Advertisement

Renewable Energy Technologies for Microgrids

  • Marcelo G. Molina
  • Pedro E. MercadoEmail author
Chapter

Abstract

Power generation in microgrids is based on small-sized generating units, typically ranging from less than a kW to tens of MW, connected at the distribution network on-site or near the load demand. Renewable energy technologies for microgrids exploit sustainable energies such as wind energy, solar power, small-scale hydropower, bioenergy, and geothermal power. Many countries in the world have been implementing policies to promote the deployment of renewable generating technologies aiming at reducing the greenhouse gas emissions, principally the exploitation of variable output renewable energies mainly based on wind and solar photovoltaic (PV). The continuous and robust deployment of these types of renewables and their relatively easiness for sizing and installing have set the expectation that power generation integrated into microgrids will be based predominantly on these technologies. Hence, this work focuses on wind and solar photovoltaic generation technologies for microgrid applications. In this document, detailed models to simulate its dynamic performance are presented, including the power conditioning system and the control strategy for grid-tied operation.

Keywords

Microgrids Renewable energy Wind power generation Photovoltaic generation Modeling Control 

References

  1. 1.
    Adefarati, T., & Bansal, R. C. (2016). Integration of renewable distributed generators into the distribution system: A review. IET Renewable Power Generation, 10(7), 873–884.CrossRefGoogle Scholar
  2. 2.
    Sims, R., Mercado, P. E., Krewit, W., et al. (2011). Integration of renewable energy into present and future energy systems. In IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation (pp. 609–706). Cambridge: Cambridge University Press ISBN: 978-1-107-60710-1.CrossRefGoogle Scholar
  3. 3.
    Ackermann, T., Carlini, E. M., Ernst, B., et al. (2015). Integrating variable renewables in Europe: Current status and recent extreme events. IEEE Power and Energy Magazine, 13(6), 67–77.CrossRefGoogle Scholar
  4. 4.
    Gazi, R. B., Hossain, E., Bekiroglu, E., & Kabalci, E. (2014). Microgrid facility at European Union. 3rd International Conference on Renewable Energy Research and Applications (ICRERA) (pp. 865–872), October 19–22, Milwaukee, USA.Google Scholar
  5. 5.
    REN21. (2016). Renewables 2016 Global Status Report. Paris: REN21 Secretariat ISBN 978-3-9818107-0-7.Google Scholar
  6. 6.
    Ragheb, M. (2015). Economics of wind energy. In: Wind Power Systems, Course NPRE 475 (Chapter 34). Champaign, IL: University of Illinois at Urbana-Champaign.Google Scholar
  7. 7.
    Global Wind Energy Council. (2006). Global wind energy markets continue to boom – 2006 another record year. http://www.gwec.net/. June 2007.
  8. 8.
    Blaabjerg, F., & Chen, Z. (2006). Power electronics for modern wind turbines (1st ed.). Seattle: Morgan & Claypool Publishers.Google Scholar
  9. 9.
    Chen, Z., & Blaabjerg, F. (2009). Wind farm – a power source in future power systems. Renewable and Sustainable Energy Reviews, 13(6–7), 1288–1300.CrossRefGoogle Scholar
  10. 10.
    Vestergaard, J., Brandstrup, L., & Goddard, R. D. (2004). A brief history of the wind turbine industries in Denmark and the United States. Proceedings of the Academy of International Business (Southeast USA Chapter) Annual Meeting, Knozville, Tenesse, USA.Google Scholar
  11. 11.
    Power technology – the world’s 10 biggest wind turbines. [Online]. http://www.power-technology.com/features/featurethe-worlds-biggest-wind-turbines-4154395/. January 2014.
  12. 12.
    Ackerman, T. (2005). Wind power in power systems (1st ed.). London: John Wiley and Sons, Ltd.CrossRefGoogle Scholar
  13. 13.
    Hansen, A. D., Iov, F., Blaabjerg, F., & Hansen, L. H. (2004). Review of contemporary wind turbine concepts and their market penetration. Journal of Wind Engineering, 28(3), 247–263.CrossRefGoogle Scholar
  14. 14.
    Qiao, W., Harley, R. G., & Venayagamoorthy, G. K. (2007). Dynamic modeling of wind farms with fixed-speed wind turbine generators. Proceedings of IEEE PES 2007 General Meeting, Tampa, USA, June 24–8.Google Scholar
  15. 15.
    Camm, E. H., Behnke, M. R., Bolado, O., Bollen, M., Bradt, M., Brooks, C. Dilling, W.; Edds, M.; Hejdak, W. J., Houseman, D., Klein, S., Li, F., Li, J., Maibach, P., Nicolai, T., Patino, J., Pasupulati, S. V., Samaan, N., Saylors, S., Siebert, T., Smith, T., Starke, M., & Walling, R (2009). Characteristics of wind turbine generators for wind power plants. IEEE Power & Energy Society (PES) General Meeting (pp. 1–5).Google Scholar
  16. 16.
    Krüger T., & Andresen, B. (2001). Vestas OptiSpeed - advanced control strategy for variable speed wind turbines. Proceedings of European Wind Energy Conference, Copenhagen, Denmark (pp. 983–986), July 2–6Google Scholar
  17. 17.
    Muller, S., Deicke, M., & De Doncker, R. W. (2002). Doubly fed induction generator systems for wind turbines. IEEE Industry Applications Magazine, 8(3), 26–33.CrossRefGoogle Scholar
  18. 18.
    Li, S., Haskew, T. A., Muljadi, E., & Serrentino, C. (2009). Characteristic study of vector-controlled direct-driven permanent magnet synchronous generator in wind power generation. Electric Power Components & Systems, 37(10), 1162–1179.CrossRefGoogle Scholar
  19. 19.
    Molina, M. G., & Mercado, P. E. (2011). Modelling and control design of pitch-controlled variable speed wind turbines. In I. Al-Bahadly (Ed.), Wind turbines (1st ed.). Vienna: InTech Education and Publishing.Google Scholar
  20. 20.
    Raiambal, K., & Chellamuthu, C. (2002). Modeling and simulation of grid connected wind electric generating system. Proceedings of IEEE TENCON (pp. 1847–1852).Google Scholar
  21. 21.
    Carrasco, J. M., Garcia-Franquelo, L., Bialasiewicz, J. T., Galván, E., Portillo-Guisado, R. C., Martín-Prats, M. A., León, J. I., & Moreno-Alfonso, N. (2006). Power electronic systems for the grid integration of renewable energy sources: A survey. IEEE Transactions on Industrial Electronics, 53(4), 1002–1016.CrossRefGoogle Scholar
  22. 22.
    Sanchez, A. G., Molina, M. G., & Rizzato Lede, A. M. (2012). Dynamic model of wind energy conversion systems with PMSG-based variable-speed wind turbines for power system studies. International Journal of Hydrogen Energy, 37(13), 10064–10069.CrossRefGoogle Scholar
  23. 23.
    International Energy Agency. (2010, October) Technology road map, solar photovoltaic energy [Internet]. Retrieved June 25, from http://www.iea.org/papers/2010/pv_roadmap.pdf
  24. 24.
    Greentechmedia. (2014, March) Solar PV pricing continues to fall during a record-breaking 2014 [Internet]. Retrieved June 2015, from http://www.greentechmedia.com/articles/read/solar-pv-system-prices-continue-to-fall-during-a-record-breaking-2014
  25. 25.
    Bloomberg News. China targets 70 gigawatts of solar power to cut coal reliance. Retrieved May 2014.Google Scholar
  26. 26.
    CleanTechnica. Jump up to China’s National Energy Administration: 17.8 GW of new solar PV In 2015 (~20% Increase). Retrieved March 2015.Google Scholar
  27. 27.
    Nelson, V. C. (2011). Introduction to renewable energy. Boca Raton: CRC Press.CrossRefGoogle Scholar
  28. 28.
    Sabonnadiere, J. C. (2009). Renewable energy technologies (1st ed.). Hoboken: Wiley-ISTE.Google Scholar
  29. 29.
    Chowdhury, S., Chowdhury, S. P., & Crossley, P. (2009). Microgrids and active distribution networks. London: The Institution of Engineering and Technology.CrossRefGoogle Scholar
  30. 30.
    Wayne Beaty, H., & Fink, D. G. (2013). Standard handbook for electrical engineers (16th ed.). New York: McGraw-Hill.Google Scholar
  31. 31.
    Khaligh, A., & Onar, O. C. (2010). Energy harvesting solar, wind, and ocean energy conversion systems. Boca Raton: CRC Press.Google Scholar
  32. 32.
    Duffie, J. A., & Beckman, W. A. (1991). Solar engineering of thermal processes (2nd ed.). New York: John Wiley & Sons.Google Scholar
  33. 33.
    Molina, M. G., & Espejo, E. J. (2014). Modeling and simulation of grid-connected photovoltaic energy conversion systems. International Journal of Hydrogen Energy, 39(16), 8702–8707.CrossRefGoogle Scholar
  34. 34.
    Teodorescu, R., Liserre, M., & Rodríguez, P. (2011). Introduction in grid converters for photovoltaic and wind power systems. Chichester: John Wiley & Sons, Ltd.CrossRefGoogle Scholar
  35. 35.
    Reisi, A. R., Moradi, M. H., & Jamasb, S. (2013). Classification and comparison of maximum power point tracking techniques for photovoltaic system: A review. Renewable and Sustainable Energy Reviews, 19, 433–443.CrossRefGoogle Scholar
  36. 36.
    Molina, M. G. (2016). Modelling and control of grid-connected solar photovoltaic systems. In W.-P. Cao & Y. Hu (Eds.), Renewable energy utilization and system integration (1st ed.). Vienna: InTech Education and Publishing.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Instituto de Energía Eléctrica, Universidad Nacional de San Juan – CONICETSan JuanArgentina

Personalised recommendations