Advertisement

Energy Management in Microgrids

  • Pedro P. Vergara
  • Juan C. López
  • Juan M. ReyEmail author
  • Luiz C. P. da Silva
  • Marcos J. Rider
Chapter

Abstract

In this chapter the most significant characteristics and functionalities of an energy management system (EMS) for microgrids are introduced. For this, the definitions of hierarchical control layers are considered. First, the main concepts and modules of the hierarchical control structure of a generalized EMS are presented. Then, energy management function is represented as an optimization problem, described as the simultaneous solution of both, a unit commitment problem and an economic load dispatch problem. An extension of the energy management problem is also formulated based on an optimal power flow. Second, the advantages and disadvantages of using either a centralized or a decentralized EMS approach are discussed. Finally, since the energy management problem is represented as an optimization problem, the most common methodologies and solution algorithms used in the specialized literature are discussed, including metaheuristics, mixed-integer linear approximations, and nonlinear approaches, as well as software tools for implementing models and simulations.

Keywords

Energy management Reliability Demand side management 

References

  1. 1.
    Olivares, D. E., Canizares, C. A., & Kazerani, M. (2011). A centralized optimal energy management system for microgrids. In 2011 I.E. Power and Energy Society General Meeting (pp. 1–6).Google Scholar
  2. 2.
    Katiraei, F., Iravani, R., Hatziargyriou, N., & Dimeas, A. (2008). Microgrids management. IEEE Power & Energy Magazine, 6(3), 54–65.CrossRefGoogle Scholar
  3. 3.
    Kanchev, H., Lu, D., Colas, F., Lazarov, V., & Francois, B. (2011). Energy management and operational planning of a microgrid with a PV-based active generator for smart grid applications. IEEE Transactions on Industrial Electronics, 58(10), 4583–4592.CrossRefGoogle Scholar
  4. 4.
    Guerrero, J. M., Vasquez, J. C., Matas, J., de Vicuña, L. G., & Castilla, M. (2011). Hierarchical control of droop-controlled AC and DC microgrids—A general approach toward standardization. IEEE Transactions on Industrial Electronics, 58(1), 158–172.CrossRefGoogle Scholar
  5. 5.
    Olivares, D. E., Mehrizi-Sani, A., Etemadi, A. H., Canizares, C. A., Iravani, R., Kazerani, M., Hajimiragha, A. H., Gomis-Bellmunt, O., Saeedifard, M., Palma-Behnke, R., Jimenez-Estevez, G. A., & Hatziargyriou, N. D. (2014). Trends in microgrid control. IEEE Transactions on Smart Grid, 5(4), 1905–1919.CrossRefGoogle Scholar
  6. 6.
    Bidram, A., & Davoudi, A. (2012). Hierarchical structure of microgrids control system. IEEE Transactions on Smart Grid, 3(4), 1963–1976.CrossRefGoogle Scholar
  7. 7.
    Basu, A. K., Chowdhury, S. P., Chowdhury, S., & Paul, S. (2011). Microgrids: Energy management by strategic deployment of DERs—A comprehensive survey. Renewable and Sustainable Energy Reviews, 15(9), 4348–4356.CrossRefGoogle Scholar
  8. 8.
    Molderink, A., Bakker, V., Bosman, M. G. C., Hurink, J. L., & Smit, G. J. M. (2010). Management and control of domestic smart grid technology. IEEE Transactions on Smart Grid, 1(2), 109–119.CrossRefGoogle Scholar
  9. 9.
    Chen, C., Duan, S., Cai, T., Liu, B., & Hu, G. (2011). Smart energy management system for optimal microgrid economic operation. IET Renewable Power Generation, 5(3), 258.CrossRefGoogle Scholar
  10. 10.
    Lujano-Rojas, J. M., Monteiro, C., Dufo-López, R., & Bernal-Agustín, J. L. (2012). Optimum load management strategy for wind/diesel/battery hybrid power systems. Renewable Energy, 44, 288–295.CrossRefGoogle Scholar
  11. 11.
    Palma-Behnke, R., Benavides, C., Lanas, F., Severino, B., Reyes, L., Llanos, J., & Saez, D. (2013). A microgrid energy management system based on the rolling horizon strategy. IEEE Transactions on Smart Grid, 4(2), 996–1006.CrossRefGoogle Scholar
  12. 12.
    Jaganmohan Reddy, Y., Pavan Kumar, Y. V., Sunil Kumar, V., & Padma Raju, K. (2012). Distributed ANNs in a layered architecture for energy management and maintenance scheduling of renewable energy HPS microgrids. In 2012 International Conference on Advances in Power Conversion and Energy Technologies (APCET) (No. 1, pp. 1–6).Google Scholar
  13. 13.
    Stluka, P., Godbole, D., & Samad, T. (2011). Energy management for buildings and microgrids. In IEEE Conference on Decision and Control and European Control Conference (pp. 5150–5157).Google Scholar
  14. 14.
    Kumar Nunna, H. S. V. S., & Doolla, S. (2013). Energy management in microgrids using demand response and distributed storage—A multiagent approach. IEEE Transactions on Power Delivery, 28(2), 939–947.CrossRefGoogle Scholar
  15. 15.
    Olivares, D. E., Canizares, C. A., & Kazerani, M. (2014). A centralized energy management system for isolated microgrids. IEEE Transactions on Smart Grid, 5(4), 1864–1875.CrossRefGoogle Scholar
  16. 16.
    Wu, X., Wang, X., & Qu, C. (2014). A hierarchical framework for generation scheduling of microgrids. IEEE Transactions on Power Delivery, 29(6), 2448–2457.CrossRefGoogle Scholar
  17. 17.
    Palma-Behnke, R., Benavides, C., Aranda, E., Llanos, J., & Saez, D. (2011). Energy management system for a renewable based microgrid with a demand side management mechanism. In 2011 I.E. Symposium on Computational Intelligence Applications In Smart Grid (CIASG) (pp. 1–8).Google Scholar
  18. 18.
    Sanseverino, E. R., Di Silvestre, M. L., Ippolito, M. G., De Paola, A., & Lo Re, G. (2011). An execution, monitoring and replanning approach for optimal energy management in microgrids. Energy, 36(5), 3429–3436.CrossRefGoogle Scholar
  19. 19.
    Hatziargyriou, N. D., Dimeas, A., Tsikalakis, A. G., Lopes, J. A. P., Karniotakis, G., & Oyarzabal, J. (2005). Management of microgrids in market environment. In 2005 International Conference on Future Power Systems (p. 7).Google Scholar
  20. 20.
    Oyarzabal, J., Jimeno, J., Ruela, J., Engler, A., & Hardt, C. (2005). Agent based micro grid management system. In 2005 International Conference on Future Power Systems (p. 6).Google Scholar
  21. 21.
    Zheng, W. D., & Cai, J. D. (2010). A multi-agent system for distributed energy resources control in microgrid. In 2010 5th International Conference on Critical Infrastructure (CRIS) (pp. 1–5).Google Scholar
  22. 22.
    Colson, C. M., & Nehrir, M. H. (2013). Comprehensive real-time microgrid power management and control with distributed agents. IEEE Transactions on Smart Grid, 4(1), 617–627.CrossRefGoogle Scholar
  23. 23.
    Jiang, Q., Xue, M., & Geng, G. (2013). Energy management of microgrid in grid-connected and stand-alone modes. IEEE Transactions on Power Apparatus and Systems, 28(3), 3380–3389.CrossRefGoogle Scholar
  24. 24.
    Strrelec, M., & Berka, J. (2013). Microgrid energy management based on approximate dynamic programming. In IEEE PES ISGT Europe 2013 (pp. 1–5).Google Scholar
  25. 25.
    Wu, X., Wang, X., & Bie, Z. (2012). Optimal generation scheduling of a microgrid. In 2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe) (pp. 1–7).Google Scholar
  26. 26.
    Chakraborty, S., & Simoes, M. G. (2008). PV-microgrid operational cost minimization by neural forecasting and heuristic optimization. In 2008 I.E. Ind. Appl. Soc. Annu. Meet. (pp. 1–8), Oct 2008.Google Scholar
  27. 27.
    Paudyal, S., Canizares, C. A., & Bhattacharya, K. (2011). Optimal operation of distribution feeders in smart grids. IEEE Transactions on Industrial Electronics, 58(10), 4495–4503.CrossRefGoogle Scholar
  28. 28.
    Macedo, L. H., Franco, J. F., Rider, M. J., & Romero, R. (2015). Optimal operation of distribution networks considering energy storage devices. IEEE Transactions on Smart Grid, 6(6), 2825–2836.CrossRefGoogle Scholar
  29. 29.
    Shi, W., Xie, X., Chu, C.-C., & Gadh, R. (2015). Distributed optimal energy management in microgrids. IEEE Transactions on Smart Grid, 6(3), 1137–1146.CrossRefGoogle Scholar
  30. 30.
    Franco, J. F., Rider, M. J., & Romero, R. (2015). A mixed-integer linear programming model for the electric vehicle charging coordination problem in unbalanced electrical distribution systems. IEEE Transactions on Smart Grid, 6(5), 2200–2210.CrossRefGoogle Scholar
  31. 31.
    Garces, A. (2016). A linear three-phase load flow for power distribution systems. IEEE Transactions on Power Systems, 31(1), 827–828.MathSciNetCrossRefGoogle Scholar
  32. 32.
    Cespedes, R. G. (1990). New method for the analysis of distribution networks. IEEE Transactions on Power Delivery, 5(1), 391–396.MathSciNetCrossRefGoogle Scholar
  33. 33.
    Baran, M. E., & Wu, F. F. (1989). Optimal capacitor placement on radial distribution systems. IEEE Transactions on Power Delivery, 4(1), 725–734.CrossRefGoogle Scholar
  34. 34.
    Gan, L., Li, N., Topcu, U., & Low, S. H. (2015). Exact convex relaxation of optimal power flow in radial networks. IEEE Transactions on Automatic Control, 60(1), 72–87.MathSciNetCrossRefGoogle Scholar
  35. 35.
    Alsac, O., Bright, J., Prais, M., & Stott, B. (1990). Further developments in LP-based optimal power flow. IEEE Transactions on Power Systems, 5(3), 697–711.CrossRefGoogle Scholar
  36. 36.
    Stott, B., Jardim, J., & Alsac, O. (2009). DC power flow revisited. IEEE Transactions on Power Systems, 24(3), 1290–1300.CrossRefGoogle Scholar
  37. 37.
    Franco, J. F., Rider, M. J., Lavorato, M., & Romero, R. (2013). A mixed-integer LP model for the reconfiguration of radial electric distribution systems considering distributed generation. Electric Power Systems Research, 97, 51–60.CrossRefGoogle Scholar
  38. 38.
    Cavalcante, P. L., Lopez, J. C., Franco, J. F., Rider, M. J., Garcia, A. V., Malveira, M. R. R., Martins, L. L., & Direito, L. C. M. (2016). Centralized self-healing scheme for electrical distribution systems. IEEE Transactions on Smart Grid, 7(1), 145–155.CrossRefGoogle Scholar
  39. 39.
    Fortuny-Amat, J., & McCarl, B. (1981). A representation and economic interpretation of a two-level programming problem. Journal of the Operational Research Society, 32(9), 783.MathSciNetCrossRefGoogle Scholar
  40. 40.
    Fourer, R., Gay, D. M., & Kernighan, B. W. (2003). AMPL: A modeling language for mathematical programming (2nd ed.). Pacific Grove, CA: Brooks/Cole-Thomson Learning.zbMATHGoogle Scholar
  41. 41.
    Rosenthal, R. E. (2012). GAMS—A user’s guide. Washington D.C.: GAMS Development Corporation.Google Scholar
  42. 42.
    The Language Reference—AIMMS.Google Scholar
  43. 43.
    CPLEX optimization subroutine library guide and reference. (2008). Inclines Village, NV: ILOG Inc.Google Scholar
  44. 44.
    GUROBI 5.6, Gurobi Optimization, Inc, user’s manual. (2013).Google Scholar
  45. 45.
    XPRESS 25, FICO, user’s manual. (2013).Google Scholar
  46. 46.
    Bonami, P., Biegler, L. T., Conn, A. R., Cornuéjols, G., Grossmann, I. E., Laird, C. D., Lee, J., Lodi, A., Margot, F., Sawaya, N., & Wächter, A. (2008). An algorithmic framework for convex mixed integer nonlinear programs. Discrete Optimization, 5(2), 186–204.MathSciNetCrossRefGoogle Scholar
  47. 47.
    KNITRO documentation. (2012). Evanston, IL: Ziena Optimization LLC.Google Scholar
  48. 48.
    Solanki, B. V., Raghurajan, A., Bhattacharya, K., & Cañizares, C. A. (2017). Including smart loads for optimal demand response in integrated energy management systems for isolated microgrids. In IEEE Transactions on Smart Grid, 8(4), 1739–1748.Google Scholar
  49. 49.
    Olivares, D. E., Lara, J. D., Canizares, C. A., & Kazerani, M. (2015). Stochastic-predictive energy management system for isolated microgrids. IEEE Transactions on Smart Grid, 6(6), 2681–2693.CrossRefGoogle Scholar
  50. 50.
    Farivar, M., & Low, S. H. (2013). Branch flow model: relaxations and convexification—Part I. IEEE Transactions on Power Systems, 28(3), 2554–2564.CrossRefGoogle Scholar
  51. 51.
    Jabr, R. A. (2006). Radial distribution load flow using conic programming. IEEE Transactions on Power Systems, 21(3), 1458–1459.MathSciNetCrossRefGoogle Scholar
  52. 52.
    Wei, H., & Bai, X. (2009). Semi-definite programming-based method for security-constrained unit commitment with operational and optimal power flow constraints. IET Generation Transmission and Distribution, 3(2), 182–197.CrossRefGoogle Scholar
  53. 53.
    Andersen, E. D., & Andersen, K. D. (2000). The Mosek interior point optimizer for linear programming: An implementation of the homogeneous algorithm. In: Frenk H., Roos K., Terlaky T., Zhang S. (Eds) High Performance Optimization. Applied Optimization (Vol. 33). Springer: Boston, MA.Google Scholar
  54. 54.
    Boyd, S., & Vandenberghe, L. (2009). Convex optimization (2nd ed.). Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  55. 55.
    Li, N., Chen, L., & Low, S. H. (2012). Exact convex relaxation of OPF for radial networks using branch flow model. In 2012 I.E. Third International Conference on Smart Grid Communications (SmartGridComm) (pp. 7–12).Google Scholar
  56. 56.
    Lavaei, J. (2011). Zero duality gap for classical opf problem convexifies fundamental nonlinear power problems. In Proceedings of the 2011 American Control Conference (pp. 4566–4573).Google Scholar
  57. 57.
    Lavaei, J., & Low, S. H. (2012). Zero duality gap in optimal power flow problem. IEEE Transactions on Power Systems, 27(1), 92–107.CrossRefGoogle Scholar
  58. 58.
    Phan, D. T. (2012). Lagrangian duality and branch-and-bound algorithms for optimal power flow. Operations Research, 60(2), 275–285.MathSciNetCrossRefGoogle Scholar
  59. 59.
    Meng, L., Sanseverino, E. R., Luna, A., Dragicevic, T., Vasquez, J. C., & Guerrero, J. M. (2016). Microgrid supervisory controllers and energy management systems: A literature review. Renewable and Sustainable Energy Reviews, 60, 1263–1273.CrossRefGoogle Scholar
  60. 60.
    Abido, M. A. (2003). Environmental/economic power dispatch using multiobjective evolutionary algorithms. IEEE Transactions on Power Systems, 18(4), 1529–1537.CrossRefGoogle Scholar
  61. 61.
    Colson, C. M., Nehrir, M. H., & Pourmousavi, S. A. (2010). Towards real-time microgrid power management using computational intelligence methods. In IEEE PES General Meeting (pp. 1–8).Google Scholar
  62. 62.
    Takeuchi, A., Hayashi, T., Nozaki, Y., & Shimakage, T. (2012). Optimal scheduling using metaheuristics for energy networks. IEEE Transactions on Smart Grid, 3(2), 968–974.CrossRefGoogle Scholar
  63. 63.
    Haupt, R. L., & Haupt, S. E. (2004). Practical genetic algorithms (2nd ed.). New York: Wiley.zbMATHGoogle Scholar
  64. 64.
    Narkhede, M. S., Chatterji, S., & Ghosh, S. (2012). Trends and challenges in optimization techniques for operation and control of Microgrid—A review. In 2012 1st International Conference on Power and Energy in NERIST (ICPEN) (pp. 1–7).Google Scholar
  65. 65.
    Vergara, P. P., Torquato, R., & da Silva, L. C. P. (2015). Towards a real-time Energy Management System for a Microgrid using a multi-objective genetic algorithm. In 2015 I.E. Power & Energy Society General Meeting (pp. 1–5).Google Scholar
  66. 66.
    Reference Manual: LocalSolver. 2016.Google Scholar
  67. 67.
    Zhao, B., Zhang, X., Chen, J., Wang, C., & Guo, L. (2013). Operation optimization of standalone microgrids considering lifetime characteristics of battery energy storage system. IEEE Transactions on Sustainable Energy, 4(4), 934–943.CrossRefGoogle Scholar
  68. 68.
    Corso, G., Di Silvestre, M. L., Ippolito, M. G., Riva, E., & Zizzo, G. (2010). Multi-objetive long term optimal dispatch of distributed energy resources in Microgrids. In 2010 45th Int. Univ. Power Eng. Conf. (pp. 1–5).Google Scholar
  69. 69.
    OpenDSS, Repository of source code for OpenDSS. 2013.Google Scholar
  70. 70.
    Chassin, D. P., Schneider, K., & Gerkensmeyer, C. (2008). GridLAB-D: An open-source power systems modeling and simulation environment. In 2008 IEEE/PES Transmission and Distribution Conference and Exposition (pp. 1–5).Google Scholar
  71. 71.
    IEEE draft standard for the specification of microgrid controllers. In IEEE P2030.7/D10 (pp. 1–49).Google Scholar
  72. 72.
    Communication networks and systems for power utility automation—Part 7-420: Basic communication structure—Distributed energy resources logical nodes. IEC Standard 61850-7-420. 2009.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Pedro P. Vergara
    • 1
  • Juan C. López
    • 1
  • Juan M. Rey
    • 2
    Email author
  • Luiz C. P. da Silva
    • 1
  • Marcos J. Rider
    • 1
  1. 1.University of Campinas (UNICAMP)CampinasBrazil
  2. 2.Universidad Industrial de Santander (UIS)BucaramangaColombia

Personalised recommendations