Advertisement

Microgrid Demonstration Projects and Pilot Sites

  • Clara Gouveia
  • Carlos Moreira
  • David Rua
  • João Peças Lopes
Chapter

Abstract

Within the smart grid (SG) paradigm, the microgrid (MG) concept has been pointed out as a pathway for the implementation of future smart distribution networks since it extends and decentralizes the distribution network monitoring and control capability and provides key self-healing capabilities to low voltage (LV) networks. The increased interest on the MG concept has led to several demonstration activities that have been exploited worldwide. Therefore, this chapter provides an overview regarding some of the laboratorial infrastructures and pilot sites dedicated to development of MG and SG concepts. Additionally, it is presented and discussed the development of a specific SG laboratorial infrastructure following the MG concept.

Keywords

Electric vehicles Microgrids Smart grids Practical results 

Notes

Acknowledgments

This work was financed by the ERDF—European Regional Development Fund through the Operational Programme for Competitiveness and Internationalization—COMPETE 2020 Programme and by National Funds through FCTFundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) within project “ERANETLAC/0005/2014.”

References

  1. 1.
    Lasseter, R. H. (2011). Smart distribution: Coupled microgrids. Proceedings of the IEEE, 99(6), 1074–1082.CrossRefGoogle Scholar
  2. 2.
    Peças Lopes, J., Madureira, A. G., & Moreira, C. (2013). A view of microgrids. Wiley Interdisciplinary Reviews: Energy and Environment, 2(1), 86–103.CrossRefGoogle Scholar
  3. 3.
    Madureira, A. G., Pereira, J., Gil, N., Peças Lopes, J. A., Korres, G., & Hatziargyriou, N. (2011). Advanced control and management functionalities for multi-microgrids. European Transactions on Electrical Power, 21(2), 1159–1177.CrossRefGoogle Scholar
  4. 4.
    Lasseter, R. H. (1998). Control of distributed resources. In Bulk Power System and Controls IV Conference, August 24-28, 1998, Santorini, Greece.Google Scholar
  5. 5.
    Lasseter, B. (2001). Microgrids [distributed power generation]. In IEEE Power Engineering Society Winter Meeting 2001, 28 Jan-Feb 2001 (Vol. 1, pp. 146–149).Google Scholar
  6. 6.
    Lasseter, R. H., Akhil, A., Marnay, C., Stephens, J., Dagle, J., Guttromson, R., Meliopoulous, A., Yinger, R., & Eto, J. (2002, April). The CERTS microgrid concept. White paper for Transmission Reliability Program, Office of Power Technologies, U.S. Department of Energy. [Online]. Retrieved November, 2014, from http://certs.lbl.gov/pdf/50829.pdf
  7. 7.
    Lasseter, R. H., & Piagi, P. (2006, October 3). Control of small distributed energy resources (US Patent 7,116,010).Google Scholar
  8. 8.
    Peças Lopes, J. A., Moreira, C. L., & Madureira, A. G. (2006). Defining control strategies for MicroGrids islanded operation. IEEE Transactions on Power Systems, 21(2), 916–924.CrossRefGoogle Scholar
  9. 9.
    Guerrero, J. M., Vasquez, J. C., Matas, J., de Vicuna, L. G., & Castilla, M. (2011). Hierarchical control of droop-controlled AC and DC microgrids—A general approach toward standardization. IEEE Transactions on Industrial Electronics, 58(1), 158–172.CrossRefGoogle Scholar
  10. 10.
    Moreira, C. L., Resende, F. O., & Lopes, J. A. P. (2007). Using low voltage microgrids for service restoration. IEEE Transactions on Power Systems, 22(1), 395–403.CrossRefGoogle Scholar
  11. 11.
    Che, L., Khodayar, M., & Shahidehpour, M. (2014). Only connect: Microgrids for distribution system restoration. IEEE Power and Energy Magazine, 12(1), 70–81.CrossRefGoogle Scholar
  12. 12.
    European Research Project MICROGRIDS. [Online]. Retrieved May, 2014, from http://www.microgrids.eu/
  13. 13.
    MERGE Project Deliverable 1.2 (2010, June). Extend concepts of MG by identifying several EV smart control approaches to embedded in the smart grid concept to manage EV individually or in clusters. [Online]. Retrieved November, 2014, from http://www.ev-merge.eu/
  14. 14.
    Project REIVE—Smart grids with electric vehicles [Online]. Retrieved January, 2013, from http://reive.inescporto.pt/en
  15. 15.
    Fundação para a Ciência e Tecnologia Project. Microgrids+EV: Identification of control and management strategies for microgrids with plugged-in electric vehicles. PTDC/EEA-EEL/103546/2008. [Online].Google Scholar
  16. 16.
    Hatziargyriou, N., Asano, H., Iravani, R., & Marnay, C. (2007). Microgrids. IEEE Power and Energy Magazine, 5(4), 78–94.CrossRefGoogle Scholar
  17. 17.
    Lidula, N. W. A., & Rajapakse, A. D. (2011). Microgrids research: A review of experimental microgrids and test systems. Renewable and Sustainable Energy Reviews, 15(1), 186–202.CrossRefGoogle Scholar
  18. 18.
    Barnes, M., Kondoh, J., Asano, H., Oyarzabal, J., Ventakaramanan, G., Lasseter, R., Hatziargyriou, N., & Green, T. (2007). Real-World MicroGrids—An overview. In IEEE International Conference on System of Systems Engineering, 16-18 April 2007 (pp. 1–8).Google Scholar
  19. 19.
    Lasseter, R. H., Eto, J. H., Schenkman, B., Stevens, J., Vollkommer, H., Klapp, D., Linton, E., Hurtado, H., & Roy, J. (2011). CERTS microgrid laboratory test bed. IEEE Transactions on Power Delivery, 26(1), 325–332.CrossRefGoogle Scholar
  20. 20.
    Alegria, E., Brown, T., Minear, E., & Lasseter, R. H. (2014). CERTS microgrid demonstration with large-scale energy storage and renewable generation. IEEE Transactions on Smart Grid, 5(2), 937–943.CrossRefGoogle Scholar
  21. 21.
    MICROGRIDS project Deliverable DH1. (2009, September). Description of the laboratory micro grids. [Online]. Retrieved October 2014, from http://www.microgrids.eu/micro2000/
  22. 22.
    DEMOTEC Laboratory [Online]. Retrieved from http://www.iset.unikassel.de/pls/w3isetdad/
  23. 23.
    Barnes, M., Dimeas, A., Engler, A., Fitzer, C., Hatziargyriou, N., Jones, C., Papathanassiou, S., & Vandenbergh, M. (2005, November). Microgrid laboratory facilities. In 2005 International Conference on Future Power Systems, 18 Nov. 2005 (pp. 6–18).Google Scholar
  24. 24.
    Dimeas, A. L., & Hatziargyriou, N. D. (2005). Operation of a multiagent system for microgrid control. IEEE Transactions on Power Systems, 20(3), 1447–1455.CrossRefGoogle Scholar
  25. 25.
    Hatziargyriou, N. (2014). The microgrids concept. In: Microgrids: Architectures and control 2014 (pp. 1–24). New York: Wiley 2014 (ch. 1).Google Scholar
  26. 26.
    Katiraei, F., Iravani, R., Hatziargyriou, N., & Dimeas, A. (2008). Microgrids management. IEEE Power and Energy Magazine, 6(3), 54–65.CrossRefGoogle Scholar
  27. 27.
    Zhao, B., Zhang, X., & Chen, J. (2012). Integrated microgrid laboratory system. IEEE Transactions on Power Systems, 27(4), 2175–2185.CrossRefGoogle Scholar
  28. 28.
    KEMA DNV, “Smart Grid Projects”, Report. Retrieved from http://www.dnvkema.com/innovations/smart-grids (Last consulted on Jan. 2013)
  29. 29.
    Giordano, V., et al. (2011). Smart Grid Projects in Europe—Lessons learned and current developments. Institute for Energy and Transport, Joint Research Center, Publications Office of the European Union, Luxembourg, Tech. report JRC65215. [Online]. Retrieved November, 2014, from http://publications.jrc.ec.europa.eu/repository/handle/111111111/22212
  30. 30.
    Covrig, C. F., et al. (2014). Smart Grid Projects Outlook 2014. Institute for Energy and Transport, Joint Research Center, Publications Office of the European Union, Luxembourg, Tech. report JRC90290. [Online]. Retrieved November, 2014, from http://publications.jrc.ec.europa.eu/
  31. 31.
    InovGrid Consortium. (2010). InovGrid v3—A evolução da Rede de Distribuição como resposta decisiva aos novos desafios do sector eléctrico—requisitos funcionais. Technical report, EDP.Google Scholar
  32. 32.
    Gouveia, C., Rua, D., Soares, F. J., Moreira, C., Matos, P. G., & Peças Lopes, J. A. (2015). Development and implementation of Portuguese smart distribution system. Electric Power Systems Research, 120, 150–162.CrossRefGoogle Scholar
  33. 33.
    Évora InovCity Project—Smart Energy Living. [Online]. Retrieved November, 2014, from http://www.inovcity.com/pt/
  34. 34.
    NiceGrid Microgrid Project. [Online]. Retrieved November, 2014, from http://www.nicegrid.fr
  35. 35.
    Schmitt, L., Kumar, J., Sun, D., Kayal, S., & Mani Venkata, S. S. (2013). Ecocity upon a hill: Microgrids and the future of the European city. IEEE Power and Energy Magazine, 11(4), 59–70.CrossRefGoogle Scholar
  36. 36.
    Kempton, W., & Letendre, S. E. (1997). Electric vehicles as a new power source for electric utilities. Transportation Research Part D: Transport and Environment, 2(3), 157–175.CrossRefGoogle Scholar
  37. 37.
    Kempton, W., Tomic, J., Letendre, S. E., Brooks, A., & Lipman, T. (2001, June). Vehicle-to-grid power: Battery, hybrid, and fuel cell vehicles as resources for distributed electric power in California. Institute of Transportation Studies, University of California, California, Tech. Rep. UCD-ITS-RR-01-03. [Online]. Retrieved from http://www.udel.edu/V2G/docs/V2G-Cal-2001.pdf
  38. 38.
    California Zero Emission Vehicle (ZEV) Program. [Online]. Retrieved November, 2014, from http://www.arb.ca.gov/msprog/zevprog/zevprog.htm
  39. 39.
    European Research Project Green eMotion. [Online]. Retrieved October, 2014, from http://www.greenemotion-project.eu/
  40. 40.
    European Project COTEVOS. [Online]. Retrieved November, 2014, from http://cotevos.eu/
  41. 41.
    Smartcity Malaga—A model of sustainable energy management for cities of the future. White paper for Endesa, 2014. [Online]. Retrieved from http://www.endesasmartgrids.com/index.php/en/smartcities-en/malaga-spain [Nov 2014]. http://www.fct.pt/apoios/projectos/consulta/vglobal_projecto?idProjecto=103546&idElemConcurso=2767 [June 2012]
  42. 42.
    SMA Report. (2009). Technology compendium 2-solar stand-alone power and backup power supply. [Online]. Retrieved November, 2014, from http://files.sma.de/dl/10040/INSELVERSOR-AEN101410.pdf
  43. 43.
    Ferreira, R. J., Miranda, L. M., Araújo, R. E., & Peças Lopes, J. A. (2011). A new bi-directional charger for vehicle-to-grid integration. In: Proceedings 2011 2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies (ISGT Europe), 5–7 Dec. 2011 (pp. 1–5).Google Scholar
  44. 44.
    Rua, D. (2014). Last-mile communications systems for smart electric distribution grids (PhD dissertation, Faculty of Engineering of University of Porto, Porto, 2014).Google Scholar
  45. 45.
    Miguel Rodrigues, J., & Resende, F. (2012, October). Using photovoltaic systems to improve voltage control in low voltage networks. In: ISGT2012—Third IEEE PES Innovative Smart Grid Technologies Europe Conference, Berlin, Germany.Google Scholar
  46. 46.
    Rodrigues, J., Resende, F. O., & Moreira, C. L. (2011). Contribution of PMSG based small wind generation systems to provide voltage control in low voltage networks. In: ISGT 2011—IEEE PES ISGT 2011 Europe, Manchester, UK.Google Scholar
  47. 47.
    Stetz, T., Marten, F., & Braun, M. (2013). Improved low voltage grid-integration of photovoltaic systems in Germany. IEEE Transactions on Sustainable Energy, 4(2), 534–542.CrossRefGoogle Scholar
  48. 48.
    Keyhani, & Marwali, M. (2012). Microgrids operation and control under emergency conditions. In: Smart Power Grids 2011 (eds) (pp. 351–399) Berlin: Springer (ch. 12).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Clara Gouveia
    • 1
  • Carlos Moreira
    • 1
    • 2
  • David Rua
    • 1
  • João Peças Lopes
    • 1
    • 2
  1. 1.INESC TEC—INESC Technology and SciencePortoPortugal
  2. 2.FEUP—Faculty of EngineeringUniversity of PortoPortoPortugal

Personalised recommendations