015) Graphene quantum dots induce apoptosis, autophagy, and inflammatory response via p38 mitogen-activated protein kinase and nuclear factor-κB mediated signaling pathways in activated THP-1 macrophages. Toxicology 327:62–76CrossRefGoogle Scholar
  121. Rafiee A, Alimohammadian MH, Gazori T, Riazi-Rad F, Fatemi SMR, Parizadeh A, Haririan I, Havaskary M (2014) Comparison of chitosan, alginate and chitosan/alginate nanoparticles with respect to their size, stability, toxicity and transfection. Asian Pac J Trop Dis 4(5):372–377CrossRefGoogle Scholar
  122. Rahaman MS, Vecitis CD, Elimelech M (2012) Electrochemical carbon-nanotube filter performance toward virus removal and inactivation in the presence of natural organic matter. Environ Sci Technol 46(3):1556–1564CrossRefGoogle Scholar
  123. Rivas L, de la Escosura-Muñiz A, Serrano L, Altet L, Francino O, Sánchez A, Merkoçi A (2015) Triple lines gold nanoparticle-based lateral flow assay for enhanced and simultaneous detection of Leishmania DNA and endogenous control. Nano Res 8(11):3704–3714CrossRefGoogle Scholar
  124. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112(5):2739–2779CrossRefGoogle Scholar
  125. Sanvicens N, Marco MP (2008) Multifunctional nanoparticles–properties and prospects for their use in human medicine. Trends Biotechnol 26(8):425–433CrossRefGoogle Scholar
  126. Saoud F (2010) Superparamagnetic nanoparticles for synthesis and purification of polymers prepared via Controlled/“Living” Radical Polymerization (CLRP). Department of Chemistry and Polymer Science, Vol. PhD, University of Stellenbosch. Stellenbosch, South AfricaGoogle Scholar
  127. Sathiyanarayanan G, Kiran GS, Selvin J (2013) Synthesis of silver nanoparticles by polysaccharide bioflocculant produced from marine Bacillus subtilis MSBN17. Colloids Surf B: Biointerfaces 102:13–20CrossRefGoogle Scholar
  128. Scheffel U, Rhodes BA, Natarajan T, Wagner HN (1972) Albumin microspheres for study of the reticuloendothelial system. J Nucl Med 13(7):498–503Google Scholar
  129. Selim ME, Hendi AA (2012) Gold nanoparticles induce apoptosis in MCF-7 human breast cancer cells. Asian Pac J Cancer Prev 13(4):1617–1620CrossRefGoogle Scholar
  130. Servin A, Elmer W, Mukherjee A, De la Torre-Roche R, Hamdi H, White JC, Bindraban P, Dimkpa C (2015) A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J Nanopart Res 17(2):92CrossRefGoogle Scholar
  131. Seymour MB, Su C, Gao Y, Lu Y, Li Y (2012) Characterization of carbon nano-onions for heavy metal ion remediation. J Nanopart Res 14(9):1087CrossRefGoogle Scholar
  132. Shanmugasundaram T, Radhakrishnan M, Gopikrishnan V, Pazhanimurugan R, Balagurunathan R (2013) A study of the bactericidal, anti-biofouling, cytotoxic and antioxidant properties of actinobacterially synthesised silver nanoparticles. Colloids Surf B: Biointerfaces 111:680–687CrossRefGoogle Scholar
  133. Sharma V, Singh P, Pandey AK, Dhawan A (2012) Induction of oxidative stress, DNA damage and apoptosis in mouse liver after sub-acute oral exposure to zinc oxide nanoparticles. Mutat Res Genet Toxicol Environ Mutagen 745(1):84–91CrossRefGoogle Scholar
  134. Shimizu M, Tainaka H, Oba T, Mizuo K, Umezawa M, Takeda K (2009) Maternal exposure to nanoparticulate titanium dioxide during the prenatal period alters gene expression related to brain development in the mouse. Part Fibre Toxicol 6(1):20CrossRefGoogle Scholar
  135. Singh K, Mishra A (2015) Chitosan nanoparticulate and their applications: a review. Int J Pharma and Bio Sci 6(2):557–566Google Scholar
  136. Singh N, Jenkins GJS, Asadi R, Doak SH (2010) Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev.  https://doi.org/10.3402/nr.v1i0.5358
  137. Singh N, Karambelkar A, Gu L, Lin K, Miller JS, Chen CS, Sailor MJ, Bhatia SN (2011) Bioresponsive mesoporous silica nanoparticles for triggered drug release. J Am Chem Soc 133(49):19582–19585CrossRefGoogle Scholar
  138. Sintubin L, Verstraete W, Boon N (2012) Biologically produced nanosilver: current state and future perspectives. Biotechnol Bioeng 109(10):2422–2436CrossRefGoogle Scholar
  139. Smith A, Perelman M, Hinchcliffe M (2014) Chitosan: a promising safe and immune-enhancing adjuvant for intranasal vaccines. Hum Vaccin Immunother 10(3):797–807CrossRefGoogle Scholar
  140. Sokolov K, Follen M, Aaron J, Pavlova I, Malpica A, Lotan R, Richards-Kortum R (2003) Real-time vital optical imaging of Precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res 63(9):1999–2004Google Scholar
  141. Sotowa C, Origi G, Takeuchi M, Nishimura Y, Takeuchi K, Jang IY, Kim YJ, Hayashi T, Kim YA, Endo M (2008) The reinforcing effect of combined carbon nanotubes and acetylene blacks on the positive electrode of Lithium-ion batteries. ChemSusChem 1(11):911–915CrossRefGoogle Scholar
  142. Suman T, Rajasree SR, Kirubagaran R (2015) Evaluation of zinc oxide nanoparticles toxicity on marine algae Chlorella vulgaris through flow cytometric, cytotoxicity and oxidative stress analysis. Ecotoxicol Environ Saf 113:23–30CrossRefGoogle Scholar
  143. Tao W, Ji X, Xu X, Ariful Islam M, Li Z, Chen S, Saw PE, Zhang H, Bharwani Z, Guo Z (2017) Antimonene quantum dots: synthesis and application as near-infrared photothermal agents for effective cancer therapy. Angew Chem Int Ed.  https://doi.org/10.1002/anie.201703657 CrossRefGoogle Scholar
  144. Tkachenko AG, Xie H, Liu Y, Coleman D, Ryan J, Glomm WR, Shipton MK, Franzen S, Feldheim DL (2004) Cellular trajectories of peptide-modified gold particle complexes: comparison of nuclear localization signals and peptide transduction domains. Bioconjug Chem 15(3):482–490CrossRefGoogle Scholar
  145. Toyokuni S (1996) Iron-induced carcinogenesis: the role of redox regulation. Free Radic Biol Med 20(4):553–566CrossRefGoogle Scholar
  146. Voinov MA, Pagán JOS, Morrison E, Smirnova TI, Smirnov AI (2010) Surface-mediated production of hydroxyl radicals as a mechanism of iron oxide nanoparticle biotoxicity. J Am Chem Soc 133(1):35–41CrossRefGoogle Scholar
  147. Wang J, Zhou G, Chen C, Yu H, Wang T, Ma Y, Jia G, Gao Y, Li B, Sun J (2007) Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett 168(2):176–185CrossRefGoogle Scholar
  148. Wang J, Zhu X, Zhang X, Zhao Z, Liu H, George R, Wilson-Rawls J, Chang Y, Chen Y (2011) Disruption of zebrafish (Danio rerio) reproduction upon chronic exposure to TiO 2 nanoparticles. Chemosphere 83(4):461–467CrossRefGoogle Scholar
  149. Wang S, Li Y, Fan J, Wang Z, Zeng X, Sun Y, Song P, Ju D (2014) The role of autophagy in the neurotoxicity of cationic PAMAM dendrimers. Biomaterials 35(26):7588–7597CrossRefGoogle Scholar
  150. Wang Z, Wang K, Lu X, Li C, Han L, Xie C, Liu Y, Qu S, Zhen G (2015) Nanostructured architectures by assembling polysaccharide-coated BSA nanoparticles for biomedical application. Adv Healthc Mater 4(6):927–937CrossRefGoogle Scholar
  151. Weir A, Westerhoff P, Fabricius L, Hristovski K, Von Goetz N (2012) Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46(4):2242–2250CrossRefGoogle Scholar
  152. Wijnhoven SW, Peijnenburg WJ, Herberts CA, Hagens WI, Oomen AG, Heugens EH, Roszek B, Bisschops J, Gosens I, Van De Meent D (2009) Nano-silver–a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3(2):109–138CrossRefGoogle Scholar
  153. Wu T, Tang M (2014) Toxicity of quantum dots on respiratory system. Inhal Toxicol 26(2):128–139CrossRefGoogle Scholar
  154. Wu W, Wieckowski S, Pastorin G, Benincasa M, Klumpp C, Briand JP, Gennaro R, Prato M, Bianco A (2005) Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew Chem Int Ed 44(39):6358–6362CrossRefGoogle Scholar
  155. Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP, Ge N, Peale F, Bruchez MP (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21(1):41–46CrossRefGoogle Scholar
  156. Yamashita K, Yoshioka Y, Higashisaka K, Mimura K, Morishita Y, Nozaki M, Yoshida T, Ogura T, Nabeshi H, Nagano K (2011) Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. Nat Nanotechnol 6(5):321–328CrossRefGoogle Scholar
  157. Yang L-Y, Gao J-L, Gao T, Dong P, Ma L, Jiang F-L, Liu Y (2016) Toxicity of polyhydroxylated fullerene to mitochondria. J Hazard Mater 301:119–126CrossRefGoogle Scholar
  158. Yang L, Wang Q, Peng L, Yue H, Zhang Z (2015) Vascularization of repaired limb bone defects using chitosan-β-tricalcium phosphate composite as a tissue engineering bone scaffold. Mol Med Rep 12(2):2343–2347CrossRefGoogle Scholar
  159. Yazdi AS, Guarda G, Riteau N, Drexler SK, Tardivel A, Couillin I, Tschopp J (2010) Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1α and IL-1β. Proc Natl Acad Sci 107(45):19449–19454CrossRefGoogle Scholar
  160. Yiu HHP, Keane MA (2011) Enzyme–magnetic nanoparticle hybrids: new effective catalysts for the production of high value chemicals. J Chem Technol Biotechnol 87(5):583–594CrossRefGoogle Scholar
  161. Younes NRB, Amara S, Mrad I, Ben-Slama I, Jeljeli M, Omri K, El Ghoul J, El Mir L, Rhouma KB, Abdelmelek H (2015) Subacute toxicity of titanium dioxide (TiO2) nanoparticles in male rats: emotional behavior and pathophysiological examination. Environ Sci Pollut Res 22(11):8728–8737CrossRefGoogle Scholar
  162. Yu JC, Wang X, Fu X (2004) Pore-wall chemistry and photocatalytic activity of mesoporous titania molecular sieve films. Chem Mater 16(8):1523–1530CrossRefGoogle Scholar
  163. Zardini HZ, Davarpanah M, Shanbedi M, Amiri A, Maghrebi M, Ebrahimi L (2014) Microbial toxicity of ethanolamines—Multiwalled carbon nanotubes. J Biomed Mater Res A 102(6):1774–1781CrossRefGoogle Scholar
  164. Zellmer S, Cevc G (1996) Tumor targeting in vivo by means of thermolabile fusogenic liposomes. J Drug Target 4(1):19–29CrossRefGoogle Scholar
  165. Zhang W, Yang L, Kuang H, Yang P, Aguilar ZP, Wang A, Fu F, Xu H (2016) Acute toxicity of quantum dots on late pregnancy mice: effects of nanoscale size and surface coating. J Hazard Mater 318:61–69CrossRefGoogle Scholar
  166. Zhang X (2015) Gold nanoparticles: recent advances in the biomedical applications. Cell Biochem Biophys 72(3):771–775CrossRefGoogle Scholar
  167. Zharov VP, Galitovskaya EN, Johnson C, Kelly T (2005) Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy. Lasers Surg Med 37(3):219–226CrossRefGoogle Scholar
  168. Zrazhevskiy P, Gao X (2013) Quantum dot imaging platform for single-cell molecular profiling. Nat Commun 4:1619CrossRefGoogle Scholar
  169. Zrazhevskiy P, True LD, Gao X (2013) Multicolor multicycle molecular profiling with quantum dots for single-cell analysis. Nat Protoc 8(10):1852–1869CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sidhartha Singh
    • 1
  • Sandeep Kumar
    • 1
  • Vinod Kumar Yata
    • 1
  1. 1.Department of BiotechnologyDr. B. R. Ambedkar National Institute of Technology JalandharJalandharIndia

Personalised recommendations