Communication in Microgrids

  • Jorge Luis Sosa Avendaño
  • Luz Stella Moreno Martín


Microgrids are very dynamic structures that need continuous monitoring of their components and surroundings to guarantee an efficient energy management. To accomplish these functions, a dedicated sensor network and communication infrastructure are necessary to coordinate the control actions and to broadcast the collected data to the interested partners which can be allocated in distant places. The microgrid configuration and the control objectives impose a variety of requirements to the communication system which must guarantee different delivering times for diverse type of signal generated inside and outside of the microgrid. Communication infrastructures as well as the protocols and technologies to be used in microgrids communication systems are not yet fully established, thus, the aim of this chapter is to identify the main components of the communication infrastructure and their corresponding functions. Furthermore, different communication technologies that might fulfill the microgrids communication requirements are described. Additionally, interoperability and security issues are discussed. Finally, the peer-to-peer networks and multi-agent systems are introduced.


Communication network Interoperability Security Overlay networks Agents 


  1. 1.
    Lidula, N. W. A., & Rajapakse, A. D. (2011). Microgrids research: A review of experimental microgrids and test systems. Elsevier Ltd. Renewable and Sustainable Energy Reviews, 15, 186–202.CrossRefGoogle Scholar
  2. 2.
    Vasquez, J. C., Guerrero, J. M., Miret, J., Castilla, M., & De Vicuña, L. G. (2010). Hierarchical control of intelligent microgrids. IEEE Industrial Electronics Magazine, 4(4), 23–29.CrossRefGoogle Scholar
  3. 3.
    Katiraei, F., Iravani, R., Hatziargyriou, N., & Dimeas, A. (2008). Microgrids management. IEEE Power and Energy Magazine, 6, 54–65.CrossRefGoogle Scholar
  4. 4.
    Rocabert, J., Luna, A., Blaabjerg, F., & Rodríguez, P. (2012). Control of power converters in AC microgrids. IEEE Transactions on Power Electronics, 27(11), 4734–4749.CrossRefGoogle Scholar
  5. 5.
    Chatzivasiliadis S. J., Hatziargyriou N. D., & Dimeas A. L. (2008). Development of an agent based intelligent control system for microgrids. Proceedings of the IEEE Power and Energy Society 2008 General Meeting (pp. 1–6).Google Scholar
  6. 6.
    Safdar S., Hamdaoui B., Cotilla-Sanchez E., & Guizani M. (2013). A survey on communication infrastructure for micro-grids. Proceeding of the 9th International Wireless Communications and Mobile Computing Conference (IWCMC) (pp. 545–550).Google Scholar
  7. 7.
    De Brabandere K., Vanthournout K., Driesen J., Deconinck G., & Belmans R. (2007). Control of microgrids. Proceedings of the IEEE Power Engineering Society 2007 General Meeting (pp. 1–7).Google Scholar
  8. 8.
    McArthur, S. D. J., Davidson, E. M., Catterson, V. M., Dimeas, A. L., Hatziargyriou, N. D., Ponci, F., & Funabashi, T. (2007). Multi-agent systems for power engineering applications—part I: Concepts, approaches, and technical challenges. IEEE Transactions on Power Systems, 22(4), 1743–1752.CrossRefGoogle Scholar
  9. 9.
    Oyarzabal J., Jimeno J., Ruela J., Engler A., & Hardt C. (2005). Agent based micro grid management system. Proceedings of the IEEE International Conference on Future Power Systems (pp. 1–6).Google Scholar
  10. 10.
    Al-Omar, B., Al-Ali, A. R., Ahmed, R., & Landolsi, T. (2012). Role of information and communication technologies in the smart grid. Journal of Emerging Trends in Computing and Information Sciences, 3(5), 707–716.Google Scholar
  11. 11.
    Chun-Hao, L., & Ansari, N. (2012). The progressive smart grid system from both power and communications aspects. IEEE Communication Surveys and Tutorials, 14(3), 799–821.Google Scholar
  12. 12.
    Siow, L. K., So, P. L., Gooi, H. B., Luo, F. L., Gajanayake, C. J., & Vo, Q.N. (2009). Wi-fi based server in microgrid energy management system. IEEE TENCON 2009 Proceedings.Google Scholar
  13. 13.
    Stanley, H., & Phadke, A. G. (2008). Power system relaying (3rd ed.pp. 64–65). New York: John Wiley and Sons.Google Scholar
  14. 14.
    Rengaraju, P., Lung, C.-H., & Srinivasan, A. (2012). Communication requirements and analysis of distribution networks using WiMAX technology for smart grids. 8th International Wireless Communications and Mobile Computing Conference (IWCMC) (pp. 666–670).Google Scholar
  15. 15.
    Sarafi, A., Tsiropoulos, G., & Cottis, P. (2009). Hybrid wireless-broadband over power lines: A promising broadband solution in rural areas. IEEE Communications Magazine, 47(11), 140–147.CrossRefGoogle Scholar
  16. 16.
    Decotignie J. D. (2005). Ethernet-based real-time and industrial communications. Proceedings of the IEEE Special Issue on Industrial Communication Systems (Vol. 93, no.6).Google Scholar
  17. 17.
    Chowdhury S., Chowdhury S. P., & Crossley P. (2009). Microgrids and active distributions networks (pp. 119–122). IET Renewable Energy Series 6. London, United Kingdom: Institution of Engineering and Technology.Google Scholar
  18. 18.
    2030–2011 - IEEE Guide for Smart Grid Interoperability of Energy Technology and Information Technology Operation with the Electric Power System (EPS), End-Use Applications, and Loads.Google Scholar
  19. 19.
    IEEE Std 1547.3–2007 - IEEE Guide for Monitoring, Information Exchange, and Control of Distributed Resources Interconnected with Electric Power Systems.Google Scholar
  20. 20.
    NISTIR 7628. (2010, August). Guidelines for Smart Grid Cyber Security: Vol. 1, Smart Grid Cyber Security Strategy, Architecture, and High-Level Requirements.Google Scholar
  21. 21.
    IEC 62351 Power systems management and associated information exchange - Data and communications security.Google Scholar
  22. 22.
    IEC 61850 Ed. 1 (2002–2005). Communication networks and systems in substations.
  23. 23.
    Taha Selim Ustum. (2013). Design and development of a communication-assisted microgrid protection system. PhD Dissertation, School of Engineering and Science, Faculty of Health, Engineering and Science, Victoria University.Google Scholar
  24. 24.
    IEC 60870. Telecontrol equipment and systems.Google Scholar
  25. 25.
    IEC 61968. Application integration at electric utilities-system interface for management.Google Scholar
  26. 26.
    Fan, Z., Kulkarni, P., Gormus, S., Efthymiou, C., Kalogridis, G., Sooriyabandara, M., Zhu, Z., Lambotharan, S., & Chin, W. H. (2013). Smart grid communications: Overview of research challenges, solutions, and standardization activities. IEEE Communication Surveys and Tutorials, 15(1), 21–38.CrossRefGoogle Scholar
  27. 27.
    IEC 61400-25-2. Communications for monitoring and control of wind power plants –Part 25-2: Information models for Wind turbines.Google Scholar
  28. 28.
    IEC 61850-7-410. Communication networks and systems for power utility automation –Part 7-410: Hydroelectric power plants Communication for monitoring and control.Google Scholar
  29. 29.
    IEC 61850-7-420. Communication networks and systems for power utility automation –Part 7-420: Basic communication structure – distributed energy resources logical nodes.Google Scholar
  30. 30.
    Timbus, A., Larsson, M., & Yuen, C. (2009). Active management of distributed energy resources using standardized communications and modern information technologies. IEEE Transactions on Industrial Electronics, 56(10), 4029–4037.CrossRefGoogle Scholar
  31. 31.
    Ustun T. S., et al. (2011). Distributed energy resources (DER) object modeling with IEC 61850-7-420. In: Power Engineering Conference, 2011. AUPEC '11. Australasian Universities.Google Scholar
  32. 32.
    Ustun, T. S., et al. (2012). Modeling of a centralized microgrid protection system and distributed energy resources according to IEC 61850-7-420. IEEE Transactions on Power Systems, 27(3), 1–8.MathSciNetCrossRefGoogle Scholar
  33. 33.
    Meng, W., Ma, R., & Chen, H. H. (2014). Smart grid neighborhood area networks: A survey. IEEE Network, 28(1), 24–32.CrossRefGoogle Scholar
  34. 34.
    Llaria A., Curea O., Jimenez J., Martin J. L., & Zuloaga A. (2011). Wireless communication system for microgrids management in islanding. Proceedings of the 14th European Conference on Power Electronics and Applications (pp. 1–10).Google Scholar
  35. 35.
    So H. H. (2010). Zero-configuration identity based sign-cryption scheme for smart grid. 2010 1st IEEE International Conference on Smart Grid Communications (Smart Grid Comm) (pp. 321–326).Google Scholar
  36. 36.
    Anderson, R. (2008). Security engineering: A guide to building dependable distributed systems (2nd ed.pp. 129–140). New Year: Wiley.Google Scholar
  37. 37.
    Bruno, R., Conti, M., & Gregori, E. (2005). Mesh networks: commodity multihop ad hop networks. IEEE Communications Magazine, 43(3), 123–131.CrossRefGoogle Scholar
  38. 38.
    Beitollahi, H., & Deconinck, G. (2007). Peer-to-peer networks applied to power grid. In: Proceedings of the International conference on Risks and Security of Internet and Systems (CRiSIS) (pp. 8).Google Scholar
  39. 39.
    Rigole T., Vanthournout K., & Deconinck G. (2006). Interdependencies between an electric power infrastructure with distributed control, and the underlying ICT infrastructure. In Proceedings of International Workshop on Complex Network and Infrastructure Protection (CNIP-2006), Rome, Italy (pp. 428–440).Google Scholar
  40. 40.
  41. 41.
    Deconinck, G., Rigole, T., Beitollahi, H., Duan, R., Nauwelaers, B., Van Lil, E., & Dondossola, G. (2007). Robust overlay networks for microgrid control systems. In Proceedings of Workshop on Architecting Dependable Systems (WADS 2007), co-located with 37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN 2007), Edinburgh, Scotland (UK) (pp. 148–153).Google Scholar
  42. 42.
    Stoica, I., Morris, R., Karger, D., Kaashoek, F., & Balakrishnan, H. (2001). Chord: A scalable peer-to-peer lookup service for internet applications. In Proceedings of the Conference on applications, technologies, architectures, and protocols for computer communications (SIGCOMM’01), San Diego, California, USA (pp. 149–160).Google Scholar
  43. 43.
    Ratnasamy, S., Francis, P., Haudley, M., Karp, R., & Shenker, S. (2001, August) A scalable content addressable network. Proceedings of the Conference on applications, technologies, architectures, and protocols for computer communications (SIGCOMM’01), San Diego, California, USA (pp 27–31).Google Scholar
  44. 44.
    Rowstron, A., & Druschel, P. (2001, November) Pastry: scalable, decentralized object location and routing for large-scale peer-to-peer systems. Proceedings of the 18th IFIP/ACM International Conference on Distributed Systems Platforms (Middleware 2001), Heidelberg, Germany..Google Scholar
  45. 45.
  46. 46.
    Nathaniel, S. G., & Krekelberg, A. (2003) Usability and privacy: a study of Kazaa P2P file-sharing. Conference on Human Factors in Computing Systems (CHI`03) (pp. 137–144).Google Scholar
  47. 47.
    Rigole T., Vanthournout K., & Deconinck G. (2007). Resilience of distributed microgrid control systems to ICT faults. Proceedings of the 19th International Conference on Electricity Distribution. C I R E D 2007 (pp. 1–4).Google Scholar
  48. 48.
    Kumar Nunna, H. S. V. S., & Doolla, S. (2013). Multiagent-based distributed-energy-resource management for intelligent microgrids. IEEE Transactions on Industrial Electronics, 60(4), 1678–1687.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jorge Luis Sosa Avendaño
    • 1
  • Luz Stella Moreno Martín
    • 2
  1. 1.Laboratorio de Instrumentación Científica, Universidad de los AndesMéridaVenezuela
  2. 2.Escuela de Ingeniería Eléctrica, Facultad de Ingeniería, Universidad de los AndesMéridaVenezuela

Personalised recommendations