Advertisement

Control of Power Converters in AC Microgrids

  • Miguel CastillaEmail author
  • Luis García de Vicuña
  • Jaume Miret
Chapter

Abstract

This chapter introduces the basic concepts, the operation of the power converters, and the performance of the control schemes in AC microgrids. First, the power converters are classified according to the main function performed either as grid-feeding converters or as grid-forming converters. Second, a complete description of the most important control loops in αβ stationary reference frame is presented. Finally, the chapter concludes with key findings and remarks on the control schemes.

Keywords

Microgrid operation Power converters Control schemes 

References

  1. 1.
    Katiraei, F., Iravani, R., Hatziargyriou, N., & Dimeas, A. (2008). Microgrids management. IEEE Power & Energy Magazine, 6, 54–65.CrossRefGoogle Scholar
  2. 2.
    Rocabert, J., Luna, A., Blaabjerg, F., & Rodriguez, P. (2012). Control of power converters in AC microgrids. IEEE Transactions on Power Electronics, 27, 4734–4749.CrossRefGoogle Scholar
  3. 3.
    Castilla, M., Miret, J., Camacho, A., Matas, J., & Garcia de Vicuna, L. (2013). Reduction of current harmonic distortion in three-phase grid-connected photovoltaic inverters via resonant current control. IEEE Transactions on Industrial Electronics, 60, 1464–1472.CrossRefGoogle Scholar
  4. 4.
    IEEE recommended practice for excitation system models for power system stability studies. (1992). IEEE Std. 421.5-1992.Google Scholar
  5. 5.
    Martinez, J., & Kjaer, F. C. (2011). Fast voltage control in wind power plants (pp. 1–7). IEEE Power and Energy Society General Meeting.Google Scholar
  6. 6.
    Guerrero, J. M., Garcia de Vicuna, L., Matas, J., Castilla, M., & Miret, J. (2005). Output impedance design of parallel-connected UPS inverters with wireless load-sharing control. IEEE Transactions on Industrial Electronics, 52, 1126–1135.CrossRefGoogle Scholar
  7. 7.
    He, J., Li, W., Guerrero, J. M., Blaabjerg, F., & Vasquez, J. C. (2013). An islanding microgrid power sharing approach using enhanced virtual impedance control scheme. IEEE Transactions on Power Electronics, 28, 5272–5282.CrossRefGoogle Scholar
  8. 8.
    Tuladhar, A., Jin, H., Unger, T., & Mauch, K. (2000). Control of parallel inverters in distributed AC power systems with consideration of line impedance effect. IEEE Transactions on Industry Applications, 36, 131–138.CrossRefGoogle Scholar
  9. 9.
    Barklund, E., Pogaku, N., Prodanovic, M., Hernandez-Aramburo, C., & Green, T. C. (2008). Energy management in autonomous microgrid using stability-constrained droop control of inverters. IEEE Transactions on Power Electronics, 23, 2346–2352.CrossRefGoogle Scholar
  10. 10.
    Mohamed, Y. A. I., & El-Saadany, E. F. (2008). Adaptive decentralized droop controller to preserve power sharing stability of paralleled inverters in distributed generation microgrids. IEEE Transactions on Power Electronics, 23, 2806–2816.CrossRefGoogle Scholar
  11. 11.
    Guerrero, J. M., Vasquez, J. C., Matas, J., Garcia de Vicuna, L., & Castilla, M. (2011). Hierarchical control of droop-controlled AC and DC microgrids—A general approach towards standardization. IEEE Transactions on Industrial Electronics, 58, 158–172.CrossRefGoogle Scholar
  12. 12.
    Chen, C., Duan, S., Cai, T., Liu, B., & Hu, G. (2011). Smart energy management system for optimal microgrid economic operation. IET Renewable Power Generation, 5, 258–267.CrossRefGoogle Scholar
  13. 13.
    Nutkani, I. U., Loh, P. C., & Blaabjerg, F. (2014). Droop scheme with consideration of operating costs. IEEE Transactions on Power Electronics, 29, 1047–1052.CrossRefGoogle Scholar
  14. 14.
    Nutkani, I. U., Loh, P. C., Wang, P., & Blaabjerg, F. (2015). Cost-prioritized droop schemes for autonomous AC microgrids. IEEE Transactions on Power Electronics, 30, 1109–1119.CrossRefGoogle Scholar
  15. 15.
    Yazdani, A., & Iravani, R. (2010). Voltage-sourced converters in power systems: Modeling, control, and applications. Hoboken: Wiley.CrossRefGoogle Scholar
  16. 16.
    Yuan, X., Merk, W., Stemmler, H., & Allmeling, J. (2002). Stationary-frame generalized integrators for current control of active power filters with zero steady-state error for current harmonics of concern under unbalanced and distorted operating conditions. IEEE Transactions on Industry Applications, 38, 523–532.CrossRefGoogle Scholar
  17. 17.
    Zmood, D. N., & Holmes, D. G. (2003). Stationary frame current regulation of PWM inverters with zero steady-state error. IEEE Transactions on Power Electronics, 18, 814–822.CrossRefGoogle Scholar
  18. 18.
    Castilla, M., Miret, J., Matas, J., Garcia de Vicuna, L., & Guerrero, J. M. (2009). Control design guidelines for single-phase grid-connected photovoltaic inverters with damped resonant harmonic compensators. IEEE Transactions on Industrial Electronics, 56, 4492–4501.CrossRefGoogle Scholar
  19. 19.
    Fortunato, M., Giustiniani, A., Petrone, G., Spagnuolo, G., & Vitelli, M. (2008). Maximum power point tracking in a one-cycle-controlled single-stage photovoltaic inverter. IEEE Transactions on Industrial Electronics, 55, 2683–2684.CrossRefGoogle Scholar
  20. 20.
    Mai, Q., Shan, M., Liu, L., & Guerrero, J. M. (2011). A novel improved variable step-size incremental-resistance MPPT method for PV systems. IEEE Transactions on Industrial Electronics, 58, 2427–2434.CrossRefGoogle Scholar
  21. 21.
    Mojiri, M., Karimi-Ghartemani, M., & Bakhshai, A. (2007). Estimation of power system frequency using an adaptive notch filter. IEEE Transactions on Instrumentation and Measurement, 56, 2470–2477.CrossRefGoogle Scholar
  22. 22.
    Rodriguez, P., Luna, A., Candela, I., Mujal, R., Teodorescu, R., & Blaabjerg, F. (2011). Multiresonant frequency-locked loop for grid synchronization of power converters under distorted grid conditions. IEEE Transactions on Industrial Electronics, 58, 127–138.CrossRefGoogle Scholar
  23. 23.
    Castilla, M., Miret, J., Camacho, A., Garcia de Vicuna, L., & Matas, J. (2014). Modeling and design of voltage support control schemes for three-phase inverters operating under unbalanced grid conditions. IEEE Transactions on Power Electronics, 29, 6139–6150.CrossRefGoogle Scholar
  24. 24.
    Camacho, A., Castilla, M., Miret, J., Garcia de Vicuna, L., & Garnica, M. A. (2018). Control strategy for distribution generation inverters to maximize the voltage support in the lowest phase during voltage sags. IEEE Transactions on Industrial Electronics, 65, 2346–2355.CrossRefGoogle Scholar
  25. 25.
    Matas, J., Castilla, M., Miret, J., Garcia de Vicuna, L., & Guzman, R. (2014). An adaptive prefiltering method to improve the speed/accuracy tradeoff of voltage sequence detection methods under adverse grid conditions. IEEE Transactions on Industrial Electronics, 61, 2139–2151.CrossRefGoogle Scholar
  26. 26.
    Vasquez, J. C., Guerrero, J. M., Savaghebi, M., Eloy-Garcia, J., & Teodorescu, R. (2013). Modeling, analysis, and design of stationary reference frame droop controlled parallel three-phase voltage source inverters. IEEE Transactions on Industrial Electronics, 60, 1271–1280.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Miguel Castilla
    • 1
    Email author
  • Luis García de Vicuña
    • 2
  • Jaume Miret
    • 2
  1. 1.Electronic Engineering DepartmentTechnical University of CataloniaVilanova i la GeltrúSpain
  2. 2.Technical University of CataloniaVilanova i la GeltrúSpain

Personalised recommendations